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ABSTRACT 
 
 A monthly reconstruction of precipitation beginning 1900 is presented.  The 
reconstruction is intended to resolve interannual and longer time scales and spatial scales 
larger than 5º over both land and oceans.  Because of different land and ocean data 
availability, the reconstruction is produced by combining two separate historical 
reconstructions.  One analyzes interannual time-scale variations directly by fitting gauge-
based anomalies to large-scale spatial modes.  That direct reconstruction is used for land 
anomalies and interannual oceanic anomalies.  The other analyzes annual and longer 
time-scale variations indirectly from correlations with analyzed sea-surface temperature 
and sea-level pressure.  The indirect reconstruction is used for oceanic variations with 
time scales longer than interannual.  In addition to the reconstruction, a method of 
estimating reconstruction errors is also presented. 
 
 Over land the reconstruction is a filtered representation of the gauge data with 
data gaps filled.  Over oceans the reconstruction gives an estimate of the atmospheric 
response to changing temperature and pressure, combined with interannual variations.  
The reconstruction makes it possible to evaluate global precipitation variations for time 
periods much longer than the satellite period, which begins 1979.  Evaluations of the 
reconstruction show some large-scale similarities with coupled model precipitation 
variations over the 20th century, including an increasing tendency over the century.  The 
reconstruction land and sea trends tend to be out of phase at low latitudes, similar to the 
out-of-phase relationship for interannual variations.  The reconstruction presented here 
may be used for climate monitoring, statistical climate studies of the 20th century, and for 
helping to evaluate dynamic climate models.  In the future we will explore the possibility 
of improving the reconstruction by including other data that may give independent 
information about the precipitation history. 
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1. Introduction 
 
 Observations from a number of earth-orbiting satellites combined with rain gauge 
measurements make it possible to analyze global precipitation for the satellite era.  
Monthly precipitation analyses beginning in 1979 have been produced by the Global 
Precipitation Climatology Project (GPCP, Huffman et al. 1997, Adler et al. 2003, 
Huffman et al. 2009) and Xie and Arkin (CMAP, 1996, 1997).  These land-ocean 
analyses are valuable for assessing global and regional climate variability in the satellite 
era.  For climate-change studies it is desirable to have longer records.  Here we discuss 
improved methods for using the available historical observations with statistics obtained 
from satellite-based data to extend the global precipitation record back to 1900.  This 
includes ocean-area precipitation, an important component of the global hydrologic cycle 
which could be affected by climate change. 
 
 Over the oceans both sea-surface temperature (SST) and sea-level pressure (SLP) 
have been reconstructed through the 20th century (e.g., see Smith et al. 2005, 2008a, and 
Allan and Ansell 2006).  Oceanic monthly reconstructions of SST and SLP anomalies are 
possible because they were regularly measured by ships over the 20th century (e.g., 
Woodruff et al. 1998) and because of their relatively large time and space scales.  The 
longer climate records allow SST and SLP reconstructions to be used to better understand 
climate variations and to validate climate models.  Historical precipitation beginning 
1900 is available for many land regions from rain gauge measurements (e.g., Vose et al. 
1998).  However, there are many land regions where gauges are sparse, and over oceans 
there are no systematic gauge observations for the pre-satellite period.   
 
 Reconstructions of historical precipitation that includes oceanic regions have been 
developed in an attempt to fill in these missing regions for the pre-satellite era.  Xie et al. 
(2001) fit gauge data to a set of empirical orthogonal functions (EOFs) to reconstruct 
precipitation for the second half of the 20th century.  Their reconstruction yielded good 
skill in the tropical Pacific because of its ability to reconstruct variations associated with 
ENSO.  In most other regions their reconstruction had little skill.  A similar 
reconstruction by Efthymiadis et al. (2005) gave similar results, with little skill outside 
the tropics except near gauge locations.  Smith et al. (2008b) produced a similar 
reconstruction for monthly precipitation beginning 1900.  This reconstruction, computed 
by fitting GHCN (Vose et al. 1998) gauge data to a set of EOFs, will be referred to as 
REOF.  The REOF was based on an improved satellite base analysis and carefully tuned.  
Besides having high skill in the tropics, consistent with earlier studies, the REOF was 
found to have improved skill over Northern Hemisphere extra-tropical oceans.  The 
REOF skill is lowest in the extra-tropical southern ocean.  Another deficiency with the 
REOF is its multi-decadal component, which was found to be sensitive to the gauge data 
set used for the reconstruction.  Evaluation of multi-decadal variations is important for 
understanding 20th century climate variations, so something more than the REOF was 
needed. 
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 In an attempt to better resolve multi-decadal variations, we developed a canonical 
correlation analysis (CCA) relating fields of SST and SLP anomalies to precipitation 
anomalies (Smith et al. 2009, also see Barnett and Preisendorfer 1987 for a description of 
CCA).  The SST and SLP anomalies, which are better sampled historically than 
precipitation and have been reconstructed over oceanic regions.  Relationships for the 
CCA are developed using a satellite-based precipitation analysis over the satellite era.  
Since this reconstruction was intended to resolve large-scale multi-decadal variations, 
annual precipitation anomalies were analyzed using their relationships to annual SST and 
SLP anomalies.  We will refer to this reconstruction as RCCA. 
 
 Large-scale averages of the RCCA were found to compare well with the available 
data.  The near-global average at gauge locations is consistent with averages of 
independent gauges.  Over oceans both the RCCA and an ensemble of AR4 coupled 
models (Randall et al. 2007) indicate increasing average precipitation on multi-decadal 
time scales, although the RCCA increase is stronger than that from the AR4 ensemble 
(see Smith et al. 2009 for details).  However, smaller-scale variations in the RCCA are 
much weaker than in the REOF.   
 
 Clearly, it is desirable to blend these two analyses retaining the best features of 
each.  The REOF has more reliable month-to-month variations and better spatial 
resolution, so its high-frequency variations should be part of the blended analysis.  The 
RCCA has more reliable multi-decadal variations, so its low-frequency variations should 
be part of the blended analysis.  In the following sections the input data and individual 
reconstructions to be blended are described in greater detail.  Blending methods are then 
presented, followed by discussions of results and a summary. 
 
 
2. Input Data and Reconstructions 
 
 Here we describe the different data sets needed to compute the reconstructions.  
Data used for comparisons with the reconstruction are also described.  That is followed 
by a description of the reconstruction based on fitting gauge data to EOFs (REOF) and 
the reconstruction based on a CCA (RCCA).  For both the REOF and RCCA, cross-
validation tests used to tune the reconstructions and the skill of the individual analyses 
are discussed. 
 
