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ABSTRACT

To estimate the state of the ocean in the context of monitoring and prediction, ocean analysis products

combine observed information from various sources that include both in situ ocean measurements and es-

timates of atmospheric forcings derived either from numerical models or from objective analysis methods. In

the context of El Niño–Southern Oscillation (ENSO) variability in the equatorial tropical Pacific, this study

discusses two questions: 1) the role of surface forcings in resolving the observed variability of subsurface

ocean temperatures, and 2) which component of surface forcings plays a more important role.

The analysis approach is based on ocean model simulations where specification of surface forcings is

controlled and the resulting ocean state is either compared among various simulations or is compared with an

independent ocean analysis (where information from in situ ocean temperature measurements is included).

The results highlight the importance of the contribution of observed sea surface temperature (via its influence

on surface winds due to coupled air–sea interactions) and the observed surface wind forcing in determining

the evolution of subsurface ocean temperatures. Implications for assessing the feasibility of extending ocean

analysis and forecasts back in time when in situ observations were limited are also discussed.

1. Introduction

Ocean data assimilation (ODA) systems are now

routinely used for analyzing the state of the ocean in

support of monitoring climate variability and for ini-

tializing predictions (e.g., Xue et al. 2012; Fujii et al.

2015). The observed data ingested in ODA systems in-

clude in situ ocean (e.g., ocean temperature and salinity)

and atmospheric (e.g., surface winds, temperature, hu-

midity, etc.) observations, among others.

Many of the ODA systems are generally used in

conjunction with seasonal prediction efforts at present,

and are commonly stand-alone ocean analysis systems

(Xue et al. 2012) where the observed atmospheric vari-

ability is specified based on an independent atmospheric

analysis. In this setup, surface wind stress and various

components of heat and freshwater are an external

forcing taken from an atmospheric analysis (and acts

as a proxy for observed atmospheric information). In the

ODA system, surface atmospheric forcing information

and in situ ocean observations are used to generate an

estimate of the ocean state.

Given multiple sources of observed information—

surface forcing and ocean observations—that are used

during ocean data assimilation, a question can be

posed as to what is the relative contribution of surface

forcings and in situ ocean observations in constraining

the ocean state? In the context of the surface forcing

alone, an additional question one can ask is what are

the relative roles of various components of surface

forcings—sea surface temperatures (SSTs), surface

wind, heat and freshwater fluxes—in constraining the

ocean state?
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Understanding the relative contribution from various

sources of observed information used during ocean data

assimilation is of importance under various contexts:

d In recent years, there have been increasing require-

ments for providing predictions at a longer lead time,

for example, the decadal time scales (Meehl et al.

2014). Moreover, in the context of ENSO predictions,

together with a desire to improve ENSO prediction

skill, there is also a need to quantify the limits of

ENSO predictability and low-frequency variations in

its prediction skill (McPhaden 2012; Kumar et al.

2015). A useful way to validate seasonal and decadal

prediction systems, and to understand low-frequency

variability in prediction skill is to run the prediction

system over as long a historical period as feasible.

However, extending ocean predictions back in time is

problematic because of the lack of subsurface ocean

data that may be important for the specification of

subsurface ocean state, which is important for sea-

sonal and decadal prediction. Alternative strategies of

ocean state estimation can be devised based on

specification of surface forcings alone (Luo et al.

2005; Keenlyside et al. 2005; Servonnat et al. 2015;

Zhu et al. 2015), the feasibility of which can be

assessed by understanding the sensitivity of the ocean

analysis to various components of the observing

system. For example, in the equatorial Pacific, if

specification of surface forcing alone can recover the

subsurface variability that is most relevant for ENSO,

then ocean analysis and ENSO prediction can be

extended back in time even when subsurface obser-

vations themselves were not available.
d Over certain parts of the globe, for example, the

equatorial tropical Pacific, the ocean and the atmo-

spheric variability is strongly coupled. In such regimes,

it is conceivable that because of strong coupling,

specification of observed variability in one component

may constrain and determine variability in the other

component. An assessment of the relative importance

of sensitivity in the ocean analysis to different obser-

vations, once again, will be helpful in assessing relative

roles of different components of the observing system.

