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feedbacks not only play a role during the forecast leading to 
the largest errors in spring, but also cause the largest errors 
in the SST-derived ocean initial conditions in spring. Com-
plementary aspects of seasonal forecasts based on simple 
initialization scheme, and use of low-resolution models are 
also discussed.

1 Introduction

Seasonal predictions, though challenging, have been made 
routinely at many operational prediction centers around 
the world (e.g., Palmer et  al. 2004; Molteni et  al. 2011; 
Saha et al. 2006, 2014; Graham et al. 2011). The progress 
in dynamical seasonal predictions has benefitted from 
advances in both coupled models and improvements in 
observational network. Regarding the latter, ENSO predic-
tions, for example, have been argued to be greatly benefited 
from the advent of Tropical Atmosphere Ocean (TAO) 
moored array in the 1980s (McPhaden et al. 1995).

Seasonal climate predictability mainly resides in the 
ocean memory, and the ocean initialization is vital for how 
much potential predictability in the coupled system could 
be realized by dynamical seasonal prediction systems. To 
have as accurate ocean initial conditions as possible, vari-
ous data assimilation schemes have been implemented to 
synthesize ocean observations (including in  situ and sat-
ellite based products) with ocean models (e.g., Behringer 
and Xue 2004; Balmaseda et al. 2013). At National Centers 
for Environmental Prediction (NCEP), for example, a 3D 
variational technique (Derber and Rosati 1989) is used to 
assimilate different surface/subsurface and satellite ocean 
observations. The resulting ocean analysis is then used 
to initialize climate prediction systems (Saha et  al. 2006, 
2014).

Abstract In this study, a simple ocean data assimila-
tion scheme was applied to initialize a set of seasonal 
hindcasts, which started from each January, April, July 
and October during 1982–2010 with six ensemble mem-
bers. In the scheme, sea surface temperature (SST) was 
the only observed information used to estimate the ocean 
initial states. Predictions of SST, 2-m temperature (T2m) 
and precipitation (Prate) over land were assessed and com-
pared with hindcasts from the North American Multimodel 
Ensemble (NMME) project which were all based on sophis-
ticated ocean initialization schemes with subsurface obser-
vations assimilated. The skill comparison indicated that, for 
all variables evaluated, the prediction skill by the simple 
ocean initialization procedure was well within the range of 
skills from individual NMME models. The result suggests 
that even though sophisticated initialization schemes have 
the potential to best capture the seasonal climate predicta-
bility, most present-day capabilities of seasonal predictions 
can also be accomplished by utilizing SST only. Further, 
significant seasonal dependence of prediction skill was also 
identified in hindcasts by the simple initialization scheme. 
Specifically, the ENSO SST predictions were featured 
by the significant “spring barrier” problem. It is argued 
that the ENSO prediction skill seasonality could be due 
to “double dip” contribution from the seasonality of cli-
matic feedbacks in the tropical Pacific. In particular, these 
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The sophisticated data assimilation and initialization 
schemes usually require extensive scientific and technical 
efforts, and if forecasts are extended over period of time, 
face numerous challenges. For instance, as the global 
observing system evolves over the time (particularly during 
the satellite era), the issue of “data inhomogeneity” poses 
significant challenges in estimating the state of the ocean 
state over an extended period of time (e.g., Zhang et  al. 
2012). The problem not only affects climate analysis and 
diagnostics, but also can affect subsequent seasonal predic-
tions (often referred to as hindcasts). Further, as the sea-
sonal hindcasts are also used to correct biases and calibrate 
real-time seasonal predictions, inhomogeneities in the anal-
ysis can cause further issues.

Kumar et al. (2012) illustrated a quantitative change in 
the characteristics of SST forecast biases in the equato-
rial Pacific in the NCEP Climate Forecast System version 
2 (CFSv2) hindcasts (Saha et al. 2014) across 1999, char-
acterized by significantly warmer mean for predicted SST 
after 1999 than before. They suggested that the discontinu-
ity resulted from the assimilation of new satellite observa-
tions in the analysis system after 1999 (Kumar et al. 2012; 
Zhang et  al. 2012) from which forecast initial conditions 
were obtained [i.e., the Climate Forecast System Reanaly-
sis (CFSR); Saha et al. 2010]. Subsequent analysis by Xue 
et al. (2013) found that a better ENSO SST prediction skill 
could be achieved in the tropical Pacific if two climatolo-
gies (1982–1998 and 1999–2010) were applied in the com-
putation of predicted anomalies. Such problems made the 
skill assessment of hindcasts, and bias correction and cali-
bration of real-time forecasts a taxing issue.

The sophisticated initialization schemes also depend 
heavily on availability of observations. This limitation 
restricts the sample size of seasonal hindcasts to typically 
over a 30-year period (i.e., from the early 1980s to pre-
sent). On the other hand, there are also alternative methods 
using simpler ocean assimilation and initialization schemes 
that have been used successfully in seasonal predictions. 
For example, the ocean initial states can be obtained by 
running a coupled model with its SST or SST anomalies 
(SSTA) strongly nudged to observations. The simple ini-
tialization method has been used in ENSO predictions with 
both intermediate complexity models (ICMs; e.g. Zhang 
et  al. 2003; Chen et  al. 2004) mostly by nudging towards 
observed SST anomalies, and with coupled global climate 
models (CGCMs; Keenlyside et al. 2005; Luo et al. 2005). 
The physical basis for these methods is that, in addition 
to providing a realistic oceanic mixed layer temperature 
because of SST nudging, the observed SST information, 
through air-sea interaction and coupling, is able to partially 
reproduce observed ocean subsurface evolutions. This is 
achieved via coupled air-sea interaction whereby observed 
SST information results in a realistic simulation of surface 

winds, which in turn is able to generate observed sub-sur-
face ocean evolution (Kumar et  al. 2014; Kohyama and 
Tozuka 2016).

Based on a simple initialization scheme the Scale Inter-
action Experiment-Frontier Research Center for Global 
Change (SINTEX-F) model achieved a remarkable suc-
cess in ENSO predictions (Luo et  al. 2005) at lead times 
even up to 2 years (Luo et al. 2008). An advantage of such 
schemes is that they can be easily implemented in coupled 
systems and do not require an extensive infrastructure to 
collect real-time observational data and a sophisticated 
data assimilation system. Furthermore, in terms of ENSO 
predictions, given the sparsity of ocean observations in the 
tropical Pacific before the advent of TAO in the 1990s, ini-
tialization by utilizing the SST information provides a via-
ble alternative and could extend the time series of ENSO 
forecasts much farther back than is generally feasible based 
on sophisticated data assimilation schemes (e.g., Chen et al. 
2004; Deng and Tang 2009; Zheng et al. 2009).