 
2.1 Input Data 
 
 Several satellite-based data sets are used for development of the reconstructions 
and also to help validate the analyses.  These base data sets are needed to develop the 
large-scale spatial covariance patterns used to produce the reconstructions.  Therefore, it 
is critical that they be as accurate and unbiased as possible to avoid introducing false 
signals to the historical reconstruction.   
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 One satellite-based analysis used to test and to help validate the analyses is the 
GPCP, mentioned above (Huffman et al. 1997, Adler et al. 2003).  The current version of 
GPCP is version 2.1 (GPCP.v2.1), which was recently released (Huffman et al. 2009).  
The GPCP combines several different infrared and microwave based satellite 
precipitation analyses after adjusting them to remove inter-satellite biases.  The combined 
satellite product is merged with a gauge product.  The result is a global monthly 
precipitation analysis on a 2.5° latitude-longitude grid beginning January 1979.  Changes 
incorporated in GPCP.v2.1 include the use of improved gauge data from the Global 
Precipitation Climatology Center (GPCC) and improved adjustments for the satellite 
inputs.  Here the GPCP.v2.1 monthly data are used from 1979-2008 for reconstruction 
model development and evaluation. 
 
 The statistical reconstruction models used here will use covariance computed 
from the satellite base period data, beginning 1979, to reconstruct the pre-satellite period, 
beginning 1900.  Thus, it is important that the satellite period base analysis be as free 
from non-physical variations as possible, to prevent producing spurious reconstruction 
covariance.  One potential problem that we considered is inhomogeneities in the data 
from using satellites with different sampling times and different instruments.  The GPCP 
data have been carefully constructed for climate studies, including adjustments of inter-
satellite biases.  Testing on an earlier version of GPCP showed no apparent long-term 
biases from using multiple satellite inputs (Smith et al. 2006), so most if not all 
inhomogeneities should have been removed from GPCP.  Some additional testing was 
done to determine if a simpler and perhaps more homogeneous satellite-period analysis 
could be developed similar to the analysis of Sapiano et al. (2008).  Testing involved 
using satellite infrared-based precipitation estimates with homogeneity adjustments to 
account for time-of-day differences, combined with ERA-40 and ERA-interim reanalysis 
estimates.  The satellite estimates were used at low latitudes and the ERA reanalysis 
estimates at high latitudes, with blending in between (see Sapiano et al. 2008 for details).  
Testing has shown that at this time we are not able to produce a more homogeneous 
satellite-period analysis using these methods.  Therefore, here we use GPCP.v2.1 as base 
data in all of our reconstructions. 
 
 Gauge-based precipitation analyses are used for the REOF.  Here several gauge 
analyses are tested with the REOF.  All of these data sets are available online.  One 
gauge-based analysis the Global Historical Climatology Network (GHCN, Vose et al. 
1998), produced by the National Climatic Data Center.  The GHCN is a monthly analysis 
on a 5º spatial grid, 1900-2008.  These are the same gauge data used for reconstruction by 
Smith et al. (2008b), except that here the GHCN is updated with several more years.  The 
Global Precipitation Climatology Center (GPCC) version 4 gauge data are also used to 
test our reconstructions.  The monthly GPCC data are available 1901-2007.  Descriptions 
of GPCC are given by Schneider et al. (2008) and Rudolf (2005).    Here we average their 
2.5° data to the 5° grid.  In addition we also use the University of East Anglia Climate 
Research Unit (CRU) 5° monthly gauge analysis (Hulme et al. 1998).  The monthly CRU 
analysis is available 1900 to 1998. 
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 All three gauge-based data sets are applied to the REOF analysis.  Differences can 
occur because of different data included in the gauge analyses, differences in gauge 
adjustments and quality control, and differences in averaging from individual stations to 
5° regions.  Gauge sampling differences are illustrated by Figure 1.  For most of the 
historical period the CRU analysis has better sampling of 5º areas than either of the 
others, while GHCN has the least sampling.  This figure illustrates regional coverage 
with at least one gauge in a 5º area, and not the total number of gauges.  Thus, although 
the CRU has generally best spatial coverage, it may not use the greatest total number of 
gauges.  Averaging more gauges in a 5º area will decrease the random error for that area.  
However, as we discuss below, the analysis involves fitting data to spatial modes, which 
filters out nearly all random errors.  For our analysis the spatial coverage is most critical.  
Note that although the Earth’s surface is land over approximately 30%, coastal and island 
5° regions in the analyses are here assumed to cover the entire 5° area, and thus the 
region sampled can exceed 30% in this estimate. 
 

As noted above, both SST and SLP historical analyses are used to in the RCCA.  
The SSTs are from the analysis of Smith et al. (2008a) and the SLPs are from the analysis 
of Allan and Ansell (2006).  Since the RCCA is performed on an annual 5° latitude-
longitude grid, those analyses are averaged to match that grid.   
 

 
Figure 1.  The % of global 5° areas sampled by each of the gauge analyses used.  Annual averages of 
the monthly percentage of global area sampled are shown. 
 
 
2.2 REOF 
 
 The method used for producing the reconstruction based on EOFs (REOF) was 
described by Smith et al. (2008b).  Here we summarize the method and note differences 



 6

in the present compared to Smith et al. (2008b), which should be consulted for more 
details of the method.   
 
 The REOF analysis is developed using a set of large-scale covariance EOFs of 
precipitation anomalies.  The EOFs need to represent spatial scales that extend from 
regions where data are available to all other regions.  For the precipitation anomalies the 
only data used in the REOF is gauge data from over land and islands.  We use these data 
to reconstruct precipitation over oceanic regions, so only the EOFs representing the 
largest scales are suitable for use.  In addition, the REOF analysis is performed separately 
in three regions: 80°S-20°S, 30°S-30°N, and 20°N-80°N, enhancing the sensitivity of the 
reconstruction to extra tropical variability, which is generally smaller than tropical 
variability.  After the REOFs are computed for each region, they are merged with 
smoothing across the overlap regions. 
 
 For each region, a set of EOFs is computed using the GPCP.v2.1 monthly 
anomalies, 1979-2008.  A maximum number of EOFs for each region is assigned and 
used for the reconstruction.  The reconstruction finds weights for each of the EOFs for 
each month.  The weights are determined by fitting the available gauge data to the set of 
EOFs.  The weights minimize the mean-squared error between the reconstructed 
anomalies and the gauge data. 
 
 The maximum number of EOFs to use for each region is determined by cross-
validation testing.  In addition, each EOF from that maximum set must pass a screening 
test using the gauge sampling for each month or it will be excluded for that month’s 
analysis.  Cross-validation testing is also used to determine the screening level to use for 
the REOF in each region.  The screening parameter for each EOF mode is the fraction of 
EOF variance sampled by the available sampling.  Since the EOF variance at each point 
is proportional to the mode value squared, the fraction may be computed as the ratio of 
the squared EOF values summed over areas with sampling to the values summed over all 
areas. 
 
 Cross-validation testing is done by producing a set of EOFs for each region 
excluding the data for one year.  This is done for every year, yielding 30 sets of EOFs for 
each region.  In addition, data masks are developed to eliminate data where it was not 
available in several historical periods, here chosen to be the 30-year periods 1900-1929, 
1930-1959, and 1960-1989.  The GPCP.v2.1 data for the year as excluded from the EOF 
analysis is used to reconstruct that year, using each of the historical sampling grids.  This 
simulates an analysis using historical sampling and EOF modes that are for the most part 
independent of the analysis year.  Repeating this for every year gives the cross-validation 
reconstruction data, which are compared with the full data to evaluate the analysis.  The 
global mean-squared error is used to determine the optimal values of the maximum 
number of modes and the screening parameter. 
 