The analysis is also of relevance in answering one of the

scientific objectives of the recently launched Tropical

Pacific Observing System 2020 (TPOS 2020) project

(http://tpos2020.org/about/science-questions/): ‘‘To de-

termine the most efficient and effective observational

solutions to support prediction systems for ocean,

weather and climate services.’’
d In the design of the ocean observing system, special

attention needs to be paid in measuring those observ-

able components of the ocean and atmosphere to

which the ocean state may be particularly sensitive.

This aspect is important both for ocean state estima-

tion and for focusing our attention on validating and

improving the performance of the components of the

atmospheric model (e.g., convection) to which the

ocean is most sensitive.

With the goal to assess sensitivity in the ocean analysis to

various sources of observed information—surface forc-

ing and in situ ocean observations—we analyze a set of

ocean-alone simulations. In these simulations, the ex-

tent of surface forcing information given to the ocean is

controlled, and the simulated ocean state is compared

among various simulations, and against an independent

ocean analysis. Our analysis is in the context of the

ocean observing system for ENSO monitoring and

prediction, and therefore, the analysis focuses on the

ocean variability in the equatorial tropical Pacific. Fur-

ther, we focus on the analysis of variability in ocean

temperature alone.

2. Oceanmodel simulations and analysis procedure

a. Ocean model simulations

The ocean model we used is the Geophysical Fluid

Dynamics Laboratory Modular Ocean Model, version

4.1 (MOM4p1; Griffies 2010). The ocean model covers

the global ocean from 80.758S to 89.758N, and has a

zonal resolution of 0.58 and a meridional resolution of

0.258 between 108S and 108N, gradually increasing to 0.58
poleward of 308S and 308N. The MOM4p1 has 40 layers

from 5m below sea level to 4479m, with a 10-m reso-

lution in the upper 240m. The MOM4p1 was forced by

daily values of surface fluxes of momentum, net heat,

and freshwater from atmospheric reanalysis products.

The net heat flux is the sum of shortwave, longwave, and

sensible and latent heat fluxes while components for

freshwater flux include precipitation and evaporation.

To compensate for errors in the surface forcing and to

avoid drifts, the ocean model temperature in the top

level (5m) was nudged to a daily OISST analysis

(Reynolds et al. 2007) with a restoring time scale

equivalent to 10 days. This procedure can also be

thought of as a simple way to assimilate SST observa-

tions for which gridded estimates based on satellite re-

trievals and in situ measurements are widely available.

The top-level salinity (5m) was relaxed toward a sea-

sonal climatology based on the World Ocean Atlas

(WOA) 1998 (Conkright et al. 1999) with a restoring

time scale of 30 days. In contrast to the temperature in

the top level of the oceanmodel, salinity was not nudged

to its observational counterpart because gridded esti-

mates of time-varying salinity are harder to come by.
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The model simulations were initiated from the

GODAS ocean analysis (Behringer and Xue 2004) and

were driven by daily values of surface fluxes from two

different atmospheric reanalysis: the NCEP–DOE re-

analysis (R2; Kanamitsu et al. 2002) and the Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010).

Differences in surface forcings between R2 and CFSR,

and ocean responses to respective forcings, quantify

ocean sensitivity to the surface forcing.

To understand the sensitivity due to each flux com-

ponent individually, four sensitivity experiments were

also done by replacing R2 surface wind stress, heat, and

freshwater fluxes by the corresponding fluxes in the

CFSR. Table 1 describes the configuration of various

MOM4p1 simulations. All experiments were run from

the same initial conditions starting in January 1979.

Considering the initial adjustment in the ocean model

simulations, and to avoid issues reported in the abrupt

discontinuity in the surface forcings for the CFSR

(Kumar et al. 2012; Xue et al. 2011), we analyzed the

simulations for the 1999–2013 period. To isolate the in-

fluence of SST nudging on the evolution of subsurface

ocean temperatures, an additional experiment where

surface forcings were specified as the daily climatology

alone is also done. The daily climatology for respective

forcings are constructed based on the R2 analysis. We

note that the analysis reported in this paper does not

include all simulations shown in Table 1, particularly

with various combinations of replacing R2 surface

forcings by their CFSR counterpart. This is because

some of the sensitivity experiments do not add further to

our conclusions, but for the sake of completeness are

included in Table 1.

