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[1] Three objective techniques used to obtain gauge-based daily precipitation analyses
over global land areas are assessed. The objective techniques include the inverse-distance
weighting algorithms of Cressman (1959) and Shepard (1968), and the optimal
interpolation (OI) method of Gandin (1965). Intercomparisons and cross-validation tests
are conducted to examine their performance over various parts of the globe where station
network densities are different. The gauge data used in the examinations are quality
controlled daily precipitation reports from roughly 16,000 stations over the global land
areas that have been collected by the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC). Data sources include daily summary files from
the Global Telecommunication System (GTS), and the CPC unified daily gauge data sets
over the contiguous United States (CONUS), Mexico, and South America. All three
objective techniques are capable of generating useful daily precipitation analyses with
biases of generally less than 1% over most parts of the global land areas. The OI method
consistently performs the best among the three techniques for almost all situations
(regions, seasons, and network densities). The Shepard scheme compares reasonably well
with the OI, while the Cressman method tends to generate smooth precipitation fields with
wider raining areas relative to the station observations. The quality of the gauge-based
analyses degrades as the network of station observations becomes sparser, although the OI
technique exhibits relatively stable performance statistics over regions covered by fewer

gauges.
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1. Introduction

[2] Despite the rapid progress achieved in the last two
decades in estimating precipitation from radar and satellite
observations and in simulating precipitation through numer-
ical models, gauge observations continue to play a critical
role in documenting the characteristics of precipitation over
global land areas [Huffinan et al., 1997; Xie and Arkin,
1997; Adler et al., 2003]. Gauge observations have the
longest recording period which makes them the most
suitable sources from which the long-term mean and vari-
ability of precipitation on various timescales can be defined.
In addition, gauge observations are the only source of
precipitation that is obtained via direct measurement. Radar
estimates, satellite estimates, and model predictions are
indirect in nature and hence must be calibrated or verified
using the gauge observations [e.g., Xie and Arkin, 1995;
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Ebert and Manton, 1998; Adler et al., 2001; McCollum et
al., 2002].

[3] Several sets of precipitation climatologies have been
constructed over global land areas by interpolating gauge-
observed monthly climate normals [Legates and Willmott,
1990; Hulme, 1991; New et al., 1999]. Furthermore, gauge-
based analyses of monthly and daily precipitation have been
constructed over global and regional domains by several
research groups around the world [e.g., Bradley et al., 1987,
Willmott and Matsuura, 1995; Rudolf, 1993; Schneider,
1993; Xie et al., 1996, 2007; Dai et al., 1997; Higgins et
al., 2000; New et al., 2000; Shi et al., 2001; Chen et al.,
2002; Maurer et al., 2002]. These gauge-based analyses
have been used in a wide range of applications, including
weather and climate monitoring, climate diagnostics, veri-
fication of numerical models and satellite products, and
hydrological studies [e.g., Morrissey et al., 1995; Dai and
Wigley, 2000; Sorooshian et al., 2000; Higgins and Shi,
2000, 2001; Roads et al., 2001; Higgins et al., 2004; Xue et
al., 2005; Yatagai et al., 2005, Ebert et al., 2007; Xie et al.,
2007].

[4] At the National Oceanic and Atmospheric Adminis-
tration (NOAA) Climate Prediction Center (CPC) gauge
observations have long been utilized for climate monitoring,
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climate analysis and climate forecast verification activities
(A. Kumar, An overview of operational activities at Climate
Prediction Center (CPC) to be submitted to Weather and
Forecasting, 2007). The Climate Anomaly Monitoring
System (CAMS), which is a real-time surface climate
database of monthly precipitation and temperature observa-
tions, was established in 1984 to aid in the analysis of
climate anomalies. In essence, CAMS is an archive of
station reports of monthly mean precipitation and surface
air temperatures collected from the daily Global Telecom-
munication System (GTS) data and the monthly CLIMAT
reports [Ropelewski et al., 1985]. Monthly precipitation
reports from ~6000 stations are available for each month
and are inserted in CAMS. Analyzed fields of monthly
precipitation are created over the global land areas by
interpolating the CAMS gauge observations [Xie et al.,
1996]. These gauge-based analyses are then combined with
estimates derived from satellite observations to generate
improved near-global precipitation analyses [the CPC
Merged Analysis of Precipitation (CMAP); Xie and Arkin,
1996, 1997] on a 2.5° latitude/longitude grid. A streamlined
version of CMAP, called CAMS-OPI [Janowiak and Xie,
1999], is also produced on a real-time basis by merging the
CAMS gauge-based analysis and the OLR-based Precipita-
tion Index [OPI; Xie and Arkin, 1998] satellite estimates.