 First the optimal maximum number of EOF modes is found using several 
screening parameters.  After a stable maximum number of modes are found, the 
screening parameter is set using that maximum number.  In Smith et al. (2008b) the 
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maximum number of modes was found to be 6 for the southern extra tropics, 12 for the 
tropics, and 11 for the northern extra tropics.  Here the values for these three regions were 
found to be 5, 15, and 10, respectively.  Thus, there was little change in the tuning of the 
maximum number of modes in each region.  For all of these regions there was little 
change in mean-squared error when the screening parameter was set between 0.05 and 
0.15, compared to changes outside that range.  In Smith et al. (2008b) the sampling 
fraction was set to 0.05.  However, here we find that some regions and historical grids 
were improved with slightly a higher screening parameter, and therefore we use 0.15 in 
the REOFs.  This slightly higher value requires slightly more sampling for each mode 
compared to the earlier REOF.  We hold these parameters constant and produce REOFs 
based on each of the three gauge analyses, discussed below. 
 
 In Smith et al. (2008b) a REOF was evaluated by regressing it against climate 
modes.  The resulting regression maps were used to show the spatial reconstruction 
patterns associated with each mode.  Here that is repeated for two important modes, the 
Southern Oscillation Index (SOI) and the North Atlantic Oscillation (NAO), using the 
same SOI and NAO index values.  For the SOI regressions of all three REOFs yield 
similar patterns (Fig. 2), showing that the main ENSO mode is reflected in all 
reconstructions.  Here and in the following discussions we refer to the GHCN-based 
REOF as REOF(GHCN), to the GPCC-based REOF as REOF(GPCC), and to the CRU-
based REOF as REOF(CRU).  The similarity of the spatial patterns indicates that for each 
the same reconstruction modes are used, with more or less the same relative importance.  
The difference in strength suggests that the REOF(CRU) is able to weight the set of 
modes used with more confidence due to its higher sampling over most of this period 
(Fig. 1). 
 
  A similar set of regressions is computed for the December-March average NAO 
(Fig. 3).  As expected, the strongest and most consistent NAO regressions are in the 
North Atlantic.  Strong and consistent patterns extend into Europe, North America, the 
Pacific, East Asia, and even the tropical Indian Ocean and parts of tropical Africa.  NAO 
regression patterns also appear in the tropical Pacific in each, but they are less consistent 
than the patterns in the northern extra tropics.  Overall, the NAO patterns from each 
regression are similar in both spatial pattern and strength. 
 



 8

 
Figure 2.  Regressions of each REOF against the SOI.  REOFs are based on GHCN (upper), GPCC 
(middle) and CRU (lower panel).  Annual averages of the index and REOFs are used over 1901-1998, 
when all are available.  The SOI is normalized so the precipitation units are mm/mon per standard 
deviation. 
 
 
 



 9

 
 
 The global spatial standard deviation for each historical REOF (Fig. 4) indicates 
the relative consistency of each over time.  Here the monthly global spatial variance is 
computed, and then averaged annually before taking the square root to define the spatial 
standard deviation of each.  REOF(GHCN) has lower values before 1950, when its 
sampling tends to be especially low (Fig. 1).  After about 1990 the GHCN sampling also 
decreases, and there is a corresponding decrease in its REOF standard deviation in that 
period.  Both the REOF(GPCC) and REOF(CRU) have more consistent values over most 
of the period.  REOF(GPCC) has lower standard deviations before 1910, when it has less 
sampling.  REOF(GPCC) has less of a drop off in sampling in the most recent years, and 
it maintains stronger standard deviation in those years, but it also has a high spike in 
1997-1998 which is much larger than the others. 
 
   The GPCC gauge data are used in the GPCP satellite-gauge analysis, which is 
used to compute reconstruction statistics.  This gives the GPCC an advantage in fitting to 
modes that include GPCC base data, and it helps to explain the higher standard deviation 
of the GPCP-based REOF, referred to as REOF(GPCP).  However, errors in the satellite-
period GPCC may be incorporated in the REOF statistics, and they may be partly 
reproduced in the REOF(GPCC).  The other gauge analyses are not directly used in 
GPCP, so random errors in those analyses should be more different from any that 
influence the reconstruction statistics.  Thus, there can be more filtering of errors by 
using a gauge analysis not used in the formation of the satellite-gauge analysis.  The high 
REOF(GPCC) standard deviation in 1997-1998 is associated with a strong ENSO episode 
in that period, but its magnitude could be inflated by GPCC errors.  To test this, the 
GPCP satellite-gauge data are filtered by computing a reconstruction using them.  This is 
simply EOF filtering of the base data to eliminate variations not in the analysis modes.  
The variance of this filtered GPCP data is also shown on Fig. 4.  The filtered GPCP data 
also contains a spike in 1997-1998, but it is not as strong as the one from the GPCC-
based REOF, indicating that the REOF(GPCC) magnitude may be inflated.  Overall, the 
REOF(CRU) has most consistent values over most of its record and for the overlap 
period before 1990 it yields values similar to the filtered GPCP. 
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Figure 3.  Regressions of each REOF against the NAO.  REOFs are based on GHCN (upper), GPCC 
(middle) and CRU (lower panel).  December to March averages of the index and REOFs are used 
over 1901-1998, when all are available.  The NAO is normalized so the precipitation units are 
mm/mon per standard deviation. 
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 For their common analysis period (1901-1998) global spatial correlations between 
pairs of REOFs are computed to better indicate when they are most similar (Fig. 5).  
Correlations against the REOF(GHCN) tend to be lowest early in the reconstruction 
period, when GHCN sampling is lowest.  REOF(GPCC) and REOF(CRU) have roughly 
consistent correlations for their entire overlap period, and after 1950 the REOF(GHCN) 
and REOF(GPCC) correlations have similar values.  Strongest correlations are between 
REOF(GHCN) and REOF(CRU) in 1950-1990.  This strong correlation indicates that the 
two gauge analyses yield similar variations when sampling is sufficient in both. 
 

 
Figure 4.  Global spatial standard deviation for each of the three REOFs and for the GPCP data 
filtered using the REOF modes.  For plotting clarity the monthly spatial variance averaged to annual 
values and the square root of that is taken for the standard deviation. 
 
 These inter-comparisons between the three REOFs indicate that since about 1950 
REOF(CRU) and REOF(GHCN) are similar, but early in the 20th century REOF(CRU) 
should be more reliable due to its better spatial sampling.  The spatial standard deviations 
and correlations both indicate that the GHCN sampling is filtering out variations in the 
early 20th century due to sparse sampling.  The GPCC has better sampling than either of 
the others in recent years, but it may artificially inflate variations as discussed above.  
Even in 1950-1990 when sampling is best for all gauge analyses, REOF(GPCC) typically 
has higher standard deviations than either of the other two, indicating that the GPCC may 
require more screening before it is used for a REOF. 
 