In addition to simulations described in Table 1, we

also ran a coupled model simulation where surface

forcings are no longer specified but are generated in-

ternally. During the coupled model integration,

however, the ocean model temperatures in the top level

(5m) were still nudged toward the observed SSTs. The

purpose of this integration was to assess the extent to

which the ocean state can be simulated from the speci-

fication (or assimilation) of the observed SSTs alone. In

this simulation, the surface wind stress and heat and

freshwater fluxes were not constrained to follow the

observed variability as is the case for the other simula-

tions described in Table 1. It is only the fraction of ob-

served surface wind stress, heat, and freshwater fluxes

that are constrained by the observed SST variability

(due to ocean–atmospheric coupling) that are replicated

in this simulation. The design of this simulation follows

the one described in Wang et al. (2013) and Kumar

et al. (2014).

b. Analysis procedures

Two approaches for analyzing ocean model simula-

tions are pursued. In the first, interannual variability in

ocean simulations with surface forcing from a different

atmospheric analysis are compared. This comparison

quantifies the sensitivity in the ocean state to un-

certainty in surface forcing; however, this analysis does

not compare the realism of the ocean state relative to

observations. To further assess the relative importance

in different components of surface forcings itself, com-

parisons of ocean simulations with controlled changes in

surface forcing are also made (for different simulations,

see Table 1).

In the second set of analyses the interannual vari-

ability in the oceanmodel simulations is assessed against

an independent estimate of the observed ocean state.

The intent of this set of analyses is to quantify the extent

to which specification of surface forcing can also repli-

cate the observed subsurface ocean variability. For re-

gions where ocean simulations with the specification of

surface forcing alone canmimic the observed subsurface

TABLE 1. Summary of various ocean model simulations and surface forcings used.

Name of

expt Wind stress

Net heat

flux

Freshwater flux [evaporation

minus precipitation (E 2 P)] Purpose

R2F R2 R2 R2 Forced ocean simulation with R2 surface

forcing and SST nudging

CFSRF CFSR CFSR CFSR Ocean simulation with CFSR surface

forcing and SST nudging

R2F_CFSRW CFSR R2 R2 Influence of surface wind and SST nudging

R2F_CFSRHF R2 CFSR CFSR Combined influence of surface heat and

freshwater flux and SST nudging

R2F_CFSRH R2 CFSR R2 Influence of surface heat flux and SST nudging

R2_CFSRF R2 R2 CFSR Influence of freshwater flux and SST nudging

CLIM Climatology Climatology Climatology Forced ocean simulation with SST nudging

and climatological surface forcing

CFSv2 — — — Coupled simulation with SST nudging. Fluxes

are computed internally
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ocean state delineate the regions over which surface

forcing is important in constraining the evolution of

subsurface ocean temperatures. These are also the re-

gions for which there is the potential that initialized

ocean predictions can be extended farther back in time.

We note that we did not focus on the analysis of

simulation of the mean ocean state because analysis of

variability (and its differences among various simula-

tions) is a more appropriate approach to address ques-

tions we raised in section 1. However, it is recognized

that mean differences in R2 and CFSR fluxes can be

substantial and can also lead to differences in the mean

state of the ocean.

3. Results

We first quantify the consistency in the interannual

variability of surface wind stress (SWS), surface heat,

and freshwater fluxes between R2 and CFSR by com-

puting the temporal correlations based on monthly

mean anomalies over 1999–2013 (Fig. 1). Away from

deep tropical latitudes, the anomaly correlation (AC)

between R2 and CFSR SWS exceeds 0.9, indicating a

good temporal consistency in the monthly mean in-

terannual variability among the two analyses (Fig. 1a).

Lower agreement is found in the deep tropics with the

least agreement over the Atlantic where AC values as

low as 0.4 occur. A similar latitudinal dependence for

the consistency for net surface heat and freshwater flux

also exists (Figs. 1b and 1c), however, the overall con-

sistency for these is much lower than for the surface

wind stress. Among the three quantities analyzed, the

least level of consistency is for the freshwater flux, and

is a result of either the differences in representing

physical processes related to precipitation in models or

is due to initial adjustments and drifts in atmospheric

fields from the analyzed state during the assimilation

cycle which can lead to large differences in precipitation

estimates among different products (Zhang et al. 2012).