Use of a simple initialization scheme is tested with 
the NCEP’s seasonal prediction system and the analysis 
reported here extends the work of Zhu et al. (2015a). As a 
preliminary step towards assessing feasibility of this pro-
cedure, the implementation in Zhu et  al. (2015a) was not 
optimal in its experimental design, and might have underes-
timated its potential. First, in Zhu et al. (2015a) the model 
[i.e., Climate Forecast System, version 1 (CFSv1)] generat-
ing ocean initial conditions (OICs) was not the same as that 
used for predictions (i.e., CFSv2). The discrepancy could 
bring some inconsistencies or shocks during the forecast 
as results of the differences between the climatologies of 
CFSv1 and CFSv2, even though the two models with the 
same origin show some common biases, like the warm SST 
biases in the southeast Pacific and Atlantic (figures not 
shown). Secondly, the atmospheric initial conditions in Zhu 
et al. (2015a) were directly taken from CFSR (Saha et al. 
2010), different from the practice of Luo et al. (2005, 2008) 
that adopted both atmospheric and oceanic initial condi-
tions from a continuous run with SSTs nudged to obser-
vations. Thus, Zhu et  al. (2015a) generated less balanced 
initial conditions between ocean and atmosphere than 
SINTEX-F (Luo et al. 2005, 2008). Furthermore, Zhu et al. 
(2015a) reported predictions initialized from April only, 
even though it is well known that spring is the most chal-
lenging season particularly for ENSO prediction because of 
the existence of the spring predictability barrier (e.g. Luo 
et al. 2005; Jin et al. 2008). Because of this shortcoming, it 
was not possible to assess the seasonal dependence of pre-
diction skill associated with the initialization scheme based 
on the hindcasts of Zhu et al. (2015a).

This study, extending the analysis of Zhu et al. (2015a), 
conducts a set of hindcasts with a better experimental 
design. In particular, similar to Luo et al. (2005, 2008), the 
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hindcasts are based on a low-resolution CFSv2 model (see 
Sect.  2 for more details), and they are initialized by con-
tinuous runs using the same model with its SSTs nudged 
to observations. The hindcasts also start from each January, 
April, July and October during 1982–2010 with six ensem-
ble members, allowing us to provide a comprehensive eval-
uation of the seasonality of prediction skill. To contrast the 
skill of our prediction system, we compare the hindcasts 
with those from the North American Multimodel Ensemble 
(NMME) project (Kirtman et al. 2014). As all the NMME 
hindcasts were initialized by sophisticated data assimila-
tion systems, this comparison also highlights the potential 
importance of subsurface ocean observations in the context 
of ENSO prediction. The skill assessments are all based 
on deterministic measures. However, it has been shown by 
Kumar (2009) based on a comparison of skill assessment 
for (a) deterministic, (b) categorical, and (c) probabilistic 
predictions that the corresponding skill scores have a one-
to-one relationship (see Fig. 2; Kumar 2009). Simply, low 
(high) anomaly correlations for ensemble mean as deter-
ministic forecast also correspond to low (high) values for 
the probabilistic skill measure (e.g., the rank probability 
skill score). This theoretical relationship has also been 
verified in real time forecast situations (see Fig. 14; Sooraj 
et al. 2012).

The paper is arranged as follows. The forecast model, 
the experimental design and datasets are described in the 
next section. Section 3 validates the hindcasts by compar-
ing with NMME hindcasts. Even though it is understood 
that the seasonality plays an important role in determin-
ing the predictability, the comparison with NMME is con-
ducted regardless of season simply to limit the paper to a 
reasonable length. However, to some extent the seasonal-
ity of forecast skill in our hindcasts using the simple ocean 
initialization scheme is evaluated in Sect. 4. The summary 
and discussion are given in Sect. 5.

2  Model, hindcast experiments and datasets

2.1  Model

The forecast model used in this study is a variant of NCEP 
CFSv2 (Saha et  al. 2014) with lower horizontal resolu-
tions in both atmospheric and oceanic components (Lee 
et al. 2016). A lower resolution is to enhance throughput, 
and if compared against the CFSv2, also provides some 
information about the influence of resolution on seasonal 
predictions. To distinguish from the standard CFSv2 cur-
rently used for the operational seasonal-to-interannual pre-
diction at NCEP, the low-resolution CFSv2 is referred to 
as CFSv2L. In CFSv2L (CFSv2), the ocean model is the 
GFDL MOM version 4, which is configured for the global 

ocean with a horizontal grid of 1° × 1° (0.5° × 0.5°) pole-
ward of 30°S and 30°N and meridional resolution increas-
ing gradually to 0.33° (0.25°) between 10°S and 10°N. 
The vertical coordinate is geopotential (z-) with 40 levels 
(27 of them in the upper 400 m), with maximum depth of 
approximately 4.5 km. The atmospheric model of CFSv2L 
(CFSv2) is the Global Forecast System, which has hori-
zontal resolution at T62 (T126), and 64 vertical levels in a 
hybrid sigma-pressure coordinate. The oceanic and atmos-
pheric components of CFSv2L (CFSv2) exchange surface 
momentum, heat and freshwater fluxes, as well as SSTs 
every 60 (30) min. More details about CFSv2L are referred 
to Lee et al. (2016).

2.2  CFSv2L hindcasts with a simple initialization 
scheme

In this study, a set of hindcasts with CFSv2L is initialized 
by the same simple scheme as in Luo et  al. (2005) and 
Keenlyside et al. (2005), in which SST is the only observed 
information provided to derive ocean initial states. This 
run can be thought as a simple data assimilation procedure 
where the only observed information ingested is the SSTs. 
In particular, six CFSv2L integrations, differing by their 
initial conditions, were conducted with model SSTs nudged 
to the observational counterpart. The six initial conditions 
differ in ocean only, which apply the CFSR (Saha et  al. 
2010) ocean states at 00Z of 29th–31st December 1980 
and 1st–3rd January 1981. The atmospheric and land initial 
conditions are identical, using their CFSR states at 00Z of 
1st January 1981. By re-dating all the initial conditions to 
1st January 1976, six CFSv2L runs are integrated forward 
with model SSTs nudged to the observed daily SSTs. The 
restoring time scale is chosen as 3.3 days, following our 
previous work with CFSv1 (Wang et al. 2013; Kumar et al. 
2014). The observed daily SSTs are interpolated from the 
monthly SSTs from the National Oceanic and Atmospheric 
Administration (NOAA) Optimum Interpolation SST 
(OISST) version 2 (Reynolds et  al. 2002) for the period 
after 1982, and from the ERSST v3 (Smith et  al. 2008) 
before 1982. A preliminary analysis of the SST-nudged 
CFSv2L simulations suggests that more realistic evolu-
tions of subsurface ocean temperature were achieved than 
by CFSv1 (Kumar et al. 2014; e.g., Fig. 12a vs. 10 of; Zhu 
et al. 2015a), and might be due to model improvement from 
CFSv1 to CFSv2.