[5] In addition to the observations that are available from
the GTS and the CLIMAT reports described above, CPC
also collects daily precipitation reports from other sources.
These sources include the National Weather Service (NWS)
River Forecast Centers (RFC), the Hydrologic Automated
Data System (HADS), and national collections from mete-
orological agencies in Mexico and countries in South
America (mainly Brazil), East Asia, and Africa. Together
with the GTS data, these additional daily gauge observa-
tions produce relatively dense gauge networks over the
regions. For instance, over the contiguous United States
(CONUS), the total number of daily precipitation reports
from the combined daily gauge data sets collected at
NOAA/CPC is about 8000 compared to about 500 from
the GTS alone. Analyses of daily precipitation are created
on a 0.25° latitude/longitude grid over the CONUS-Mexico
domain [Higgins et al., 2000], on a 1.0° latitude/longitude
grid over South America [Shi et al., 2001; Silva et al.,
2007], and on a 0.5° latitude/longitude grid over East Asia
[Xie et al., 2007] by interpolating the GTS and regional
station data.

[s] However, the precipitation variations in the global
gauge-based and merged analyses do not always match with
those in the regional gauge-based analyses primarily due to
differences in the gauge station data and interpolation
algorithms used in defining the gauge analyses [Xie et al.,
2003]. This inconsistency may cause problems in applica-
tions where joint use of the global and regional analyses is
required.

[7] To address this problem, a project was launched
recently at CPC to construct unified gauge and gauge-
satellite merged analyses of daily precipitation over both
global and regional domains. The data set is derived from a
set of quality controlled input gauge and satellite using a
robust objective analysis technique. The entire project
consists of four major components, i.c., (a) construction of
a unified data set of gauge observations and satellite

CHEN ET AL.: OBJECTIVE ALGORITHM ASSESSMENT

D04110

estimates of global and regional precipitation; (b) quality
control of these daily gauge reports; (c) creation of gauge-
based analyses; and (d) production of the gauge-satellite
merged analyses of precipitation. As a first step of this
massive project, station daily precipitation reports from
GTS over the global land areas and national collections
from US, Mexico, and South American countries have
been combined to form a preliminary version data set of
the unified gauge observations. Quality control procedures
have been developed and applied to this unified global
gauge data set to flag suspicious reports [Chen et al.,
2008].

[8] The purpose of this paper is to select a common
objective technique for producing gauge-based analyses of
daily precipitation on global and regional domains over
land. This is done by assessing the performance of three
interpolation algorithms currently used at CPC to generate
its operational precipitation products. The three objective
methods that were tested include the inverse-distance
weighting interpolation algorithms of Cressman [1959]
and Shepard [1968], and the optimal interpolation (OI)
technique of Gandin [1965]. The Cressman method is used
at CPC to create regional analyses over the CONUS-Mexico
and the South America domains [Higgins et al., 2000; Shi et
al., 2001; Silva et al., 2007]. The technique developed by
Shepard [1968] is used to produce GTS gauge-based global
analyses [Xie et al., 1996], and the OI technique is imple-
mented to construct East Asia daily precipitation maps [Xie
et al., 2007]. Although several other objective techniques
are also used by scientists of different institutions for gauge
interpolation [e.g., Barnes, 1964; Dai et al., 1997; New et
al., 2000], the three algorithms to be examined here are
among those most widely used and present stable perform-
ances [Creutin and Obled, 1982; Bussieres and Hogg, 1989;
Chen et al., 2002].

[v] Assessment of the performance of gauge interpola-
tion algorithms has been the topic of several published
studies. Creutin and Obled [1982] examined several well-
known schemes in deriving analyzed fields of event total
precipitation over regions of intense and highly spatially
varying rainfall and recommended the optimal interpolation
(OI) of Gandin [1965]. Bussieres and Hogg [1989] com-
pared the performance of four algorithms [Barnes, 1964;
Cressman, 1959; Shepard, 1968; and Ol of Gandin, 1965]
in defining daily precipitation analysis over Canada and
concluded that the OI does the best job while the technique
of Shepard [1968] performs almost as well. Legates [1987]
evaluated several objective procedures for defining a
monthly climatology and found that a spherical adaptation
of Shepard’s [1968] method [Willmott et al., 1985] was the
best for interpolating over 24,000 gauge observations of
long-term mean precipitation into 0.5° lat/lon grid over
global land areas. On the basis of these results, Shepard
[1968] algorithm was chosen by the Global Precipitation
Climatology Centre (GPCC) to construct monthly precipi-
tation analyses from about 7000 quality controlled gauge
observations over global land areas [Rudolf et al., 1994].
Chen et al. [2002] performed an inter-comparison of four
interpolation algorithms and confirmed that the OI tech-
nique is the best for construction of gauge-based analyses
of monthly and pentad precipitation over the global land
areas.
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Figure 1. Distribution of precipitation (mm day ') for 5 January 2005, defined by interpolating station
observations through the algorithms of (a) Cressman [1959], (b) Shepard [1968], and (c) the optimal
interpolation (OI) of Gandin [1965], together with (d) number of gauge reports available in a 1.0°1at/lon

grid box.