We note that none of the quantities analyzed in Fig. 1

are direct observables that are assimilated but are esti-

mates that are model-derived quantities.

Differences in surface forcings between R2 and CFSR

provide a means to address how differences in the in-

terannual variability of surface forcings influence the

subsurface ocean variability in the ocean data assimila-

tion, or alternatively, which differences in surface forc-

ings have the strongest influence on the subsurface

ocean variability.

To assess the sensitivity of subsurface ocean temper-

ature variability to uncertainties in surface forcings, a

comparison of the interannual variability in the ther-

mocline depth (D20) is analyzed, and is shown in Fig. 2.

The AC for D20 variability between ocean model sim-

ulations with surface forcing from R2 (R2F) and CFSR

(CFSRF) (Fig. 2a) shows considerable spatial variability—

higher correlations are found in the equatorial Indian

and Pacific Oceans, with largest values east of the

date line, a region where air–sea coupling associated

with ENSO is strongest (Kumar and Hu 2014). Much

smaller agreement in the simulation of D20 is found

over the Atlantic as is generally also the case for current

ODA systems (Zhu et al. 2012). We also note that the

spatial distribution of high correlation for D20 between

R2F and CFSRF matches well with the climatological

variability of D20 (not shown) with regions of high (low)

correlations coinciding with regions of high (low) sea-

sonal variability in D20.

Which components of the surface forcings contribute

to agreements and differences in the simulation of D20

can be inferred from sensitivity experiments where

surface forcings from R2 and CFSR are interchanged

in a controlled manner. D20 AC (Fig. 2b) between R2F

and R2F_CFSRW (simulation where the SWS is from

CFSR while heat and freshwater flux from R2 is used)

FIG. 1. Temporal anomaly correlation between monthly mean

fields from the R2 and CFSR reanalysis for (a) surface wind stress,

(b) net surface heat flux, and (c) net surface freshwater flux. The

anomaly correlation is computed for the respective analysis over

the 1999–2013 period.
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shows a spatial distribution that is like that in Fig. 2a

where respective forcing components from R2 and

CFSR are used. This indicates that spatial differences in

AC shown in Fig. 2a are mainly due to differences in the

surface wind stress between R2 and CFSR, while con-

tribution from surface heat and freshwater flux play a

minor role. This is confirmed when R2F simulation is

repeated but the heat and freshwater forcing is taken

from the CFSR analysis (simulation R2F_CFSRHF in

Table 1) and D20 AC throughout the tropical lati-

tudes of the analysis domain is found to be very high

(AC . 0.8) (Fig. 2c).

The results shown in Fig. 2 clearly indicate that on a

monthly time scale, differences in the SWS influence the

upper-ocean variability, while differences in heat and

freshwater fluxes do not. This is consistent with the no-

tion that the ocean is predominantly a wind-driven cir-

culation. A caveat to note, however, is that the nudging

toward observed SST during simulations (and in ocean

data assimilation) could dampen the influence of dif-

ferences in heat fluxes. The influence of SST nudging

alone is quantified based on the analysis of the CLIM

simulations where variability in surface forcings is

specified as its climatological seasonal cycle.

Besides the sensitivity to different components of

surface forcings based on the analysis of comparison of

various simulations, another analysis approach is to

compare the simulations against the observed ocean

variability and to assess what fraction of the observed

subsurface variability can be recovered from the

knowledge of surface forcings. For this, we compare the

fidelity of simulations against observed ocean analysis

based on EN4. We note that EN4 is an objective

monthly analysis based on all in situ ocean observations

(Good et al. 2013) and a comparison of model simula-

tions (without inclusion of ocean data) with EN4 esti-

mates the adequacy of surface forcings in constraining

subsurface ocean temperature variability.

The fidelity of simulations against the variability in

observed ocean analysis is quantified as the D20 tem-

poral anomaly correlation. Figure 3 displays the spatial

distributions of AC for R2F, R2F_CFSRW, and CFSv2

simulations. Regions with high (low) D20 AC are the

regions where specification of surface forcing alone is

able (unable) to recover the monthly mean observed

subsurface ocean variability.