 Because REOF(CRU) has the most consistent variance over its entire 
reconstruction period, and also because of its consistency with REOF(GHCN) since 
1950, we use REOF(CRU) for 1900-1978.  Since the CRU gauge analysis is not updated 
through the entire period and sampling becomes sparse near the end of the 20th century a 
different REOF is required for the end of the period.  Therefore, after 1988 we will use 
REOF(GPCP).  From 1979 to 1988 we smoothly merge the two, using linear weights so 
that in 1978 the blended REOF is all REOF(CRU) and in 1989 it is all REOF(GPCP).  
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Since the two have similar variance in the overlap period, this blending should not cause 
a shift in the overall variance of the analysis.  We refer to this blended analysis as the 
REOF(Blend) analysis.  This common overlap period, 1979-1988, is also used as a re-
centering period.  The averages of anomalies are all forced to equal zero over this period 
in the comparisons that follow. 

 
Figure 5.  Global spatial correlations between pairs of REOFs.  Each REOF is based on a gauge 
analysis, and the pairs correlated are indicated on the figure.  For plotting clarity monthly 
correlations are averaged to annual values. 
 
 
 In Smith et al. (2008b), it was shown that the REOF method realistically 
reconstructs interannual variations, but it may be less reliable for representing multi-
decadal variations.  Here the reconstructions are compared for global averages over both 
land and ocean, separately.  The annual and global averages are first computed, and then 
filtered using a seven-year low-pass filter to more clearly show the multi-decadal 
variations.  The low-pass weights for the annual average are (0.032, 0.110, 0.220, 0.276, 
0.220, 0.110, 0.032), which are close to binomial weights for a nine year filter with the 
end years eliminated. 
 
 The land-average multi-decadal variations are similar for all three (Fig. 6).  
REOF(GHCN) is more damped than the others before 1950, but all are similar 
afterwards.  REOF(GPCP) is similar to the others for most of the overlap period, but it 
shows a sharp increase in the last several years when REOF(GHCN) is damped due to a 
drop off in sampling.  The recent increase is partly reflected in REOF(GPCC), which 
ends a year before REOF(GPCP). 
 
 Over oceans (Fig. 7), there are greater differences in the first half of the 20th 
century.  Part of the difference is due to damping of anomalies towards zero when data 
are sparse and fewer modes may be selected for use in the REOF.  Differences may also 
be due to the fact that most ocean locations are remote from gauge sampling.  The 
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oceanic component of the historical REOFs depends on large-scale teleconnections from 
the leading modes.  Over land this is less critical because there are many local data to 
adjust the analysis.  Without similar local oceanic data, the oceanic REOF multi-decadal 
variations may be less reliable than similar variations over land. 
 

 
Figure 6.  Low-pass filtered annual-global averages over land areas for each of the indicated REOFs.  
The REOF(GPCP) is the GPCP data filtered using the reconstruction modes. 
 
 

Differences in the oceanic multi-decadal signals from earlier REOF analyses were 
discussed by Smith et al. (2008b), and they inspired Smith et al. (2009) to develop an 
indirect reconstruction method for resolving oceanic multi-decadal variations.  That 
method reconstructs precipitation anomalies using locally observed oceanic variables 
related to precipitation in addition to teleconnections.  That indirect method, described in 
the following subsection, was found to yield results more consistent with theoretical 
estimates of multi-decadal precipitation estimates. 
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Figure 7.  Low-pass filtered annual-global averages over ocean areas for each of the indicated 
REOFs.  The REOF(GPCP) is the GPCP data filtered using the reconstruction modes. 
 
 
2.3 RCCA 
 
 The reconstruction using canonical correlation analysis (RCCA) was discussed in 
detail by Smith et al. (2009).  Canonical correlation analysis (CCA) was used by Barnett 
and Preisendorfer (1987) to forecast North American temperatures using SST and SLP 
predictors.  The CCA finds correlations between fields of predictors and a predictand 
field, which can then be used to estimate the predictand field at some other time when 
only the predictors are available.  Historical monthly reconstructions of SST and SLP are 
available for the 20th century, based mostly on ship observations of these variables.  On 
long time scales, there tend to be relationships between the SST and SLP anomalies and 
precipitation anomalies.  This allows us to use data from the GPCP period to define those 
relationships, and then use those relationships to reconstruct precipitation anomalies at 
times before the satellite period.  Smith et al. (2009) found that most relationships 
reflected in the RCCA have time scales of seasonal or longer, and they therefore 
produced their RCCA for annual average anomalies.  Here we do the same, except that 
we use the updated GPCP.v2.1 data. 
 
 The CCA decomposes predictor and predictand fields into spatial modes, and 
computes a set of CCA predictor-predictand modes that along with weighting factors are 
used for the analysis.  One weighting factor defines the relative variance accounted for by 
each CCA mode, and the other is computed from the predictor data.  The CCA used here 
has a cut off, so that it does not use any CCA modes that account for less than 1% of the 
variance of the first CCA mode.  The RCCA training period is 1979-2004, from the first 
year of the satellite period to the last year of the SLP analysis.  Updates to the SLP data 
are available for years beyond 2004, but those updates are computed differently and they 
have larger spatial variations than the historical SLP data.  We therefore do not use them 
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for training the model to keep those differences from producing spurious variations in the 
correlation relationships.  However, we do use the SLP updates to extend the 
reconstruction through 2008.  The greater SLP spatial variations should be largely filtered 
out by the CCA modes computed using data without them. 
 
 The RCCA predictor fields are filled for all historical years, so it is not necessary 
to tune the number of RCCA modes for different sampling conditions.  However, the 
number of RCCA modes should be tuned to ensure that the optimal amount of variance is 
reconstructed.  Here cross-validation tests are performed that compute the RCCA for 
each year using training data that excludes the analysis year.  For each of the cross-
validation years the RCCA used nine or ten modes, although nine were used more often 
than ten and the tenth mode never added more than a small fraction of the variance.  
Usually the tenth and higher modes were truncated since they accounted for less than 1% 
of the first mode’s variance.  Thus, we perform our RCCA using nine modes.  However, 
testing using fewer modes showed that most multi-decadal variations were retained using 
as few as three modes. 
 
 
2.4 Comparing REOF and RCCA 
 
 Next we compare the REOF and RCCA estimates over both land and ocean areas.  
The REOF discussed here is the blend of REOF(CRU) and REOF(GPCP) described 
above, and referred to as REOF(Blend).  As with the comparisons above, global land and 
ocean-area averages are used in these comparisons. 
 