[10] Performance of an objective analysis technique dif-
fers in generating analyzed fields of precipitation with
different spatial structures sampled by different observation
networks. The objective technique to be selected here needs
to be capable of defining daily precipitation analyses with
reliable quality over the global land regions for all seasons
and from gauge data from networks of highly variable
station densities. None of the above mentioned studies has
thoroughly addressed these issues for applications of global
daily precipitation. In particular, the sensitivity of the gauge
analysis quality to the gauge network density is largely
unknown, despite the critical importance of that character-
istic for reliable gauge interpolation over the global land
areas where mean station-to-station distance may vary from
~30 km over CONUS to ~500 km over tropical Africa. In
this paper, we will describe a comprehensive assessment of
the performance for the three objective algorithms for
interpolating daily precipitation over the global land areas.
Section 2 describes the three objective techniques to be
examined and the gauge data to be interpolated; section 3
presents results of an inter-comparison of the precipitation
analyses generated by the different algorithms, cross-
validation tests and the gauge network density impact

experiments, while a summary of the results is given in
section 4.

2. Algorithms and Gauge Data

2.1. The Objective Analysis Techniques to be
Examined

[11] The three objective analysis techniques to be exam-
ined in this study are the inverse-distance weighting meth-
ods of Cressman [1959] and Shepard [1968], and the
Optimal Interpolation (OI) algorithm of Gandin [1965].
They were selected because of their operational applications
at CPC and for their wide utilization for analyzing obser-
vation fields by many institutions around the world.

[12] In the method of Cressman [1959], a “first-guess”
field of interpolated values at the target grid points is first
defined. The first-guess field is then corrected by the
weighted mean of the differences between the observations
and the interpolated values at gauge locations within a
predetermined search distance from the target grid point.
This process is repeated four times, with decreasing search
distance. The search distances for the four reiterations are
adjusted for gauge networks of different density and for
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Figure 2. Mean precipitation (mm day ') for January 2005, defined by interpolation of station reports
using the algorithm of (a) Cressman [1959], (b) Shepard [1968], and (c¢) OI of Gandin [1965].

precipitation fields of different spatial structures. In our
implementation [Higgins et al., 2000], the ratio among the
four search distances is fixed to 9: 1.9: 1.3: 0.7, while the
absolute magnitude of them is tuned for each individual
continent and for each season to optimize the interpolation
performance. For instance, the search distance for the last
reiteration is ~25 km and ~120 km, respectively, for
interpolation of June—July August daily precipitation over
CONUS and Africa. The weighting function is defined as
(D2, — D)/(D3, + D?), where Dy, and Dy are the search
distance and the station-gauge distance, respectively. The
form of the function yields a slowly decreasing weight with
the increasing distance, ensuring robust large-scale distri-
butions with small-scale features smoothed [Bussiéres and

Hogg, 1989]. The first guess field is zero rainfall in our
implementation.

[13] In the algorithm of Shepard [1968], the interpolated
value of precipitation at a target grid point is computed as a
weighted mean of observed values at nearby gauge stations
within a search distance. The search distance is variable
depending on the gauge network density, so that 4—10
gauges are included in the calculation. The weighting
function is inversely proportional to the gauge-grid point
distance, creating a sharp gradient in the analyzed precip-
itation fields. In addition, directional correction is imple-
mented to account for any uneven distribution of gauges in
different directions from the target. The version of the
Shepard [1968] algorithm that is tested in this study is the
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based on interpolation of gauge observations through the algorithm of (a) Cressman [1959], (b) Shepard
[1968], and (c) OI of Gandin [1965]. Locations of gauges reporting rain and no-rain events are plotted in
red and blue, respectively, in panel d, together with the background color representing elevations.

so-called Spheremap implementation developed by Legates
and Willmott [1990], in which distances and angles are
calculated on a spherical coordinate system. The Shepard
[1968] algorithm is used by the Global Precipitation Cli-
matology Centre [GPCC; Rudolf, 1993; Schneider, 1993] of
Germany and the CPC [Xie et al., 1996] to construct their
gauge-based analyses of global precipitation.