As indicated by large positive AC (.0.7) near the

equatorial Pacific, a large fraction of the observed D20

variability can be recovered by the specification of

SST and surface forcings (Fig. 3a for R2F and Fig. 3b

for R2F_CFSRW simulation). Compared to R2F

(Fig. 3a) the correlation is higher for the R2F_CFSRW

simulation (Fig. 3b) in the eastern Pacific and near the

date line, and is likely due to improved surface wind

representation in the CFSR (Xue et al. 2011).

High correlations for R2F and R2F_CFSRW indicate

that surface forcing can simulate subsurface ocean vari-

ability in the equatorial tropical Pacific. The same is not

true for the tropical western Indian and Atlantic Oceans

where low D20 ACs (,0.5) are found. This implies that

specification of neither R2 nor CFSR surface forcing alone

is sufficient to replicate the observed ocean state in these

basins, and therefore, may point to the necessity of sub-

surface ocean observations to capture observed variability.

It is also feasible that errors in the R2 and CFSR forcing

may be at fault and improved specification of surface

forcings may lead to better simulation of subsurface ocean

variability. This question, however, cannot be resolved

within the experimental setup used in our analysis.

In the model simulations in which specification of

SST, surface wind, and heat and freshwater fluxes was

FIG. 2. Temporal anomaly correlation for D20 among ocean

model simulations with different specification of surface forcings:

(a) ocean model simulations with R2 and CFSR surface forcings;

(b) ocean model simulations with R2 forcings, and with R2 forc-

ings, but with surface wind stress from the CFSR; and (c) ocean

model simulations with R2 forcings, and with R2 forcings, but with

net heat flux forcing from the CFSR. The anomaly correlation is

computed for the respective ocean model simulations over the

1999–2013 period.
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included, what is the relative importance of the dif-

ferent components? From the discussions about Fig. 2

we had concluded that for D20 variability the role of

heat and freshwater fluxes was not important. A

question we next ask is what are the relative roles of

SST and SWS in reproducing the observed subsurface

ocean variability? To answer this question, we also

included results from a CFSv2 simulation (Fig. 3c) in

which during the simulation, only the observed SSTs

are specified. As discussed earlier, in this simulation a

part of the observed SWS variability is generated in

response to SSTs, which in turn can influence sub-

surface ocean variability. Higher D20 AC in the

equatorial tropical Pacific once again indicates that

specification of SSTs, via coupled air–sea interactions,

can recover subsurface ocean variability reasonably

well (Kumar et al. 2014). The amplitude of AC, how-

ever, is generally lower than that for the simulations

(e.g., R2F_CFSRW) where observed surface wind

variability is specified, and the difference between

them indicates the contribution of the component-

observed surface winds that is not replicated in the

CFSv2 simulation.

The SWS in the coupled CFSv2 simulation can be

separated into two components. One component is re-

lated to the response to specified SSTs while the other

component is related to the atmospheric internal vari-

ability or the noise (Kirtman and Shukla 2002). While

the component related to the SST response has a

counterpart in the observations and can be quantified

based on the temporal correlation between the surface

winds in the CFSv2 simulations and observations (not

shown) (see Kumar et al. 2014), the component related

to atmospheric internal variability is random and will

not have a temporal coherence between observations

and the model simulation with specified SSTs. The

added subsurface information in the R2F_CFSRW

simulation, reflected as the higher D20 AC, comes from

the specification of the component of the observed sur-

face wind variability, which cannot be generated by the

coupled air–sea interaction from the specification

of SSTs.

In all the experiments discussed so far, the predicted

sea surface temperatures were nudged toward the ob-

servations. In these simulations, it is possible that the

vertical mixing in the upper oceans can itself be re-

sponsible for high D20 AC shown in Figs. 3a–c. To il-

lustrate that merely specifying observed SSTs is not

sufficient to generate the observed variability in the

subsurface ocean temperature, and that the information

about the SSW is also required (either via its specifica-

tion from observations or generated via coupled air–sea

interactions), D20 AC for the simulation where surface

forcings are specified as their respective climatological

value (the CLIM simulation in Table 1) is shown in

Fig. 3d. Compared to the simulations where the SSW

was either specified from observations or where it was

generated internal to the coupled model simulation,

D20 AC for the CLIM simulation is much lower. The

results clearly indicate that high D20 ACs in Figs. 3a–c

were not an artifact of nudging the predicted SSTs to

observed values and observed SSW information is

necessary.