Using the restart files saved during the six SST-nudged 
CFSv2L integrations, hindcasts are conducted starting from 
the first day of each January, April, July and October dur-
ing 1982–2010 and last for 8 months. The set of hindcasts 
is referred to as CFSv2L_nudg. The experimental design 
here is better than that in Zhu et al. (2015a) where different 
models were used for OICs generation and hindcasts, and 
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atmospheric initial conditions and OICs were adopted from 
different sources.

2.3  NMME hindcast data

The hindcasts of CFSv2L_nudg are assessed and compared 
with hindcasts from the NMME project (Kirtman et  al. 
2014). In this study, hindcasts from 11 NMME models are 
used, including CMC-CanCM3 (referred to as CMC1; Mer-
ryfield et al. 2013), CMC-CanCM4 (referred to as CMC2; 
Merryfield et al. 2013), NCAR CCSM4 (Kirtman et al., in 
preparation), GFDL CM2.1 (Delworth et al. 2006), GFDL 
FLORa06 (Vecchi et  al. 2014), GFDL FLORb01 (Vecchi 
et al. 2014), NASA GEOS5 (Vernieres et al. 2012), NCEP 
CFSv2 (Saha et al. 2014), IRI ECHAM4.5a (DeWitt 2005), 
IRI ECHAM4.5f (DeWitt 2005) and NCAR CCSM3 (Kirt-
man and Min 2009). All the systems have run hindcasts 
over the period 1982–2010, with ensemble members rang-
ing from 6 to 24 (28), and forecasts lengths between 8 
and 12 months. CFSv1 (Saha et al. 2006) was included in 
the first year of NMME, but it was discontinued after the 
implementation of CFSv2 and its hindcast did not extend 
beyond 2009. Thus, CFSv1 is not included in our analysis. 
In addition, ECHAM4.5a, ECHAM4.5f and CCSM3 were 
also discontinued after the first year of NMME. The hind-
cast data for NMME are available on a 1° × 1° grid resolu-
tion. A brief description of the NMME models is provided 
in Table 1. More details about NMME and their hindcasts 
can be found in Kirtman et  al. (2014) and Becker et  al. 
(2014). It should be noted that, different from CFSv2L_
nudg, all the NMME hindcasts were initialized by sophisti-
cated ocean data assimilation systems.

In this study, all predictions are analyzed for the com-
mon lead times of NMME, i.e., 0–7 months. For the defini-
tion of forecast lead, the 1-month lead forecast from April 
initial conditions, for example, is the forecast for May (the 
forecast for April itself would be defined as the 0-month 
lead forecast). To rule out skill differences due to ensem-
ble size (Kumar and Hoerling 2000; Scaife et al. 2014), six 
ensemble members for all NMME models are used, which 
are simply chosen as the first six members of each NMME 
model hindcasts except for CFSv2. For CFSv2, a so-called 
lagged ensemble method (Saha et al. 2014) is used to gen-
erate its ensemble members, by which the early (late) mem-
bers from the target month have longer (shorter) lead times. 
To minimize the effect of different lead times, the 14–19th 
out of 24 (28) members are picked for our diagnostics, 
which are close to the first day of start month.

2.4  Data for validations

The observed monthly SST analysis used for validation 
is from OISST (Reynolds et  al. 2002) on a 1.0° × 1.0° 

(latitude × longitude) grid. The subsurface ocean tempera-
tures from the NCEP Global Ocean Data Assimilation Sys-
tem (GODAS; Behringer and Xue 2004) are used for the 
validation of the upper-ocean heat content (HC; defined 
as the depth-average temperature of the upper 300  m). 
The verification data for T2m is the station observation-
based Global Historical Climatology Network + Climate 
Anomaly Monitoring System (GHCN + CAMS; Fan and 
van den Dool 2008), a monthly mean surface air temper-
ature dataset on a 0.5° × 0.5° (latitude × longitude) grid. 
The predicted precipitations are verified with the Climate 
Prediction Center (CPC) global daily Unified Rain gauge 
Database (URD) gauge analysis (Xie et al. 2010, personal 
communication), which is also available on a 0.5° × 0.5° 
grid. The daily data were averaged into monthly means.

All analyses are based on hindcasts during 1982–2010. 
The predicted anomalies are derived by subtracting clima-
tologies which are a function of both initial condition and 
lead time, and no additional time smoothing was applied. 
The climatologies are based on the whole hindcast period 
of 1982–2010. For the CFSv2 hindcasts, even though 
applying two climatologies could achieve better SST pre-
diction skill in the tropical Pacific (Xue et  al. 2013), it 
clearly degrades SST prediction skill in other ocean basins, 
particularly in the extratropical oceans. Considering that 
the global predictions are the scope of this study, we chose 
to use one climatology derived from the whole forecast 
period (i.e., 1982–2010). This choice is also consistent with 
evaluations of hindcasts from other NMME models.

3  Skill comparisons with NMME models

In this section, the overall prediction skill of CFSv2L_nudg 
is evaluated by comparing with models participating in the 
NMME project (Kirtman et al. 2014). The comparisons are 
based on all four start months (i.e., January, April, July and 
October) regardless of season, and the variables evaluated 
include SST, T2m and precipitation over the land.

Figures  1 and 2 show the horizontal distributions 
of quasi-global SST prediction skill for lead times of 3 
and 6 months, respectively. As expected, at both lead 
times regions with the highest correlation are located 
in the tropical Pacific in all systems. Among hindcasts 
from different NMME models (Figs. 1c–m, 2c–m), how-
ever, it is interesting to notice substantial spreads in 
their SST prediction skills, even in the tropical Pacific. 
For example, at the 3-month lead time, skill of CMC1, 
CMC2 and GEOS5 is better than others with correla-
tions greater than 0.8 over a large area of the central and 
eastern tropical Pacific, while in other systems regions 
of correlations greater than 0.8 are clearly smaller. At 
the 6-month lead time (Fig.  2), the SSTA prediction 
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skill drops substantially in the tropical Pacific in all sys-
tems, and no system has correlations greater than 0.8 
except over a small patch in CMC2. At the 6-month lead 
time, CMC2 shows the best correlation skill, which is 
evidenced by the largest region in the central and east-
ern Pacific with correlations larger than 0.7 and a patch 
larger than 0.8; GEOS5, ECHAM4f, CMC1, and FLORb-
01could be ranked as the second best, as suggested by 
sizeable regions with correlations larger than 0.7 which is 
almost absent in other systems. In addition to the tropical 
Pacific, some skill is also present in other ocean basins 
as in previous studies (e.g., Luo et  al. 2007; Hu and 
Huang 2007; Hu et al. 2013, 2014; Guan et al. 2014; Zhu 
et al. 2015d), such as the tropical Indian Ocean, tropical 
Atlantic Ocean, and the extratropical oceans including 
the North Atlantic, the North Pacific and the southern 
subtropical Pacific. In these regions, some models like 
CCSM3 seem to exhibit clearly lower skill than others. 
In addition, it was also noticed that the three discontin-
ued models (i.e., ECHAM4a, ECHAM4f and CCSM3) 
after the first year of NMME also present reasonably 

good skill. For example, ECHAM4f is among the top tier 
in predicting SSTA in the tropical Pacific at the 6-month 
lead time (Fig. 2l).