[14] The OI technique of Gandin [1965] defines the
analyzed value at a grid point by modifying a first-guess
field with the weighted mean of the differences between the
observed and the first-guess values at station locations
within a search distance. While in the Cressman and
Shepard methods, the weighting coefficient is a function
only of gauge-grid point distance, in the OI technique it is
determined from the variance and co-variance structure of
the target precipitation fields. The implementation of the OI
algorithm tested in this inter-comparison was developed by
Xie et al. [2007] to construct daily precipitation analyses
over East Asia. The creation of the daily precipitation
analysis is conducted in three steps. First, analyzed fields
of daily precipitation climatology are defined from histor-
ical gauge observations collected at CPC. Gridded fields of

the ratio between the daily precipitation and daily climatol-
ogy is then computed by interpolating the corresponding
values at the gauge locations through the OI technique.
Daily precipitation analysis is finally defined by multiplying
the fields of the daily climatology and the daily ratio. By
interpolating the ratio of total rainfall to the climatology,
instead of the total rainfall itself, the OI is capable of better
representing the spatial distribution of precipitation, espe-
cially over regions with substantial orographic effects [Xie
et al., 2007].

[15] In this work, we evaluate the performance of three
widely used objective techniques, aiming to select the best
one for our operational applications. From that point of
view, no efforts have been made to change the contents of
the operational packages. In creating the analyses using the
methods of Cressman [1959] and Shepard [1968], total
precipitation is interpolated, although interpolating anoma-
lies or ratios to the climatology generally yield better results
[Chen et al., 2002; Xie et al., 2007]. Our primary principal
here is to make our comparisons fair to all of the “opera-
tional packages’ involved.
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Figure 4. Serial correlation among the gauge-based daily precipitation analysis derived using the
Cressman, Shepard, and OI algorithms. The correlation is computed for each 0.5° lat/lon grid for January,

April, July, and October of 2005.

2.2. Gauge Data Used in the Assessment

[16] Gauge observations of daily precipitation from four
individual data sets are combined and used in examining the
performance of the objective interpolation algorithms.
These include the Global Telecommunication System
(GTS) daily summaries files archived at CPC for a period
from 1977 to the present; the CPC unified data set of daily
station precipitation over CONUS [Higgins et al., 2000]
starting from 1948; a data set of daily precipitation over
Mexico provided to CPC by the National Meteorological
Service (SMN) of Mexico [Higgins et al., 2000] dating back
to 1948, and a collection of daily precipitation reports over
South America [Shi et al., 2001; Silva et al., 2007] begin-

ning from 1979. These individual data sets are selected for
their availability in real-time operations at CPC. While the
GTS gauge network covers most of the global land areas,
the station density in those data is less than desirable over
many important regions of the world. Individual data sets
collected at CPC from various sources (meteorological,
hydrological agencies and other organizations), meanwhile,
provide dense gauge networks over several of the regions
that have sparse gauges in the GTS data.

[17] In this study, gauge observations from the individual
regional data sets over CONUS, Mexico, and South Amer-
ica are combined with those from the GTS over the rest of
the world to create an enhanced data set of gauge observa-
tions of daily precipitation over the entire global land areas.
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Table 1. Summary of Cross-Validation Tests for the Gauge-Based
Analyses of Daily Precipitation Over the Global and Regional
Domains for the Entire Periods of January, April, July, and October
of 2005*

Cressman Shepard Ol
Bias, Bias, Bias,
Correlation %  Correlation %  Correlation %
Global 0.706 0.251 0.709 —0.085 0.735 -0.349
U.sS. 0.793 0.754 0.784 —0.118 0.811  —0.467
S. America 0.653 0244  0.723 0.084 0.724 0.369
E. Asia 0.592 0.572  0.567 —0.533 0.596 —0.332
Indo. Islands  0.290 —1.772 0.253 —0.677 0313 —0.831
Australia 0.553 1.381 0.588 —0.579 0.592 —0.207
Africa 0.364 3316 0.354 1.259 0.377 —0.778

Correlation and bias are computed through comparisons with the
withdrawn independent gauge observations.

Comprehensive quality control procedures are applied to the
raw station data to remove suspicious reports with zero and
extremely large values. This is done through comparisons
with climatological statistics at the target station, concurrent
observations from nearby stations, and corresponding radar
images, satellite estimates and numerical model forecasts of
daily precipitation [Higgins et al., 2000; Shi et al., 2001;
hereinafter referred to as Chen et al., 2008].