To further confirm the differences in anomaly cor-

relation in Fig. 3, we provide a detailed comparison of

D20 variability among different simulations. The

standard deviation of simulated monthly mean sub-

surface ocean temperature (SSOT) variability (aver-

aged between 28S and 28N) among various simulations

and for EN4 is shown in Fig. 4. For the EN4 the largest

variability is along the thermocline (Fig. 4, purple line),

FIG. 3. Temporal anomaly correlation for D20 for various

ocean model simulations and observed ocean analysis based on

EN4: (a) ocean model simulation with R2 forcing; (b) ocean

model simulations with R2 forcings, but with surface wind stress

from the CFSR; (c) a coupled ocean model simulation with SST

nudging, and (d) ocean model simulation with SST nudging and

climatological surface forcings. The anomaly correlation is

computed for the respective ocean model simulations over the

1999–2013 period.
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and specifically in the tropical eastern Pacific (associ-

ated with ENSO) and in the eastern Indian Ocean

(associated with the Indian Ocean dipole). Simulations

where either SST or both the SST and surface forcings

are specified replicate the observed SSOT variability

well with maximum in variability located along the

thermocline in the eastern Pacific and in the eastern

Indian Ocean. In contrast, little SSOT variability in the

CLIM simulation (where the interannual variability in

surface forcings is not present) is found.

The evolution of D20 anomalies averaged between

28S and 28N for EN4 and for various simulations is

shown in Fig. 5. For EN4 D20 anomalies follow the se-

quence of ENSO events with above- (below) normal

anomalies in the eastern Pacific during El Niño (La

Niña) and opposite sign anomalies in the western Pa-

cific. Consistent with large positive D20 correlation for

R2F, R2F_CFSRW, and CFSv2 simulations, the ob-

served D20 variations found in the EN4 are well repli-

cated. For the CLIM simulation, however, the observed

D20 variations are not simulated at all. This once again

highlights the importance of SWS either via its specifi-

cation or via coupled air–sea interaction from the

knowledge of sea surface temperatures.

To complement the analysis based on anomaly cor-

relation to assess the fidelity in simulating the SSOT, we

computed the root-mean-square error (RMSE). In

contrast to the AC, which is a measure of phase re-

lationship between two quantities, RMSE also measures

the amplitude sensitivity. We computed the RMSE in

the simulation ofD20 relative to the observed variability

over the analysis; however, the RMSE results in Fig. 6

are shown averaged between 28S and 28N, and for

reference, are compared with the standard deviation of

observed D20.

Over the Pacific the D20 RMSE value for the ocean

simulation are generally lower than the corresponding

value for the observed standard deviation with lowest

values for the R2F_CFSW for which the AC is also the

largest (Fig. 3). A lower value of D20 of RMSE relative

to its standard deviation is also consistent with the

temporal evolution of D20 anomalies shown in Fig. 5.

In the eastern Pacific, the largest RMSE value is for the

CFSv2 simulation indicating that the specification of

surface wind stress (as was the case for the R2F and the

R2F_CFSW simulation) is important for the correct

simulation of D20 variability. Over theAtlantic and the

Indian Ocean, specification in SST or surface wind

stress does not lead to D20 RMSE any lower than its

standard deviation, and is consistent with Fig. 4 where

small interannual variability in simulated D20 is found.

An exception is the eastern Indian Ocean associated

with the eastern component of the Indian Ocean di-

pole, also a region of strong air–sea coupling.

In the final analysis, we compare the simulated sub-

surface ocean temperature variability across a vertical

cross section in the equatorial Pacific (Fig. 7). Consistent

with the spatial map for D20, for R2F simulations SSOT

AC is highest near the date line and extends up to the

thermocline. Smaller correlations are found in the

eastern Pacific, suggesting that in this region the ob-

served SSOT variability is not as well replicated. The

AC, however, improves for the R2F_CFSRW simula-

tion, and as discussed, maybe a reflection of improved

surface wind variability in the CFSR. Some positive

correlations are also found for the CLIM simulation and

FIG. 4. Standard deviation of monthly mean subsurface ocean temperature averaged between 28S and 28N for (a) ocean model

simulation with R2 forcing; (b) ocean model simulations with R2 forcings, but with surface wind stress from the CFSR; (c) a coupled

ocean model simulation with SST nudging; and (d) ocean model simulation with SST nudging and climatological surface forcings.

