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average of the hybrid model outputs from the individual 
NMME members yields forecast errors 10–30% less than 
the individual members, while correlations with observed 
hurricane-related activity typically improve. The NMME 
methodology is shown to be competitive with official out-
looks from Colorado State University and the National Oce-
anic and Atmospheric Administration over recent years.
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1  Introduction

Hurricanes threaten coastal interests throughout the vicinity 
of the North Atlantic Ocean. Since 2005, the United States 
has averaged one hurricane-related event costing in excess 
of $1 billion per year.1 Population shifts, increasing prop-
erty values in coastal regions, and income growth have led 
to increased hurricane vulnerability (Pielke Jr. et al. 2008; 
Mendelsohn et al. 2012; Peduzzi et al. 2012; Willoughby 
2012), placing further scrutiny on improved understanding 
and anticipation of hurricane activity. Furthermore, the last 
two decades have seen increased hurricane activity relative 
to historical records. Attribution of the recent trend appears 
to be a mix of internal variability and anthropogenic influ-
ences while direct attribution of each role in observational 
records remains difficult (e.g. Knutson et al. 2010 and refer-
ences therein). Despite the recent hurricane trend increases, 
considerable interannual variability remains, as in 2005 (15 

Abstract  A hybrid dynamical–statistical model is pur-
sued for prediction of Atlantic seasonal hurricane activ-
ity driven by output of the North American Multimodel 
Ensemble (NMME). This is an updated version of a proven 
multiple linear regression method conditioned on forecast 
vertical wind shear from the Climate Forecast System and 
observed sea surface temperatures (SSTs). The method pur-
sued for prediction utilizes August–October (ASO) Main 
Development Region (MDR; 10–20°N, 20–80°W) vertical 
wind shear and observed North Atlantic (NATL; 55–65°N, 
30–60°W) SST averaged over the 3 months preceding the 
forecast in conjunction with the full hurricane climatology. 
NMME forecasts improve upon representations relative to 
individual members. The NMME multi-model mean better 
reproduces vertical wind shear distributions over the MDR 
and captures the observed relationships between SST and 
vertical wind shear with hurricane trend and interannual 
variability despite occasionally poor reproductions by indi-
vidual members. Cross-validation reveals the multi-model 
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hurricanes) to 2006 (5 hurricanes) or 2009 (3 hurricanes) to 
2010 (12 hurricanes).

The National Oceanic and Atmospheric Administration 
(NOAA) has been operationally issuing Hurricane Season 
Outlooks (HSO) for the Atlantic basin since 1998 and for the 
Eastern North Pacific basin since 2005. These HSO, issued 
first in May and then revised in August, are intended to draw 
attention and increase awareness regarding the forthcoming 
hurricane seasons. Numerous other public and private enti-
ties also provide seasonal hurricane forecasts for the Atlan-
tic, including the first by Gray (1984a, b) and Colorado State 
University through more recently Davis et al. (2015) and 
the University of Arizona. The foundational relationships 
used for many of these forecasts are lagged relations between 
the observed atmospheric and oceanic states preceding the 
hurricane season to project the forthcoming season. These 
approaches are often conditioned on the state of the El 
Niño-Southern Oscillation (ENSO) and/or Atlantic Multi-
decadal Oscillation (AMO; Schlesinger and Ramankutty 
1994). ENSO has been shown on interannual time scales to 
alter the vertical wind shear distribution over the Atlantic 
(e.g. Gray 1984a; Goldenberg and Shapiro 1996; Bell and 
Chelliah 2006; Wang et al. 2014) with reduced (increased) 
shear supporting (inhibiting) hurricane activity. The AMO 
is linked to variations in the oceanic currents of the Atlantic 
that alter the sea surface temperature (SST) distributions 
on decadal time scales with warmer (cooler) SSTs tied to 
increased (decreased) hurricane activity (e.g. Landsea et al. 
1999, Enfield et al. 2001; Goldenberg et al. 2001; Bell and 
Chelliah 2006). The AMO’s influence on hurricane activity 
appears tied to excitation of the Atlantic Meridional Mode 
(Vimont and Kossin 2007; Kossin and Vimont 2007) that 
alters the SST and vertical wind shear patterns throughout 
the tropical Atlantic.