[18] Figure 1d presents an example of the gauge distri-
butions for 5 January 2005. In total, daily precipitation
reports from ~16,000 stations are available from the com-
bined global station data set, composed of ~8500, ~1100,
~1100 stations over CONUS, Mexico, and South America,
respectively, and ~5500 from the GTS data set over the rest
of the world. The gauge network is quite dense over most of
the CONUS, east coast of Brazil, Western Europe, South
Africa and the coastal regions of China and Australia, while
precipitation is poorly sampled over most of the African
continent, western China, central Australia and the Amazon.

3. Examination of Results

3.1. Inter-Comparisons of the Daily Analyses Derived
by the Three Algorithms

[19] Analyzed fields of daily precipitation are created on a
0.5°lat/lon grid over the global land areas for 2005 through
interpolation of the combined global station reports using
the three objective analysis techniques. Results are then
compared to each other and with independent observations
to examine their performance. Figure 1 shows an example
of the global daily precipitation analyses (grid box average)
generated by the three algorithms, together with the number
of gauge reports available in each 1.0°lat/lon grid box. As
expected, close agreement is observed in the large-scale
global precipitation patterns generated by the three algo-
rithms. Major precipitation areas (with similar magnitudes)
over southern Africa, Europe, Siberia, Australia, northern
Canada, US, and South America are well depicted in all
three analyses. Differences, however, are observed in the
small scale features and in the extension of raining areas.
The Cressman technique (Figure la) tends to generate
precipitation fields with smoother spatial distribution and
larger precipitation areas than the Shepard (Figure 1b) and
the OI (Figure lc) methods, especially over regions of
sparse gauge networks (e.g., southern Africa, South Amer-
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ica and central Australia). These differences, however, tend
to decrease as daily fields are accumulated to form precip-
itation distributions for extended periods. As shown in
Figure 2, only minor differences are visible among the
global distribution of monthly precipitation generated by
the three objective analysis algorithms examined here,
though the Cressman still presents slightly larger areas of
precipitation.

[20] Figure 3 provides a close look at the daily precipi-
tation analyses for 5 January 2005, over the CONUS where
daily reports from ~8000 stations are available over this
area of ~8 x 10° km®. The precipitation distribution for this
day is governed primarily by a passing frontal system
extending from Arizona to the northeast corner of the
country. Precipitation is well organized into a band over
central and eastern CONUS, while it spreads out and is
more or less scattered over western mountainous areas of
the nation. All of the three algorithms produced a precip-
itation distribution with a maximum of 50—100 mm/day
over the corner of Kansas, Missouri, Okalahoma, and
Arkansas. It is clear that the precipitation generated by the
Cressman technique is smoother and presents larger raining
areas than those of the OI and Shepard, especially over the
western mountainous areas with precipitation of scattered
distributions is observed by a relatively sparse gauge
network.

[21] Figure 4 presents the serial correlation between daily
precipitation analyses generated by different interpolation
algorithms. Correlations higher than 0.95 (red color) are
observed among the daily precipitation values generated by
the three algorithms over most of the global land areas. In
general, analyses produced by the OI and the Shepard
techniques exhibit close agreement, while poor correlation
(<0.5) appears between the Cressman analysis and other
two precipitation data sets over areas with sparse gauge
networks (e.g., tropical Africa, Tibet, and northern Russia).
No systematic variations are observed in the correlation
maps calculated for different seasons (not shown). While
other factors may be involved as well, differences between
the daily analyses derived by the Cressman algorithm and
those by the other two techniques are caused largely by the
differing weighting functions. With weighting coefficients
decrease slowly with distance, the Cressman algorithm
relies more on observations at distant stations over regions
of poor gauge networks.

3.2. Cross-Validation Tests

[22] To quantify the performance of the three objective
analysis techniques in interpolating daily precipitation,
cross-validation tests are conducted over the global land
areas. To this end, 10% of the stations were randomly
selected from the entire databases of N (~16,000) stations
over the global land areas. This is done by arranging the
stations in order (1st, 2nd, ... Nth), generating a series of N
random numbers ranging from 0—10 using a Fortran utility
and picking out stations with corresponding random number
between 0—1. Daily precipitation reports for these stations
are withdrawn and the gauge observations for the remaining
90% of stations are used to define the analyzed values at the
locations of the withdrawn stations. This process is repeated
10 times so that each station is withdrawn once. Visual
inspection of the 10 sets of withdrawn stations shows
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Table 2. Summary of Cross-Validation Tests for the Gauge-Based
Analyses of Daily Precipitation Performed for January, July, April,
July, and October of 2005 over (a) Northern, and (b) Southern
Hemispheres

Cressman Shepard Ol

Bias,
Correlation %

Bias,
Correlation %

Bias,
Correlation %

(@

January  0.798 0.724 0793  —0.228 0.806  —0.534
April 0.734 0906 0.766  —0.044 0.783  —0.491
July 0.672 0.762  0.658 0.080  0.690  —0.580
October  0.743 0.285 0.740 —0.349 0.771  —0.238
(b)
January  0.481 —2.268 0.514 —1.048  0.606 1.151
April 0.466  —6.658  0.486 1.390  0.620 0.390
July 0466 —6398 0474 —-0992 0590 —0.168
October  0.445 0.473 0440 —1.497 0.661  —0.887

relatively homogeneous distributions. The analyzed values
at the station locations are then compared to the
corresponding withdrawn station observations to assess
the quantitative accuracy of the interpolated daily precipi-
tation fields.