 Over land the different estimates are all correlated in their interannual variations.  
The larger variations in the CRU gauge data are more closely matched by the 
REOF(Blend) when it is sub-sampled at gauge locations (shown by the thin dotted black 
line).  Both the REOF(Blend) and the CRU gauges indicate a positive trend over the 
period, but the RCCA indicates a negative trend over the period (see Table 1).  Because 
local gauge data anchor the land area REOF(Blend), it should be better able to better 
represent variations over land compared to its oceanic variations.  By comparison, the 
RCCA land analysis does not use gauges, and depends heavily on teleconnections from 
ocean areas driven by the SSTs.  The SLP anomalies over land are used, but they are still 
indirect indicators of precipitation.  In regions near to where data are available, direct 
reconstructions using those data should be superior to indirect reconstructions.  
Therefore, the REOF(Blend) should be used over land regions. 
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Figure 8.  Low-pass filtered annual-global averages over land areas for each of the indicated 
estimates.  For the REOF(Blend), the solid line is averages over all land area and the dotted line is 
averages only over areas with CRU gauge sampling. 
 
 Averages over ocean areas are similar for the REOF(Blend) and RCCA for most 
of the satellite period.  But before 1980 they diverge, with the REOF(Blend) indicating a 
negative trend and the RCCA indicating a positive trend.  In addition, the REOF(Blend) 
does not resolve the 1970s climate shift, which is associated with a rapid change in 
Pacific SSTs (Trenberth and Hurrell 1994, Zhang et al. 1997).  The RCCA increasing 
precipitation and 1970s climate shift are modeled from correlations with the Pacific SST 
variations.  The ocean-area average AR4 indicates a weaker but consistent positive trend, 
which is the theoretical response to a warming Earth (Held and Soden 2006, Allan and 
Soden 2008).  There is also some observational evidence from satellites for overall 
increasing precipitation (Adler et al. 2008).  The ability of the RCCA to resolve these 
oceanic variations, consistent with known and theoretical climate variations, suggests that 
its multi-decadal signal is superior to the REOF(Blend) multi-decadal signal over oceans.  
The local SST data over oceans allows the RCCA to better resolve these variations. 
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Figure 9.  Low-pass filtered annual-global averages over ocean areas for each of the indicated 
estimates. 
 
 Although the multi-decadal variations are not linear trends, examination of trends 
is useful for evaluating overall changes of different estimates.  Table 1 shows trends from 
several reconstructions, the AR4 model ensemble, and gauges.  Note that the RCCA has a 
strong positive ocean-area trend, but its land-area trend is negative.  The RCCA 
difference in sign between ocean and land trends may be due to the generally opposite 
tendency in precipitation anomalies associated with ENSO episodes (Adler et al. 2008).  
The RCCA ENSO modes are developed from interannual variations, and are used for 
modeling variations on longer time scales that can include ENSO-like variations (Zhang 
et al. 1997).  Because the GPCP record is only 30 years long, its modes may not span all 
multi-decadal variations.  If the ENSO-like low-frequency variations have opposite land-
sea precipitation tendencies, similar to interannual ENSO variations, then the opposite 
tendency in the RCCA may be correct.  A similar ocean-land difference is evident for the 
AR4 ensemble trends, except that the AR4 trends are weaker.  It is possible that the AR4 
models are mimicking the interannual ENSO-mode tendency for opposite precipitation 
anomalies over land and sea. 
 
 The CRU gauge data and the land REOF(Blend) both suggest that this tendency 
for opposite precipitation anomalies over land and sea may not hold up on multi-decadal 
time scales.  Both of those estimates show positive trends over land areas.  This shows 
the importance of local data, either direct observations of precipitation or indirect 
indicators of it, for producing reconstructions using imperfect teleconnection patterns.  
Local data can force reconstructions to better reflect local variations.  When only remote 
data are available the reconstruction is at the mercy of the teleconnections resolved by the 
available modes. 
 
 In the following section we show how to merge the REOF(Blend) and RCCA 
retaining the best features of each.  Because we do not have independent validation for 



 18

oceanic regions, we must infer what oceanic features are most realistic based on the 
physical arguments outlined above.  An almost complete lack of direct observations of 
oceanic precipitation before the satellite era also makes it difficult to estimate the full 
analysis uncertainty.  Therefore, this analysis is best used qualitatively over oceanic 
regions.  However, its tuning against GPCP makes its values realistic, within the limits of 
GPCP to estimate realistic oceanic values.  
 
────────────────────────────────────────────────── 
 Table 1.  Trends of low-pass filtered annual-global averages of the indicated estimate, 
averaged over land areas, ocean areas, and all areas.  The REOF analysis is the blended 
REOF(CRU) and REOF(GPCP), and REOF(G) indicates using only sampling at CRU 
gauge locations.  All trends are over 1900-1998, and units are mm/mon/100 years. 
 
 Estimate  Land  Ocean All Areas 
 RCCA   -0.5   1.6   0.7 
 AR4   -0.1   0.7   0.4 
 REOF    0.4  -0.4  -0.1 
 REOF(G)   0.4  ----  ---- 
 CRU Gauges  1.2  ----  ---- 
────────────────────────────────────────────────── 
 
 
 
3. Merging REOF(Blend) and RCCA 
 
 This section describes merging two reconstructions, REOF(Blend) and RCCA.  
The blended REOF uses REOF(CRU) through 1978, REOF(GPCP) after 1988, and a 
smooth blend of the two in-between.  This additional step merges that blended REOF 
with the RCCA by bias adjusting the REOF(Blend) using the RCCA multi-decadal 
signal.  
 
 As discussed above, the multi-decadal component of an analysis can be 
approximated by filtering annual averages to remove most interannual variations.  In the 
sections above and here we filtered over seven years using the following annual weights: 
0.032, 0.110, 0.220, 0.276, 0.220, 0.110, 0.032.  These are approximately the binomial 
weights for a nine-year filter with the end years removed.  The figures in Section 2 
illustrate the effect of this filter.   
 
 This filter was chosen after performing a number of tests on an earlier REOF 
analysis using GPCP base data and GHCN gauge data.  First a set of running-mean filters 
were tested with lengths from five to 21 years.  They showed that filter lengths of 
between five and eleven years removes almost all of the interannual variations.  Based on 
these results a five to seven-year filter should be adequate for filtering.  In order to 
minimize aliasing we used the near-binomial seven-year filter.  The weights for this give 
most weight to the middle five years of the average.  Applying this filter to the GPCP 
monthly anomalies and subtracting the resulting multi-decadal signal from the GPCP 
anomalies left more than 90% of the variance in the residual.  Thus, we can expect that 
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removing the signal defined by this seven-year filter will leave nearly all the interannual 
variations in the REOF analysis. 
 
 In Section 2 we show that over the oceans the REOF(Blend) multi-decadal signal 
is suspect for most of its record length when there are only sparse island and coastal 
gauges to anchor the analysis.  Oceanic regions are bias adjusted so that their multi-
decadal variations match the RCCA multi-decadal variations.  To achieve this, the 
REOF(Blend) is annually averaged and filtered using the seven annual weights.  This 
defines the raw REOF(Blend) multi-decadal signal.  The annual RCCA analysis is 
similarly filtered to define its multi-decadal signal.  Both annual multi-decadal signals are 
interpolated from annual to monthly averages.  The ocean-area monthly-interpolated 
REOF(Blend) multi-decadal signal is then subtracted from the REOF(Blend) analysis and 
the monthly-interpolated RCCA multi-decadal signal is added onto it.   
 