For CFSv2L_nudg, prediction skill in the tropical 
Pacific is not only superior to persistence especially at the 
longer lead times (e.g., at the 6-month lead; Fig.  2a vs. 
b), it is also on par with some NMME models, which are 
all based on sophisticated ocean initialization schemes 
with the assimilation of subsurface observations. For 
example, at the 3-month lead time, in terms of the area 
surrounded by the 0.8 correlation contour in the tropi-
cal Pacific, CFSv2L_nudg is better than or equivalent 
to models like CCSM3, CM2p1, CCSM4, FLORa06, 
CFSv2, etc. In other basins, the SST prediction skill of 
CFSv2L_nudg at the 3-month lead time is also within the 
skill range of individual NMME models. We note that 
some NMME models do not beat persistence over regions 
like the northern tropical Atlantic and the northern North 
Atlantic. At the 6-month lead time, skill of CFSv2L_
nudg is better than persistence and some NMME models 
(e.g., CCSM3, ECHAM4a, ECHAM4f).

Fig. 1  Distribution of anomaly 
correlations between observed 
and predicted SST anomalies 
at 3-month lead time in a 
CFSv2L_nudg, b persistence, 
c CMC1, d CMC2, e CCSM4, 
f CM2p1, g FLORa06, h 
FLORb01, i GEOS5, j CFSv2, 
k ECHAM4a, l ECHAM4f, 
and m CCSM3. The hindcasts 
start from January, April, July 
and October initial conditions 
during 1982–2010. All shading 
areas are above 90% confidence 
level [correlation of 0.245 is 
90% confidence level accord-
ing to one-tailed Student’s t 
test with the degree of freedom 
(DOF) of 27]. Correlations of 
0.8 and 0.7 are highlighted with 
black contours
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Fig. 2  As in Fig. 1, but at the 
6-month lead time. The red 
boxes in b indicate the area of 
Niño-3.4, MDR, ATL3, EIO 
and WIO, respectively

Fig. 3  a Anomaly correlation 
coefficients and b RMSEs (°C) 
of Niño-3.4 index as a function 
of forecast lead months (x-axis) 
after removing the mean bias. 
Solid black curves (dashed 
grey curves) are for forecasts 
of CFSv2L_nudg (persis-
tence). Solid colored curves 
are forecasts for each NMME 
member model. The hindcasts 
start from January, April, July 
and October initial conditions 
during 1982–2010. The dashed 
horizontal line in Fig. 3a indi-
cates correlation (0.245) at the 
90% confidence level, according 
to one-tailed Student’s t test 
with DOF of 27
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To further evaluate the SST predictions of CFSv2L_
nudg, Figs. 3, 4 and 5 present the anomaly correlation and 
root-mean-square error (RMSE) between the observed and 
predicted SSTA time series as a function of lead time based 
on the hindcasts from CFSv2L_nudg and NMME models 
with 6-member ensemble means. The chosen SSTA indi-
ces represent major modes in three tropical oceans. In 
particular, Fig. 3 is for ENSO in the tropical Pacific, rep-
resented by the averaged SSTA over the Niño-3.4 region 
(5°S–5°N, 170°W–120°W). Figure  4 examines two indi-
ces in the tropical Atlantic, i.e., the averaged SSTA over 
the Atlantic’s Main Development Region for hurricanes 
(MDR; 10°N–20°N, 80°W–20°W) and the ATL3 index 
(i.e., averaged SSTA in 3°S–3°N, 20°W–0°). The ATL3 
index represents the zonal equatorial mode in the tropical 
Atlantic. Figure  5 is for the Eastern Indian Ocean (EIO) 
(10°S–0°, 90°E–110°E) and Western Indian Ocean (WIO) 

(10°S–10°N, 50°E–70°E) indices, which respectively rep-
resent the eastern and western poles of the Indian Ocean 
Dipole in the tropical Indian Ocean.

For the Niño-3.4 index hindcasts (Fig.  3), all NMME 
models exhibit clear superiority over persistence at lead 
times longer than 2 months and all of them except for 
CM2p1 have anomaly correlation larger than 0.6 up to 7 
months lead, but there are substantial skill differences 
evident among NMME models. For example, the correla-
tion skill difference between CMC2 and CM2p1 can be as 
large as 0.2 at the lead times of 5–7 months, and the RMSE 
spread among NMME models is higher than 0.2 °C at all 
lead times. For both correlation and RMSE measures, its 
Niño-3.4 index prediction skill of CFSv2L_nudg lies well 
within the skill range of NMME models at the lead times 
shorter than 6 months. As the lead time further increases, 
CFSv2L_nudg becomes inferior to most NMME models in 

Table 1  Description of NMME models

Model Hindcast period No. of members Arrangement of 
members

Lead (month) Model resolu-
tion (atmos)

Model resolu-
tion (ocean)

References

Active
 NCEP/CFSv2 1982–2010 24 (28) 4 members (0, 

6,12, 18z) 
every 5th day

0–9 T126L64 MOM4L40 0.25 
deg Eq

Saha et al. (2010)

 GFDL/CM2.1 1982–2010 10 All 1st of the 
month 0Z

0–11 2 × 2.5 deg L24 MOM4L50 0.3 
deg Eq

Delworth (2006)

 GFDL/CM2.5 
(FLORa06 
and 
FLORb0l)

1982–2010 12 All 1st of the 
month 0Z

0–11 C18L32 (50 km) MOMS L50 
0.30 deg Eq

1 deg Polarl.5

Vecchi et al. 
(2014)

 CMC-CanCM3 1981–2010 10 All 1st of the 
month 0Z

0–11 CanAM3 
T63L31

CanOM4L40 
0.94 deg Eq

Merryfield et al. 
(2013)