[23] Table 1 shows the comparison statistics of the cross-
validation tests for the three interpolation algorithms over
the global land areas as well as six individual regions
around the world. The correlations and biases are calculated
from the analyzed daily precipitation values and the original
daily observations station by station for the global land
areas and sub-regions. All of the three objective techniques
were able to generate analyzed fields of daily precipitation
with reasonable spatial distribution and close magnitude

75
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agreement. Bias is less than 1% relative to the mean gauge-
observed precipitation over most of the global land areas.
The correlation is higher than 0.5 for all global regions,
except for Indonesia and Africa where heavy tropical
rainfall with large spatial variations is sampled by sparse
gauge networks. The best performance is observed over the
United States where daily precipitation is monitored by a
national network of ~8000 gauges with an average area of
~1000 km? per gauge. Analyzed fields derived by the OI
shows consistently better correlation with the withdrawn
independent gauge observations, compared to those based
on the Cressman and Shepard techniques. The correlations
computed over the entire global land areas reaches 0.735 for
the Ol-based analysis, suggesting good overall performance
in analyzing daily precipitation.

[24] Tables 2a and 2b present summaries of the cross-
validation tests for the gauge-based analyses of daily
precipitation validation for January, April, July, and October
of 2005, over the northern and southern hemispheres,
respectively. The OI exhibits the best correlation for all of
the four individual months and over both of the hemi-
spheres. In particular, over the southern hemisphere where
gauge networks are relatively poor, the Ol-based precipita-
tion analysis shows substantially improved correlation (0.6
or higher) than that based on the Cressman and the Shepard
(0.4-0.5). Biases of the Ol-based analyses are comparable
or a little bit smaller than those of the analyses created by
the other two techniques.

[25] One important statistic of precipitation fields is the
probability density function (PDF) of precipitation intensity.
In general, interpolating point observations yields analyzed
fields with reduced occurrences for both high and low (no-
rain) precipitation amounts compared to those of the orig-
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Figure 5. Probability density function (PDF,%) of daily precipitation amount (mm day ') defined by
the gauge station reports (green), analyses based on the algorithms of Cressman (red), Shepard (yellow),
and OI (blue). PDFs are computed for precipitation amounts observed/interpolated at all stations over the
entire global land areas and for the entire cross-validation tests for January, April, July, and October of

2005.
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Figure 6. Relationship between the station daily precipita-
tion analysis correlation at a withdrawn station and the
distance from that station to the closest gauge with daily
reports. Correlation between the station reports and the
analyzed values is first computed for each withdrawn
station for the entire cross-validation period of January,
April, July and October of 2005. Mean correlation values
are then defined for nine bins according to the distance to
the closest station. Results for gauge-based analyses using
the Cressman, Shepard, and OI algorithms are plotted in
red, green and blue, respectively.

inal station observations. While caution is needed when
interpreting the differences, examination of the PDF func-
tions, or histograms, of precipitation intensity provides us
with a qualitative sense of how well the relative intensity of
precipitation events are reproduced in the analyzed fields.
The histograms of daily precipitation at all stations over
global land areas is largely dominated by no-rain events
which has a frequency of occurrence of ~70%, while the
probability of daily precipitation greater than 50 mm is
0.6% during the four-month period in 2005 (Figure 5, green
bars). The OI and Shepard techniques capture this feature
quite well. The frequencies for no-rain (rain greater than
50 mm day ') are 60.6% (0.4%), and 62.6% (0.5%),
respectively, for the analyses generated by the OI (blue
bars) and the Shepard (yellow bars) algorithms. The Cress-
man method (red bars) significantly under-estimates the
frequency of no-rain while over-represents regions with
light rainfall. The frequency of no-rain days is only 32%,
less than half of that of the station observations and the
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analyses derived by the OI and Shepard techniques. Mean-
while, the frequency of light rain (R < 1 mm/day) is ~3
times as much as those in the observations and the analyses
based on the OI and Shepard techniques.