Shading is for model simulations; contours are for EN4. Units are in degrees squared. Purple lines denotes climatological mean of

depth of 208C in EN4.
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are confined near the date line; however, they do not

extend to the thermocline depth.

The results quantify the efficacy of specification of

observed SSTs and surface winds in simulating observed

subsurface ocean temperature variability on a monthly

time scale. The combination of SST specification and

surface wind stress better replicates observed ocean

variability than the specification of SSTs alone (Fig. 4c

for CFSv2 simulation), but nonetheless, observed SSTs

alone, via coupled air–sea interaction can simulate

subsurface ocean temperature variability.

4. Discussion

The analysis focused on the efficacy of surface ocean

forcings and their ability in resolving subsurface

temperature variability on a monthly time scale. Over

certain oceanic regions, surface forcing is efficient in

replicating the observed subsurface ocean tempera-

ture variability, and stems from coupled air–sea

interactions, which also give rise to predictability of

SSTs on seasonal and longer time scales (e.g., ENSO).

In a strongly coupled system, it is feasible that speci-

fication of one facet of the coupled system can also

generate realistic variability in the other. For example,

in the equatorial tropical Pacific, knowledge of SSTs,

via coupled air–sea interactions, can lead to realistic

simulation in surface wind variability, which in turn

can result in realistic simulation of subsurface ocean

temperatures. Indeed, and consistent with earlier re-

sults (Kumar et al. 2014; Servonnat et al. 2015; Zhu

et al. 2015), it was shown that a specification of ob-

served SSTs leads to a realistic simulation of sub-

surface temperature variability in the western and

central Pacific (Fig. 4c). Specification of observed

surface wind stress together with SSTs further im-

proves the realism in the simulation of subsurface

temperature variability. In the context of variability of

ocean temperature, the analysis also documented the

relative importance of surface wind stress versus heat

FIG. 5. Hovmöller of D20 anomaly for (from left to right) EN4; ocean model simulation with R2 forcing; ocean model simulations with

R2 forcings, but with surfacewind stress from theCFSR; a coupled oceanmodel simulationwith SST nudging; and oceanmodel simulation

with SST nudging and climatological surface forcings. Units are in meters. D20 is averaged between 28S and 28N.
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and freshwater forcings in ocean data assimilation

where information about SST is also assimilated.

The complementary nature of various observations

over the regions of strong air–sea coupling can allow us

to have some built in resiliency in the ocean observing

system for monitoring and prediction of ENSO.

Broadscale spatial observations for SSTs and winds in

the equatorial Pacific are now routinely available via

satellite, although errors in satellite estimates exist,

particularly for the estimates of surface winds. The

TAO moored array also provides high-quality surface

wind observations. The subsurface ocean temperature

variability inferred from these observations during

data assimilation can complement the sparse network

of in situ ocean observations available from XBT,

TAO, and Argo, and provides an additional means to a

better estimate of the ocean state and its evolution.

That specification of surface forcings alone can also

simulate realistic subsurface ocean temperature vari-

ability may also provide a means to extend ENSO

predictions back in time even when subsurface obser-

vations themselves were sparse.

FIG. 7. As in Fig. 3, but for subsurface ocean temperature along the equator and averaged between 28S and 28N. Black lines denote

climatological mean of depth of 208C in EN4.

FIG. 6. Root-mean-square error (RMSE) formonthlymeanD20 variability relative toEN4 for

oceanmodel simulationwithR2 forcing (red line); oceanmodel simulations withR2 forcings, but

with surface wind stress from the CFSR (blue line); and a coupled ocean model simulation with

SST nudging (purple line). For reference, the standard deviation of D20 variability in EN4 is

shown in black line. RMSE is averaged between 28S and 28N. Units are in m2.
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