 CMC-CanCM4 1981–2010 10 All 1st of the 
month 0Z

0–11 CanAM4 
T63L35

CanOM4L40 
0.94 deg Eq

Merryfield et al. 
(2013)

 NCAR/
CCSM4

1982–2010 10 All 1st of the 
month 0Z

0–11 0.9 × 1.25 deg 
L26

POPL60 0.25 
deg Eq

Kirtman et al. (in 
prep)

 NASA/GEOS5 1981–2010 11 4 mems every 5 
days; 7 mems 
on last day of 
last month

0–9 1 × 1.25 deg 
L72

MOM4L40 0.25 
deg Eq

Vernieres et al.
(2012)

Retired
 NCEP/CFSvl 1982–2009 15 1st 0Z ±2 days, 

21st 0z  ± 2 
days, 11th 
0z  ± 2 days

0–8 T62L64 MOM3L40 0.30 
deg Eq

Saha et al. (2006)

 NCAR/
CCSM3

1982–2010 6 All 1st of the 
month 0Z

0–11 T85L26 POPL42 0.3 
deg Eq

Kirtman and Min 
(2009)

 IRI-ECHAM4f 1982–2010 12 All 1st of the 
month 0Z

0–7 T42L19 MOM3L25 
(l.5 × 0.5)

DeWitt (2005)

 IRI-ECHAM4a 1982–2010 12 All 1st of the 
month 0Z

0–7 T42L19 MOM3L25 
(1.5 × 0.5)

DeWitt (2005)

Planned
 NCAR/CESM1 1982–2010 10 All 1st of the 

month 0Z
0–11 0.9 × 1.25 deg 

L30
POPL60 0.25 

deg Eq
Tribbia et al.
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predicting Niño-3.4 index. It may suggest that assimilation 
of subsurface ocean observations has potential to improve 
ENSO predictions at longer lead times as will be further 
discussed later. In addition, compared with persistence, 
CFSv2L_nudg is more skillful at all lead times longer than 
2 months.

For the indices of tropical Atlantic and Indian Oceans 
(Figs. 4, 5), all models clearly have lower skill than for the 
Niño-3.4 index, and frequently their skill even could not 
beat persistence. Specifically, the MDR index (Fig. 4a, b) 
exhibits reasonable skill in all models except for CCSM3, 
but most models do not present significant superiority over 
persistence. The relatively high predictability and per-
sistence has been attributed mostly to the effect of ENSO 
on the northern Tropical Atlantic (Hu and Huang 2007). 
In addition, CCSM3 seems to be an outlier in predicting 
the MDR SSTs, whose skill measured by both anomaly 

correlation and RMSE is significantly less than all other 
models including CFSv2L_nudg. For CFSv2_nudg, its 
skill in predicting the MDR index again lies within the skill 
range of NMME models, but it is towards the lower bound 
of skill derived from NMME models that remained active 
after the first year of NMME.

For the ATL3 index (Fig. 4c, d), significantly lower skill 
is present in all models with correlation skill decreasing 
to below 0.6 within the lead time of 2 months. The skill 
is actually well below persistence. Many factors could con-
tribute to a low SST prediction skill in the tropical Atlantic. 
Firstly, current climate models exhibit substantial biases 
in the tropical Atlantic, particularly the warm bias in the 
southeastern tropical Atlantic Ocean (Huang et  al. 2007), 
and ocean dynamics are also probably incorrectly repre-
sented in these models (Deppenmeier et  al. 2016). Sec-
ondly, current ocean analysis systems show significant 

Fig. 4  As in Fig. 3, but for a, b 
MDR and c, d ATL3 indices
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uncertainties in estimating ocean variability in the basin 
(e.g., Fig. 1 in Zhu et al. 2012a). By initializing from these 
ocean analyses, the uncertainties will undoubtedly also 
bring uncertainties in the predicted SSTs and degrade SST 
predictions. The influence of the second factor is actually 
evidenced by the predicted ATL3 index with larger errors 
[i.e., lower (higher) anomaly correlation (RMSE)] at the 
0-month lead time than the other indices (Figs. 3, 4a, b, 5) 
in almost all NMME models, which might also represent 
larger initial shock. For CFSv2L_nudg, even though the 
SST-derived ocean subsurface thermal conditions are less 
accurate in the tropical Atlantic than in the tropical Pacific 
(figure not shown) because of weaker air-sea coupling, its 
prediction skill (measured by both anomaly correlation and 
RMSE) lies within the skill range of the NMME models. 

Particularly, at the 0- and 1-month lead times, the only 
lead times with skillful predictions (i.e., anomaly correla-
tion larger than 0.6), CFSv2L_nudg has the best score. It is 
possible that the simple SST initialization scheme is more 
efficient in correcting the surface winds (at least at early 
stages in the forecast evolution) which in turn result in bet-
ter SST predictions. These results suggest that, at the cur-
rent development stage in climate models and ocean data 
assimilations, sophisticated initialization schemes could not 
provide much improvement in the SST predictions in the 
tropical Atlantic. It is only with reduction in model biases 
and improvement in ocean data assimilations over the basin 
that the advantages from increasing ocean observations 
might be recognized in the context of predictions. How-
ever, it should also be noted that initialization of the ocean 

Fig. 5  As in Fig. 3, but for a, b 
EIO and c, d WIO indices
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might not lead to enhanced prediction capability if thermo-
dynamic ocean–atmosphere interaction is more important 
for SST evolution (Nnamchi et al. 2015).

Predictions of EIO and WIO indices (Fig.  5) generally 
present better skill than ATL3, but lower skill than Niño-
3.4 and MDR. Comparing between them, it is interesting 
to note that the skill divergence in both anomaly correla-
tion and RMSE measures among NMME models is signifi-
cantly higher for EIO than for WIO, which suggests that 
WIO might have higher predictability than EIO (Zhu et al. 
2015d). In addition, CCSM3 seems to be an outlier again 
for both EIO and WIO predictions, which shows systemati-
cally lower EIO prediction skill than other NMME models 
and significantly larger errors in WIO at the 0-month lead 
time. For CFSv2L_nudg, prediction skill for EIO and WIO 
is generally comparable to NMME models, with slight 
superiority (inferiority) of CFSv2L_nudg for EIO (WIO). 
In addition, there is another difference between CFSv2L_
nudg and NMME models as measured by anomaly correla-
tion (Fig. 5a, c), i.e., CFSv2L predicts EIO better than or 
comparable to WIO, while most NMME models show clear 
preference for higher skill in WIO than EIO (see also Zhu 
et al. 2015d). The feature in CFSv2L_nudg is not seen in 
the SINTEX-F model (Luo et al. 2005), which suggests that 
it is not unique to the SST nudging initialization scheme, 
but likely a forecast system-dependent attribute.