[26] The performance of the gauge-based analyses is
further investigated in relation to the density of gauge
networks from which station values are reported. For this
purpose, the serial correlation between the daily analyses
and the corresponding gauge observations at each with-
drawn station is calculated for the four selected months
(January, April, July, and October of 2005) of cross-valida-
tion tests. Mean correlation values are then computed for
nine groups of stations that are determined based on the
distance between the target station and the closest stations
from which gauge data are available for interpolation. The
distance to the closest reporting gauge station is a good
index of the gauge network density. Figure 6 presents the
relationship between the correlation and gauge network
density for the Cressman (red), Shepard (yellow) and OI
(blue) techniques. Clearly, the quality of the interpolated
field of daily precipitation improves as the gauge network
becomes denser. Correlation may reach ~0.8 if precipitation
reports are available from a station within 20 km, while it
degrades to less than 0.4 if no stations are located within
200 km. Overall, the OI presents better statistics than the
other two techniques, especially over regions with low
gauge density.

[27] The cross-validation results described above corrob-
orate the superiority of the OI technique in analyzing daily
precipitation fields over various regions and for different
seasons. Previous examinations [e.g., Creutin and Obled,
1982; Bussieres and Hogg, 1989] have focused on a specific
season and/or regions. In addition, our results also demon-
strate the strong ability of the OI technique in reproducing
the PDF of the precipitation events with high fidelity.

3.3. Impacts of Gauge Network Densities

[28] As described in section 2.2, CONUS is covered by a
very dense network of gauges with about 8000 stations
reporting precipitation daily. Comparisons of the daily
precipitation analyses based on synthetically sparse gauge
densities by using selected subsets of the gauges provides
an opportunity to examine the impacts of varying gauge
density to the quantitative accuracy of the resulting analysis.
Therefore to further quantify the impacts of the gauge
network density on the accuracy of gauge-based analyses
of daily precipitation, cross-validation tests were conducted
for analyses over the CONUS region using only 50%, 20%,
5%, 1%, and 0.5% of all available stations.

[29] First, 10% of the daily precipitation reports were
withdrawn randomly from the full set of gauge observations
and were retained as independent data to verify the quan-
titative accuracy of analyses derived from subsets of the
remaining 90% of gauge reports. In particular, random
subsets of gauges that are composed of 50%, 20%, 10%,
5%, 1% and 0.5% of all available gauge reports were
constructed. The mean station-to-station distance is
~30 km over the CONUS with all data included, while in
a network composed of only 0.5% of all available gauges,
the distance increases to ~400 km which is approximately
the same as that over tropical Africa in our combined global
gauge data set. These sub-sampled gauge data are then used
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Figure 7. Correlation (top) and bias between the withdrawn independent station observations and
analyzed daily precipitation values interpolated from station reports from a subset (0.5% — 100%) of all
available stations. Results for gauge-based analyses derived from the Cressman, Shepard and OI
algorithms are plotted in red, yellow and blue, respectively.

to define the analyzed fields of daily precipitation and
compared against the 10% withheld, independent gauge
reports. The inter-comparison statistics for each selected
subset cross-validations are calculated station by station.
[30] As expected, the performance of gauge-based anal-
yses improves with the increasing density of gauge data for
the three analysis techniques. Correlation coefficients be-
tween the gauge-based analyses and the withdrawn station
data are about 0.5 when only 0.5% of the gauge data are
used in the interpolation, but they are above 0.8 when all

data are utilized in the interpolation (Figure 7, top). The
daily analyses derived by the OI technique consistently
exhibit slightly higher correlation than those produced by
the Cressman and Shepard techniques. Both the Cressman
and the Shepard techniques show a tendency for generating
larger biases for analyses based on gauge networks with
relatively sparse density. The OI, meanwhile, shows the best
agreement in magnitude with the independent observations
for all sets of gauge networks, with a very small bias of less
than 1% for networks with 1% or more gauges and ~1.5%
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Table 3. Performance Statistics for Analyses Based on a Gauge
Network Using 0.5% of all Available Data Over CONUS

Cressman Shepard Ol
Bias, Bias, Bias,
Correlation % Correlation %  Correlation %
January 0.571 4.330 0.603 2.423 0.577 1.025
April 0.560 2.524 0.551 0.948 0.567 0.092
July 0.376 10.802 0.388 6.807 0.393 4.482
October 0.535 0.984 0.533 1.572 0.550 0.341

for a network of 0.5% of full coverage (Figure 7, bottom).
This is partially because in the OI, the interpolation is
performed on the ratio between the daily total precipitation
and daily climatology instead of the total precipitation itself,
thus reducing the chance of spreading precipitation areas
into no-rain zones [Xie et al., 2007]. The degradation of the
analysis quality caused by the reduced network density is
especially large during summer months when small-scale
systems make substantial contributions to the daily precip-
itation. The correlation and bias for daily analyses that are
based on the 0.5% gauge network are 0.393 and 4.5%,
respectively, compared to 0.577 and 1.0% for winter months
when CONUS precipitation is dominated by large-scale
synoptic systems (Table 3). The statistics for the analyses
of summer months derived from the 0.5% network (or a
gauge-to-gauge distance of x400 km) are comparable with
those for analyses over Africa shown in Table 1.