 Land regions do not require bias adjustment since they are well sampled by the 
gauges, which are assumed here to be unbiased.  Since land regions are not adjusted, the 
adjustment weight for 5° regions that are all land is zero.  The adjustment weight for 
regions that are all ocean is one, and for coastal and island regions the weight is between 
0 and 1, depending on the fraction of land area.  Because the land REOF(Blend) multi-
decadal signal is similar to the RCCA multi-decadal signal, coastal discontinuities in the 
multi-decadal signal are minimal.  The REOF(Blend) uses the REOF(GPCP) data after 
1988, which gives it good oceanic sampling for the recent period.  Thus, it should not be 
necessary to bias adjust it for the most recent years and for any updates to the analysis 
that we may wish to produce.  Therefore, the bias adjustment is allowed to decay linearly 
from full strength in 1989 to zero in 1999.  Because the REOF(GPCP) heavily filters the 
GPCP, we should be able to use future updated versions of GPCP to update the analysis 
without introducing inhomogeneities. 
 
 We also tested an analysis in which the RCCA anomalies are statistically re-
injected into the bias adjusted REOF(Blend).  This could possibly improve skill if the 
annual RCCA contains variations that are not well represented in the annual bias adjusted 
REOF(Blend).  The RCCA re-injection used an optimal interpolation method to assign 
weights for the RCCA and bias adjusted REOF(Blend), with weights inversely 
proportional to their errors measured against GPCP.  The weights were forced to sum to 1 
so that there would be no damping of anomalies.  We found that the analysis with re-
injected RCCA had lower variance than the bias adjusted REOF(Blend) almost 
everywhere, including in the Southern Ocean where the REOFs use the fewest 
reconstruction modes.  Since that variance damping is undesirable we do not use the 
analysis with re-injected RCCA. 
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4. Error Estimates 
 
 Error estimates are computed for the merged analysis, for maps and for averaged 
data.  We divide the error estimate into two parts, a sampling error and a bias error.  The 
sampling error variance is computed by finding the fraction of the variance resolved by 
the analysis and subtracting that from the total variance.  Here we use the REOF(GPCP) 
variance as the total variance, since that filtered data represent the climate-scale 
precipitation variations that this analysis attempts to resolve using historical data.  When 
monthly errors are computed, variance is computed separately for each month. 
 
 The mean-squared error of the reconstruction is defined as 
 

     22 )( PRE  .    (1) 

 
Here R is the reconstruction and P is the true precipitation anomaly, and the brackets 
denote averaging.  By expanding equation (1) we can obtain 
 
   2222 )(2 PRrE RR   .   (2) 

 
Here 2

R  is the reconstruction variance, 2  is the true precipitation variance, and r  is the 
correlation between the reconstruction and the true precipitation.  The first three terms on 
the right-hand side of equation (2) account for the sampling and random error variance, 

rE RRS  2222  .  The last term on the right-hand side of equation (2) accounts 

for the mean bias error variance, 22 )( PREB  .  We will consider these error 

components separately in their estimation. 
 
 The random error, due to noise in the analysis, should be a small fraction of the 
total error.  That is because the reconstructions are produced by filtering data using 
spatial modes, which will filter out most noise.  Thus, we will assume that the final 
reconstruction noise is negligible and deal with the sampling error component. 
 
 The correlation squared, 2r , defines the fraction of the variance accounted for by 

the reconstruction.  By ignoring random noise we can estimate this from 
2

2
2


 Rr  .  This 

makes it possible to estimate the sampling error variance as 
 
   22222 2 RRRS rE   .    (3) 

 
The reconstruction anomaly variance can be estimated directly from the analysis and the 
true precipitation anomaly variance can be estimated from the base-period data.  The 
sampling error variance is simply the variance not accounted for by the reconstruction. 
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 For the sampling error variance, we are here most interested in how well the 
climate-scale features of precipitation anomalies are resolved.  Thus, for our estimate of 
the true variance we do not use the full GPCP.v2.1 variance, but rather we use the 
variance of the REOF(GPCP).  The filtering removes small-scale variations, but because 
of satellite sampling in the data it retains sampling of all climate-scale variations.  This 
choice is made in order to evaluate the sampling error relative to the best that could be 
done with complete sampling for this analysis method.  It is not an absolute measure of 
error, but it is a measure of relative error from one time to another.  Comparisons of our 
results in the satellite period can help users to calibrate our error estimates against the full 
data, to help guide users of these data. 
 
 Over land the gauges that anchor the land REOF(Blend) are assumed to be 
unbiased, suggesting that the land bias error should be low.  Figure 8 shows that the 
large-scale low-pass land REOF(Blend) is often close to the similarly filtered gauge data 
when common sampling is used for both.  Before 1940 the differences in the two tend to 
be less, while after 1940 they are often much larger.  Since these gauge data are used for 
the REOF(Blend), differences must be due to the REOF(Blend) modes filtering variations 
out of the gauge data.  Differences should not be due to sparse sampling, since after 1940 
there is good sampling of the gauge data (Fig. 1).  Differences could be in part due to 
reconstruction using too few modes to fully resolve some land variations.  The modes 
most important for some historical periods may be excluded from the limited set of 
modes most important for the base period, which are used for the REOF(Blend). 
 
 Here we simplify the land bias estimate by ignoring systematic differences that 
may be caused by systematic under representation by the available REOF modes.  Thus, 
if all REOF modes are used then there will be no land REOF(Blend) bias error in this 
analysis, since the gauges are assumed to be unbiased.  If fewer REOF modes are used 
then errors will be represented in the sampling error component discussed above.  
Making this assumption allows the errors to be estimated, although it may cause an under 
estimation of total error in some periods.  Thus, we again can not claim to measure 
absolute error, but we can give an estimate of the relative error from one period to 
another. 
 
 Over oceans the multi-decadal signal of both reconstructions is forced to match 
the RCCA multi-decadal signal.  The RCCA bias error variance is estimated using the 
bias errors likely to contaminate the SST and SLP forcing data in the RCCA.  Bias errors 
for these forcing fields are discussed by Smith et al. (2008a) for SST and by Allan and 
Ansell (2006).  Because these biases are only approximately known they are roughly 
estimated to evaluate their approximate influence on the RCCA bias estimates.  Here the 
SST bias uncertainty standard error is set to its global value, which is about 0.06ºC or less 
before 1939 (Rayner et al. 2006).  From 1939 to 1941 it is damped linearly each year 
down to 0.015ºC in 1941.  It is held at that level for the remaining years of the analysis.  
The larger values earlier in the period are due to the need for a large historical bias 
adjustment in that period when different types of buckets were typically used to measure 
SSTs.  In more recent years the sampling is more consistent and SSTs have smaller 
biases, but there are still different sampling methods and the smaller standard error 
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estimate is used to account for SST bias uncertainties in the most recent period.  The SLP 
bias standard error has not been studied as extensively.  Therefore, we here estimate it to 
be 0.25 times the SLP anomaly standard deviation, and hold it constant in time in order to 
compute bias error estimates.  The actual bias uncertainty should be much less than the 
standard deviation, so this crude estimate may be larger than the actual value.  In the 
resulting RCCA runs, the SST bias standard error dominates the resulting bias 
uncertainty estimates. 