In addition to SST, we also evaluated the predictions 
of T2m and Prate over land. Figure 6 (Fig. 7) presents the 
T2m (Prate) prediction skill for all four seasons [i.e., spring 
(March–May; MAM), summer (June–August; JJA), fall 
(September–November; SON) and winter (December-Feb-
ruary; DJF)], which correspond to forecasts for the 2-month 
lead time starting from January, April, July and October, 
respectively. The area-averaged anomaly correlations for 
T2m and Prate predictions are also presented respectively 
in Fig.  8a, b. The areas include the land-only near-global 
region (60°S–75°N) and North Hemisphere (23°N–75°N). 
As discussed below, T2m and Prate are generally harder to 
predict than SST.

For T2m (Fig.  6), substantial skill spread is evident as 
for SST (Figs. 1, 2, 3, 4, 5) among the NMME models. For 
example, in CMC2 almost all land points have anomaly 
correlations above 0.1, but in CCSM3 only few patches 
present correlation skill larger than 0.1. Measured quanti-
tatively by the area-averaged anomaly correlation over the 
land-only North Hemisphere (red bars in Fig.  8a), T2m 
prediction skill varies from below zero in CCSM3 to above 
0.25 in CMC2. Becker et  al. (2014) attributed the low 
T2m prediction skill in CCSM3 partially to lack of realis-
tic atmosphere and land initial states. However, it is inter-
esting to notice that much higher T2m skill than CCSM3 
is achieved in CFSv2L_nudg (its anomaly correlation 

Fig. 6  Distribution of anomaly 
correlations between observed 
and predicted seasonal mean 
T2m anomalies at 2-month 
lead time in a CMC1, b 
CMC2, c CCSM4, d CM2p1, 
e FLORa06, f FLORb01, 
g GEOS5, h CFSv2, i 
CFSv2L_nudg, j ECHAM4a, k 
ECHAM4f, and l CCSM3. The 
hindcasts start from January, 
April, July and October initial 
conditions during 1982–2010. 
The black contour represents 
correlation (0.245) at the 90% 
confidence level
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averaged over the land-only North Hemisphere is above 
0.18), even though the atmospheric and land components 
in CFSv2L_nudg were not directly initialized either (note 
that land surface initial conditions in CFSv2L_nudg could 
partly result from teleconnections to the observed SST 
nudged into the model, and thus could be realistic in some 
regions) and only SST information was applied for its ini-
tialization, and therefore, the skill can mostly be attributed 
to skill in predicting SSTs. Considerable spread is also seen 
in the global mean correlation skill among NMME mod-
els (green bars in Fig. 8a), and by this measure CFSv2L_
nudg stays in the upper tier in comparison with NMME 
models. In addition, from the spatial distributions of cor-
relation skill regardless of season (Fig. 6i), CFSv2L_nudg 
features relatively high T2m prediction skill (correlations 
above 90% confidence level) in parts of Africa, the south-
ern Asian and North America, but low skill in the northern 
Asian, the southeastern America and the southern South 
America. The distribution resembles skill in most NMME 
models (Fig. 6) and SINTEX-F which also applied the SST 
nudging initialization scheme (Luo et al. 2011).

The prediction skill for Prate (Fig. 7) is much lower than 
for T2m (Fig. 6). The area-averaged anomaly correlation of 
Prate over both land-only global region and North Hemi-
sphere (Fig. 8b) is well below 0.1 in all models. The skill 
difference among NMME models is also much smaller, 

and they have only few spots with correlations above 90% 
confidence level (Fig. 7). The regions generally include the 
northeastern Brazil, the southern Brazil and Uruguay, and 
part of Australia. The regions also feature comparable skill 
in CFSv2L_nudg (Fig. 7i). As measured by the area-aver-
aged anomaly correlation over the land-only global region 
and North Hemisphere (Fig.  8b), the Prate prediction 
skill by CFSv2L_nudg is within the skill range of NMME 
models.

The above skill comparisons suggest that, for all vari-
ables evaluated (SST, T2m and Prate), the prediction skill 
by the simple ocean initialization procedure lies well within 
the skill range of individual NMME models. The result 
suggests that most present-day capabilities of seasonal pre-
dictions achieved by predictions systems with sophisticated 
initialization schemes that synthesize various ocean obser-
vations can also be achieved by utilizing the SST data only.

4  Seasonality of prediction skill in CFSv2L_nudg

In this section, the seasonality in skill of CFSv2L_nudg 
hindcasts will be assessed. Before presenting the analy-
ses, we first examine how accurately the subsurface vari-
ability is reproduced by the SST-nudged simulations with 
a focus on its seasonal dependence as well. Such seasonal 

Fig. 7  As in Fig. 6, but for 
seasonal mean precipitation 
anomalies
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dependence was first identified by Zhu et al. (2015a) based 
on a set of SST-nudged simulations using CFSv1 (Kumar 
et  al. 2014). Specifically, more relevant to ENSO, the 
SST-derived upper-ocean heat content anomalies (HCAs; 
defined as the depth-average temperature anomalies of the 
upper 300 m) in the eastern equatorial Pacific were found 
to exhibit the largest errors during spring in comparison 
with other seasons (see Fig. 10 therein). The feature is actu-
ally related to the seasonal attribute of physical relation-
ship between thermocline and SST variations in the eastern 
equatorial Pacific which is the weakest during spring (Zhu 
et al. 2015b).

In comparison with the SST-nudged CFSv1 simula-
tions (Kumar et al. 2014), the simulations by CFSv2L pro-
duce overall more accurate HCAs, when validated against 
the GODAS data (Behringer and Xue 2004). Particularly, 
in CFSv2L correlations less than 0.5 are not found in the 
eastern equatorial Pacific during any season (Fig.  9a) as 
for CFSv1 during spring (see Fig. 10 in Zhu et al. 2015b). 
This enhancement of skill seems to suggest improvements 

in the model and its representation of tropical climates 
from CFSv1 to CFSv2. However, in spite of the over-
all improvement, the fidelity in simulating seasonality in 
HCAs does not change from CFSv1 to CFSv2L. In par-
ticular, as validated against the GODAS-analyzed HCAs, 
the CFSv2L-derived HCAs also exhibit the lowest consist-
ency in the eastern equatorial Pacific during spring and in 
the far eastern Pacific during late summer and early fall 
(Fig.  9a), a feature also found in the SST-nudged CFSv1 
simulations (see Fig. 10 in Zhu et al. 2015b). Furthermore, 
when comparing HCAs among different members of the 
six SST-nudged CFSv2L integrations (Fig.  9b), the least 
consistency is found over the same regions during the same 
seasons. Therefore, it is confirmed that the seasonality of 
physical relationship between thermocline and SST varia-
tions (Zhu et al. 2015b) contributes to the season-depend-
ency in the simulated subsurface thermal conditions based 
on the specification of SSTs alone.