[31] The frequency of occurrence for no-rain events is
substantially reduced in the interpolated daily precipitation
fields when gauge reports from fewer stations are available
(Figure 8). This alias in the PDF is particularly serious in
the gauge-based analyses derived by the Cressman algo-
rithm. The percentage of no-rain days is 52%, 42%, and
31%, respectively, in the analyses based on 100%, 10% and
1% of all available gauge reports compared to 72% in the
independent observations. The degradation in the fidelity of
the PDF is much less in the OI- and Shepard-based analyses
which present frequencies of no-rain at 54%, and 53%,
respectively, when 1% of the gauge reports are employed.

[32] Overall, results of these impact tests confirm the
stable and superior performance of the OI technique in
generating daily precipitation analyses from gauge networks
of various densities. The Shepard method presents compar-
ison statistics very close to those of the OI, while the
Cressman algorithm is capable of analyzing precipitation
fields with high pattern correlation but with an erroneously
smoothed PDF structure.

4. Summary and Conclusions

[33] A comprehensive assessment has been performed to
examine the performance of three published objective
analysis techniques in producing daily precipitation analy-
ses by interpolating gauge observations over the global land
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areas. The three objective techniques include the inverse-
distance weighting algorithms of Cressman [1959] and
Shepard [1968], and the optimal interpolation (OI) method
of Gandin [1965]. The gauge observations used in the
examinations are quality controlled daily precipitation
reports from ~16,000 stations over the global land areas
collected through combination of four individual data sets
available at NOAA Climate Prediction Center (CPC), i.e.,
the daily summary files from the Global Telecommunication
System (GTS), and the CPC unified daily gauge data sets
over the contiguous United States (CONUS), Mexico, and
South America.

[34] Inter-comparisons and cross-validation tests have
been conducted on the analyses of daily precipitation
generated by interpolating the station reports by the three
objective techniques to examine their performance in char-
acterizing the analyses over various parts of the globe, for
all seasons, and from station networks of different densities.
Our results show the following:

[35] 1) All of the three objective techniques are capable of
generating analyses of daily precipitation with high corre-
lation and close magnitude agreements with independent
gauge observations. Biases of the gauge-based analyses are
generally less than 1% for analyses produced by all of the
three techniques over most parts of the global land areas;

[36] 2) The OI method consistently performs the best
among the three techniques, exhibiting the highest correla-
tion and very close probability density function (PDF) of
rainfall intensity compared to the independent gauge obser-
vations for almost all situations (regions, seasons, and
network densities). The Shepard scheme compares well
with the OI, while the Cressman tends to generate smooth
precipitation fields with broader areas of precipitation
relative to the station observations and the analyses based
on the OI and the Shepard algorithms;

[37] 3) The quality of the gauge-based analyses degrades
as the network of station observations becomes sparser.
However, the OI technique exhibits relatively stable perfor-
mance statistics over regions covered with fewer gauges.

[38] Based on these results, a decision has been made at
CPC to use the OI technique to create the unified analyses
of daily precipitation over the global land areas. Focusing
on applications such as weather/climate monitoring, climate
variability studies and model verifications, the analysis is
created on a 0.5° lat/lon grid to represent the area-averaged
values of daily precipitation over the grid boxes. Work is
underway to construct the gauge-based analyses on a real-
time basis and for historical periods, and to combine the
gauge-based analyses with satellite-based precipitation
fields of CPC Morphing Technique [CMORPH, Joyce et
al., 2004]. Our final goal is to provide the science commu-
nity with a suite of high-resolution, high quality gauge-based
and gauge-satellite merged analyses of daily precipitation
over the global and regional domains.

Figure 8. Probability density function (PDF, %) of daily precipitation amount (mm day ') defined by the gauge station
reports (green), analyses derived by interpolation of station reports from 100% (top), 10% (middle), and 1% of the total
available reports, using objective algorithms of Cressman (red), Shepard (yellow), and OI (blue). PDF is computed at the
CONUS stations with reports withdrawn from the interpolations and for the entire impact tests period of January, April,

July, and October of 2005.
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