 
We perform three RCCAs to evaluate bias uncertainty.  One is forced with SSTs 

equal to their bias standard error and SLPs set to zero, the second with SSTs set to zero 
and SLPs set to their bias standard error, and the third with both SSTs and SLPs set to 
their bias standard errors.  The standard errors from all three are averaged to estimate the 
RCCA standard errors.  If errors of spatial or temporal averages are desired then the 
standard errors from all three are also averaged.  Typical values for 5º annual estimates 
are ±6 mm/mon.  Averaging reduces the magnitude of the bias error since the modes 
force both positive and negative values.  Averaging over all (land and ocean RCCA 
areas) reduces the bias errors for the global average to 0.05 mm/mon for 1900-1938, 
down to below 0.01 mm/mon for 1941 onward.   

 
 Using these methods errors can be computed for monthly maps or for spatial or 
temporal averages.  For the sampling error all that is needed is to average or filter the data 
before computing the variances used in equation (3).  For the bias error, the filtered 
monthly bias maps are similarly averaged or filtered before evaluating differences.  
Although useful as a first-order estimate of analysis uncertainty, these error estimates are 
still crude and in the future we may be able to refine our error estimates. 
 
 
5. Merged Precipitation Anomalies 
 
 Here the blended bias adjusted reconstruction is discussed and compared with 
other analyses.  First the overall variations are examined to see how they may change in 
time with changes in the data used for reconstructions.  As discussed earlier, the analysis 
filtering using spatial modes should remove nearly all random noise, and the largest 
sampling errors are likely to be from under-representation of variations.  An overall 
measure of analysis strength is provided by the spatial standard deviation.  The global 
spatial variance is computed monthly, and then annually averaged for plotting clarity 
before the square root is taken.  We show spatial standard deviation time series for the 
bias adjusted REOF(Blend), the RCCA, the REOF(GPCP) and GPCP (Fig. 10).  For 
consistency, the RCCA values were interpolated to monthly values before computing 
spatial statistics. 
 
 The adjusted REOF(Blend) has systematically higher standard deviation than the 
RCCA, although both indicate ENSO variations over the analysis period.  In addition, 
both adjusted REOF(Blend) and RCCA have little trend in their spatial standard 
deviations, suggesting that sparse sampling early in the 20th century is not causing the 
analyses to be damped in that period.  For REOF(GPCP) standard deviation is consistent 
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with values for the adjusted REOF(Blend) in earlier periods.  Both have similar averages 
with little apparent trend, and both have similar magnitudes of changes with ENSO 
episodes, although the 1997-98 episode is larger than others.  This indicates that blending 
with the adjusted REOF(GPCP) should not cause variance jumps relative to the earlier 
period.  The GPCP standard deviation is largest of all, because those data are not filtered 
with spatial modes and they represent all satellite and gauge spatial variations.  In 
addition, the GPCP standard deviation has a trend from before 1990, when infrared-based 
satellite estimates dominate the analysis, to the later years when microwave-based 
satellite estimates are used.  The microwave-based satellite estimates have higher spatial 
resolution, and this trend in the GPCP standard deviation reflects the change in 
instruments used rather than changes in precipitation.  Filtering in REOF(GPCP) removes 
this trend. 
 
 

 
Figure 10.  Global spatial standard deviations for the indicated analyses.   The REOF(Blend) is bias 
adjusted over oceans using the multi-decadal RCCA.  For plotting clarity the monthly spatial 
variance is averaged to annual values and the square root of that is taken for the standard deviation. 
 
 The bias adjusted REOF(Blend) with the seven-year low-pass filter applied is 
shown for averages over the global oceans (Fig. 11) and averages over all ocean and land 
areas (Fig. 12).  Over the oceans, this is the same as the RCCA low-pass average.  The 
uncertainty estimates are about 0.5 mm/mon early in the period, shrinking to less than 
half that by the end of the period.  Much of this error is due to bias error from the RCCA, 
but the sampling error component also contributes to errors early in the analysis period.  
Near the end of the analysis period most of the error is from bias errors.  Bias errors are 
largest before 1940 when the bias uncertainty is largest, due to the need for SST bias 
adjustments that can affect the RCCA. 
 
 Combined ocean and land averages (Fig. 12) have an increase over the 20th 
century similar to the ocean averages, but the increase is not as strong when land areas 
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are included.  Note that the vertical scale for the all-area average has a smaller range than 
the scale for the ocean-area average and combining land and ocean areas reduces the 
multi-decadal changes.  In addition, for the total area the 1970s climate shift is not 
apparent and there are fewer variations with time scales shorter than ten years.  The error 
estimates are also smaller for the all-area average, with largest values between about 
1940 and 1990 due to an increase in the sampling-error estimate over that period.  After 
1990 errors are smaller.  Note that the sampling-error estimate used here is computed 
from the difference in variance between the base data and the historical reconstruction.  It 
uses the assumption that the variance is roughly stationary, and it does not use any 
measure of the actual sampling.  Thus it should be considered a crude estimate of the 
sampling error.  The mid-century inflation in estimated global all area sampling error is 
likely influenced by changes in SST and SLP sampling, which affects the RCCA 
variance.  But much of the variance is contributed by the climate modes such as ENSO 
and NAO, and periods with less activity in these modes compared to the base period will 
show higher sampling error as estimated by our methods. 

 
Figure 11.  Global ocean area average bias adjusted REOF(Blend) with the 7-year low-pass filter 
applied, with 95% confidence interval estimates. 
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Figure 12.  Global ocean and land area average bias adjusted REOF(Blend) with the 7-year low-pass 
filter applied, with 95% confidence interval estimates. 
 
 The tendency and strength of the analysis are next evaluated using the linear trend 
over the analysis period and the standard deviation (Fig. 13).  For both monthly 
anomalies are used.  The trend is scaled so that it may be plotted using the same shading 
as the standard deviation.  The trends are clearly strongest over the oceans, where the 
RCCA multi-decadal component defines them.  However, there are variations over land, 
including a positive trend over the eastern U.S.  There is also consistency between 
oceanic and land trends in several places, including south-east South America, north-east 
South America, the west coast of North America, and northern Australia. 
 
 The standard deviation shows that strongest variations are over the tropics, but 
there are secondary maxima over the northern mid latitudes associated with extra-tropical 
storm tracks.  There is much less variation in the Southern Ocean, where the REOF 
analysis has only five modes due to the lack of gauge sampling in that region.   
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Figure 13.  Linear trend (upper panel) and standard deviation (lower panel) of bias adjusted 
REOF(Blend) monthly anomalies, 1900-2008. 
 