We next analyze the seasonality in skill of CFSv2L_
nudg hindcasts. We first explore the seasonality of ENSO 

Fig. 8  Spatial mean correlation skill of seasonal mean a T2m and 
b precipitation anomalies at the 2-month lead time in hindcasts of 
CFSv2L_nudg and each NMME member model. Green and red bars 

are for land-only global mean (60°S–75°N) and North Hemisphere 
mean (23°N–75°N), respectively. The hindcasts start from January, 
April, July and October initial conditions during 1982–2010
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predictions. Figure  10 presents the prediction skill and 
predictability of Niño-3.4 index for four season starts. It 
is clear that predictions of Niño-3.4 index (solid curves in 

Fig. 10a) exemplify spring barrier, that is, prediction skill 
exhibits abrupt decline for predictions beyond the spring 
season. In particular, the correlation skill of predictions for 

Fig. 9  Seasonality of anomaly 
correlations a between GODAS-
analyzed HCAs and ensemble 
mean HCAs of six SST-nudged 
CFSv2L simulations, and b 
between one member HCAs 
and the remaining five member 
mean HCAs out of six SST-
nudged CFSv2L simulations, 
along the equator (averaged 
over 5°S–5°N) in the Pacific

Fig. 10  a Anomaly correlation coefficients and b RMSEs (°C) of 
Niño-3.4 index as a function of forecast lead months (x-axis) after 
removing the mean bias for January ICs (red), April ICs (green), 
July ICs (blue) and October ICs (cyan) during 1982–2010. Solid 
(dashed) curves are for prediction skill (predictability measure) of 
hindcast CFSv2L_nudg. Prediction skill (predictability measure) is 

calculated based on observed indices and ensemble mean indices of 
six CFSv2L_nudg predictions (one member indices and the remain-
ing five member mean indices out of six CFSv2L_nudg predictions). 
The dashed horizontal line in Fig. 10a indicates correlation (0.245) at 
the 90% confidence level, according to one-tailed Student’s t test with 
DOF of 27
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the April ICs decreases rapidly from 0.95 at the 0-month 
lead time to below 0.6 at the 2-month lead time. For the 
January ICs, the prediction correlation skill remains above 
0.9 at the lead times less than 3 months, but afterwards 
until at the 6-month lead time (the time generally corre-
sponding to spring) the skill decreases at a much faster rate. 
A similar feature is also found in predictions starting from 
October. On the other hand, as predictions starting from 
July do not reach the spring season within the 7-month lead 
time, the above abrupt skill decline is absent in the set of 
hindcasts with correlation skill well above 0.8 for all lead 
times of 0–7 months.

Similar to the seasonality of prediction skill, the pre-
dictability of Niño-3.4 index (dashed curves in Fig. 10), as 
measured by the correlation/RMSE between one member 
forecast and the remaining five-member ensemble mean 
forecast, also demonstrates the spring barrier. In addi-
tion, predictability estimate usually exhibits higher skill 
than predictions at all lead times in both anomaly correla-
tion and RMSE measures. However, there is an exception, 
which is the January start for the correlation measure. Par-
ticularly, while both prediction and predictability starting 
from January present relatively low correlations at the lead 
times of 3–6 months (roughly corresponding to the spring 
season), prediction exhibits surprisingly higher correlations 
than predictability (red curves in Fig. 10a). The reason of 
this may be due to larger dispersion among forecasts at ini-
tial time as discussed by Kumar et al. (2014), which could 
lead to predictability to be less than the actual skill.

The seasonality in skill of ENSO prediction/predict-
ability in the CFSv2L_nudg hindcasts (Fig.  10), evi-
denced by the significant spring barrier phenomenon, 
could be partially contributed by the season-dependent 
OIC errors (Duan et  al. 2009) which are characterized by 

the largest errors over the eastern equatorial Pacific during 
spring (Fig. 9). In fact, the spring barrier problem is com-
monly shown in ENSO predictions based on the simple ini-
tialization scheme (e.g., Keenlyside et al. 2005; Luo et al. 
2005). In this respect, the sophisticated ocean initialization 
schemes may have advantage over the simple initialization 
scheme in alleviating the spring barrier in SST prediction. 
In the simple initialization scheme, the seasonality in air-
sea coupled feedbacks (e.g., the Bjerknes and thermocline 
feedbacks are weakest during spring; Webster and Yang 
1992; Zhu et al. 2015b) makes a “double dip” contribution 
to the spring barrier problem through both (a) seasonally 
dependent OIC errors (Fig. 9), and (b) their influence dur-
ing the course of model forecasts via seasonality in predict-
ability. On the other hand, in the sophisticated ocean initial-
ization schemes, since subsurface observations are usually 
assimilated, the OICs are constrained by ocean observa-
tions and less affected by the above consequence of air-sea 
feedbacks with less seasonally dependent errors than those 
based on the SST nudging scheme. Correspondingly, the 
contribution to spring barrier from OIC errors (Duan et al. 
2009) is expected to be alleviated by using the sophisti-
cated ocean initialization schemes.

A global view of seasonality in SST skill is shown 
in Figs.  11 and 12 for the lead times of 3 and 6 months, 
respectively. For both lead times, SST anomalies in the 
tropical Pacific are predicted with the best skill in Janu-
ary (Figs. 11d, 12c), which corresponds to the peak phase 
of ENSO. The development phase of ENSO (i.e., Octo-
ber; Fig. 11c) is clearly better predicted than its decaying 
phase (i.e., April; Fig. 11a) at the 3-month lead time, but 
the difference becomes marginal at the 6-month lead time 
(Fig.  12d vs. b). In addition to the tropical Pacific, skill 
seasonality is also present in other basins. For example, in 

Fig. 11  Distribution of 
anomaly correlations between 
observed and predicted SST 
anomalies at 3-month lead 
time in CFSv2L_nudg for a 
January ICs, b April ICs, c July 
ICs, and d October ICs during 
1982–2010. All shading areas 
are above 90% confidence level 
(correlation of 0.245 is 90% 
confidence level according to 
one-tailed Student’s t test with 
DOF of 27)
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contrast to the spring barrier problem in ENSO predictions, 
SST anomalies in the northern tropical Atlantic and tropical 
Indian Ocean basins exhibit best skill in spring at both lead 
times (e.g., see Figs.  11a, 12d for April). SST evolutions 
in the two regions are significantly influenced by ENSO 
(e.g., Enfield and Mayer 1997; Klein et  al. 1999; Huang 
et  al. 2002; Liu and Alexander 2007; Huang and Shukla 
2007; Kumar et  al. 2014), related to which the northern 
tropical Atlantic warming and the whole Indian Ocean 
basin warming tend to occur 4–5 months after the mature 
phases of Pacific warm events (corresponding to the spring 
season). As a consequence, ENSO teleconnections contrib-
ute much skill to the SST predictions over these regions 
(Hu and Huang 2007; Zhu et al. 2015d), resulting in their 
best prediction skill occurring in spring. In addition, SST 

anomalies in the south Pacific are also predicted best in 
spring, which is likely related to the ENSO remote forcing 
as well (Guan et al. 2014).