 Much of the variation in the Southern Ocean comes from the RCCA component 
of the analysis, as indicated by the standard deviation ratio of low-pass filtered data to the 
unfiltered standard deviation (Fig. 14, upper panel).  The low-pass standard deviation is 
also large fraction of the whole in the south-east Pacific and Atlantic, which are normally 
dry, and in the Arabian Sea and off the west coast of North America and North Africa.  
Over regions dominated by extra-tropical cyclones the low-pass standard deviation is a 
small fraction of the total standard deviation.  The fraction of the trend standard deviation 
to the low-pass data standard deviation is high in many of the same places where the low-
pass data accounts for much of the variation (Fig. 14, lower panel).  This indicates that 
where the low-pass standard deviation is relatively strong, much of its variation is 
explained by a linear trend.  Trends account for much of the variation over the Southern 
Ocean, where the trend itself is positive and relatively weak (Fig. 13, upper panel).  A 
positive trend is also important over the eastern tropical Pacific, which influences ENSO-
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like variations.  Off the south-west coast of North America a negative trend is important, 
in the mid-latitude subsidence zone.  The trends are strongest over the oceans but they 
can influence adjacent land regions. 
 
 The differences in overall land and ocean trends are a bit clearer when zonal 
averages of each are compared (Fig. 15).  The ocean-area trends are stronger, especially 
in the tropics.  Over the oceans there is a positive trend in the tropics and a negative trend 
en each hemisphere in the sub-tropics.  In the Northern Hemisphere there is a negative 
ocean trend in the extra tropics while in the Southern Hemisphere the ocean trend 
becomes positive south of about 40ºS.  The land-area trends are weaker and generally 
negatively correlated with the ocean-area trends.  In the tropics the land trend is negative, 
with more positive trends in the sub-tropics at latitudes where the ocean trends are 
negative.  Just south of 30ºN there is a weak negative land trend, with a weak positive 
land trend just north of 30ºN.  This is consistent with slight drying in the Northern 
Hemisphere desert zones and increasing precipitation in eastern North America. 
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Figure 14.  Ratio of low-pass filtered standard deviation to unfiltered standard deviation (upper 
panel) and trend standard deviation to low-pass filtered standard deviation (lower panel), all from 
bias adjusted REOF(Blend) monthly anomalies, 1900-2008. 
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Figure 15.  Zonal averages of the bias adjusted REOF(Blend) trend averaged over ocean and land 
areas separately. 
 
 To compare the reconstruction multi-decadal tendency with that from the AR4 
model ensemble, a joint empirical orthogonal function (JEOF) analysis is done of the two 
fields.  Both fields are low-pass filtered to concentrate on multi-decadal variations, and 
both are normalized so that similarities in the tendencies of both will be highlighted.  
About 30% of the variance is accounted for by the first JEOF mode, which shows a clear 
trend-like tendency with some similarities in the patterns of both fields (Fig. 16).  In 
particular, they both indicate increasing precipitation over the Southern Ocean and in 
parts of the tropical Pacific.  The reconstruction Southern Ocean tendency is less uniform 
than in the models, and the reconstruction tropical Pacific increase is shifted east relative 
to the models, but the similarity of these two signals suggests that the models are broadly 
representing multi-decadal variations in those regions.   
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Figure 16.  Joint EOF of annual low-pass filtered and normalized adjusted REOF(Blend) and AR4 
model ensembles (upper 2 panels) and the associated time series for JEOF 1. 
 

Both also show decreases in the tropical Atlantic and in some mid-latitude zones, but 
the similarities are not as strong in those regions.  In particular, both show decreases in 
southern Europe, but the decrease is larger in the models and the reconstruction shows 
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increases in the eastern Mediterranean.  Both show decreases in the Pacific near and 
extending into the south-west U.S. and Mexico area, but the models decrease is more 
extensive over land and less extensive over the North Pacific.  Both show an increase 
over eastern North America but the models increase is further north.  In addition, at high 
northern latitudes the model suggests more systematic increases than the reconstruction. 
 
 Here we only perform a JEOF analysis using the ensemble of models, and we do 
not evaluate individual models.  It is possible that some models may compare with the 
reconstruction better in some areas than in others.  Comparison of individual models is 
beyond the scope of this paper.  Modeling groups may be able to use the reconstruction to 
diagnose their output over ocean and land regions over the 20th century, which could aid 
the development of improved coupled models. 
 
 
6. Summary 
 
 Historical global precipitation has been reconstructed on a 5° monthly grid 
beginning 1900.  Both land and ocean areas are analyzed.  The land-area analysis is based 
on fitting the available gauge data to a set of large-scale spatial empirical analysis 
function (EOF) modes.  That analysis, referred to as REOF, was found to be able to 
represent large-scale monthly variations over land.  Over the oceans the REOF represents 
most interannual and shorter-scale variations, but because of the scarcity of gauges the 
multi-decadal variations over oceans were found to be less reliable.  Therefore, the 
ocean-area analysis used is a combination of REOF with an analysis that uses a canonical 
correlation analysis to obtain precipitation anomalies from SST and SLP anomalies, 
referred to as RCCA.  The combination takes the form of using the low-pass filtered 
RCCA to bias adjust the ocean-area low-pass REOF, forcing the ocean-area multi-
decadal signal to match that of the RCCA.  Both REOF and RCCA are developed using 
the GPCP data from 1979-2008.  Statistics from that period are used to reconstruct 
precipitation over 1900-2008.  The REOF and RCCA methods were developed and 
described in earlier papers.  Here we show how to best combine them, and also develop 
uncertainty estimates for the combined reconstruction. 
 
 Evaluations of the reconstruction suggest that it should be of use for climate 
studies and for model evaluations.  The reconstruction shows trend-like variations over 
both oceans and land, with the greatest changes over tropical oceans.  Trends over land 
are weaker than over oceans, and in the tropics and sub-tropics they tend to be opposite to 
the ocean trends.  This land-sea difference is similar to the land-sea precipitation 
differences associated with ENSO over the satellite period (Adler et al. 2008). 
 
 The reconstruction can not resolve any fine scale variations because of the 
filtering using spatial modes, although it should represent most large-scale variations.  
Because much of the reconstruction is based on a gauge data set, any systematic errors in 
that data set will influence the reconstruction.  Most random error in the gauge data 
should be eliminated by filtering using a set of modes with screening of poorly sampled 
modes.  In addition, the RCCA component of the analysis assumes that the relationships 
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between precipitation and the combined SST and SLP are stationary over the 
reconstruction period.   
 
 Error estimates take into account changes in sampling and how that affects 
variance, and also error estimates for the SST and SLP which may cause errors in the 
RCCA.  However, possible errors in the gauge data set are not considered in the estimate, 
nor are possible errors in GPCP, or in our assumption that the relationships are stationary 
over the reconstruction period.  In addition, errors caused by filtering the full data using 
the set of EOFs are also not considered here.  The error estimate is a measure of how well 
historical data may be reconstructed relative to EOF-filtered satellite-era data. 
 
   In the future we will consider merging data from the REOF and RCCA with 
other data sources.  Possible additional data sources include the gauge data themselves 
which may be re-injected to adjust the land-area analysis.  In addition, data from 
extended model-based reanalyses may be able to improve analysis skill over both land 
and ocean areas (Compo et al. 2006).  The present reconstruction is available to users at 
LIST WEB SITE. 
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