The skill seasonality of T2m (Fig.  13) and Prate 
(Fig. 14) seems strongly dependent on regions. For exam-
ple, in North America, T2m for most points during MAM 
(Fig. 13a) has correlation skill larger than 0.1, while only 
limited regions in the southwest and northeast reach the 
skillful level in JJA (Fig. 13b); also, in DJF (Fig. 13d), T2m 
over Alaska and most Canada is reasonably predicted, but 
the central and eastern US exhibits limited skill. In East 
Asia, in contrast, T2m shows clearly better skill in SON 
and DJF (Fig.  13c, d) than in MAM and JJA (Fig.  13a, 
b). For Prate (Fig.  14), as seen in last section, its predic-
tion skill is significantly lower than that for T2m and few 

Fig. 12  As in Fig. 11, but at the 
6-month lead time

Fig. 13  As in Fig. 11, but for 
seasonal mean T2m anoma-
lies at the 2-month lead time. 
The black contour represents 
correlation (0.245) at the 90% 
confidence level
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spots have correlation skill larger than 0.1. Again, its skill 
seasonality can change dramatically from one region to 
another. For example, even though both Australia and Bra-
zil are in the same hemisphere, the former has the best 
Prate prediction skill in SON, while the northeastern Brazil 
presents the lowest skill during the same season. In terms 
of area-mean skill over the land-only global or northern 
hemisphere, T2m (Fig. 15a) has less seasonality than Prate 
(Fig.  15b). In particular, the North Hemisphere-averaged 
correlation varies from near zero in JJA to around 0.05 in 
SON in Prate, but it is all around 0.19 in T2m. The skill 

seasonality of T2m and Prate might be related to the sea-
sonality of ENSO (e.g., Kumar and Hoeling 1998).

5  Conclusion and discussion

In this study, we applied a simple ocean initialization 
scheme in the low-resolution CFSv2 for a set of seasonal 
hindcasts, which were initiated from each January, April, 
July and October during 1982–2010 and lasted for 8 
months with six ensemble members. In the initialization 

Fig. 14  As in Fig. 13, but for 
seasonal mean precipitation 
anomalies at the 2-month lead 
time

Fig. 15  Spatial mean correla-
tion skill of seasonal mean a 
T2m and b precipitation anoma-
lies at the 2-month lead time in 
CFSv2L_nudg hindcasts during 
1982–2010. Predictions for the 
season of MAM, JJA, SON 
and DJF are corresponding to 
January, April, July and October 
initial conditions, respectively. 
Green and red bars are for land-
only global mean (60°S–75°N) 
and North Hemisphere mean 
(23°–75°N), respectively
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scheme, SST was the only observed information applied 
to derive ocean initial states. The physical basis for the 
method is that, through air-sea coupling, SST is capable of 
reproducing some observed features of ocean evolutions by 
forcing the atmospheric winds. In comparison with our first 
attempt of the scheme (Zhu et  al. 2015a), the experimen-
tal design in this study is more optimal because of using 
the same climate model for producing initial conditions and 
predictions.

Predictions of sea surface temperature (SST), 2-m tem-
perature (T2m) and precipitation (Prate) over land were 
assessed and compared with hindcasts from the North 
American Multimodel Ensemble (NMME) project which 
were all initialized from ocean analysis based on sophisti-
cated ocean data assimilation schemes with the inclusion of 
subsurface ocean observations. The comparisons indicated 
that, for all variables evaluated (i.e., SST, T2m and Prate), 
their prediction skill by the simple ocean initialization pro-
cedure was within the skill range of predictions by different 
NMME models. This result suggested that, for the current 
generation of observing and modeling framework, utilizing 
SST can capture most of capabilities of seasonal prediction. 
The results also highlighted significant seasonal depend-
ence of prediction skill. Specifically, the ENSO SST pre-
dictions featured a robust spring barrier.

In comparison with our previous study (Zhu et  al. 
2015a) which was based on the high-resolution CFSv2 but 
a less optimal application of the same initialization scheme, 
the prediction skill is clearly better in this study, particu-
larly for ENSO predictions. This might suggest that high 
resolution might not be an important factor for climate pre-
dictions, e.g., for ENSO predictions (Zhu et al. 2015c). In 
comparison, model physics might be more important for 
further improving the skill of dynamic seasonal predic-
tions. An advantage of climate models with lower resolu-
tions is that hindcasts with large ensemble sizes can be gen-
erated in a cost effective manner. Large ensembles allow for 
better assessments of possible future outcomes of seasonal 
mean climate states, which are shown to be important for 
seasonal predictions in the extratropics (Kumar and Hoer-
ling 2000).

As one of advantages of the SST nudging initialization 
scheme, we could extend the hindcasts over a longer period 
(e.g., Chen et al. 2004; Deng and Tang 2009; Zheng et al. 
2009). Such hindcasts with a much larger forecast sample 
size could be valuable for ENSO predictability studies; for 
example, how does the seasonal prediction skill evolve with 
different climate regimes or what is the low-frequency vari-
ability in prediction skill of ENSO? Longer hindcasts are 
also useful in exploring predictability of historical climate 
extremes, e.g., the Dust Bowl of the 1930s. Further, stud-
ies have emphasized the importance of perturbing OICs in 
climate predictions (Zhu et al. 2012b; Bellucci et al. 2013), 

and we argue that such a simple ocean initialization scheme 
can be another way to generate different set of OICs, which 
would be a good supplement to most current operational 
practices with sophisticated schemes. Another result of the 
analysis was the larger influence of spring predictability 
barriers in CFSv2L_nudg hindcasts. It is not clear whether 
this feature is also partially due to the decrease in model 
resolutions. We plan to pursue these questions in future 
based on additional experiments.

The SST initialization scheme has also been successfully 
applied in near-term climate predictions (e.g., Keenlyside 
et  al. 2008). Therefore, the scheme could be adopted in a 
seamless way to seasonal-to-decadal forecasting activities, 
by which we could extend the retrospective hindcast period 
backward in time (e.g., Müller et al. 2014), for as long as 
SST record is of acceptable quality.
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