Alternatives exist to hurricane seasonal activity predictive 
methods conditioned on preseason observed atmospheric 
and oceanic states. One such practice is through dynami-
cal prediction of hurricane activity by counting individual 
events in general circulation models (GCMs) as by Vitart 
and Stockdale (2001), Vitart et al. (2007), and Schemm and 
Long (2014). Other methods utilize a hybrid framework, 
whereby GCM forecasts are used to train statistical models 
for hurricane activity predictions (e.g. Wang et al. 2009a; 
Vecchi et al. 2011; Villarini and Vecchi 2013; Li et al. 2013; 
Davis et al. 2015; Choi et al. 2015; Kim et al. 2017). Hybrid 
approaches can leverage the prior constraint of historical 
conditions and observed hurricane activity as in a purely 
statistical model, while also considering potential changes 
in the climatic state over the lead period that methods condi-
tioned solely on observations may miss. Conversely, hybrid 
models can suffer if predictability from the associated GCM 
is limited relative to the realized atmospheric or oceanic 
state.

One approach towards improving single GCM predict-
ability is through the use of multi-model ensembles. These 
methods aid in the conveyance of forecast uncertainty 
(e.g. Palmer et al. 2000; Kirtman 2003; DeWitt 2005; Min 
et al. 2009), while multi-model means have been shown to 
enhance predictability relative to the individual GCMs (e.g. 
Krishnamurti et al. 1999; Wang et al. 2009b; Becker et al. 
2014). Accordingly, predictive methods for hurricane activ-
ity utilizing a multi-model approach may be desirable due 
to improved uncertainty conveyance for seasonal activity in 
addition to potential greater accuracy.

Here we explore applicability of the hybrid model of 
Wang et al. (2009a) based upon an empirical linear regres-
sion model forced with vertical wind shear and SST rela-
tionships adapted to inputs from the North American 
Multi-model Ensemble (NMME; Kirtman et al. 2014) for 
prediction of North Atlantic hurricane activity. Through 
such an approach the performance of the original model 
based on the National Centers for Environmental Predic-
tion (NCEP) Climate Forecast System (CFS) model can be 
compared to other NMME coupled GCMs (CGCMs) and 
the multi-model mean. These predictions are reliant upon 
the GCMs ability to accurately forecast vertical wind shear 
and SST months in advance, thereby also necessitating an 
investigation of NMME member predictive skill for these 
variables. The end result strives to use the hybrid model 
output for producing deterministic and probabilistic forecast 
guidance that is then aggregated with other forecast tools to 
produce the NOAA HSO. Section 2 overviews the datasets 
utilized and the development of the prediction methodology. 
Predictive skill for NMME vertical wind shear and SST is 
quantified in Sect. 3. Relationships between observed hur-
ricane activity and vertical wind shear and SST are exam-
ined in Sect. 4. Section 5 evaluates the retrospective predic-
tive skill of the NMME-based hybrid model, while Sect. 6 
compares the NMME methodology to the official seasonal 
outlooks from Colorado State University (CSU) and NOAA. 
Final discussions and conclusions are presented in Sect. 7.

2 � Data and methods

The CGCM hindcast (retrospective forecast) data is taken 
from the NMME Phase II Archive hosted by the National 
Center for Atmospheric Research (NCAR).2 Wind forecasts 
are not a mandatory published NMME variable; there-
fore only models that voluntarily include this information 
are included in this study. These models, their ensemble 
methodologies, and associated references are described 
in Table 1. The CGCM data is output on the 1° NMME 

2  http://www.earthsystemgrid.org/search.html?Project=NMME.
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grid, with the exception of the CFSv2 on a 2.5° grid. In an 
effort to limit the influence of the highly similar CanCM3 
and CanCM4 models (Merryfield et al. 2013) that would 
otherwise comprise half of the NMME average solution, 
both models’ ten ensemble members are combined into a 
20-member CanCM34.3 All models utilize a common hind-
cast period of 1982–2010 with initial conditions taken from 
each month between April (3-month lead, hereafter referred 
as “lead 3”) and July (0-month lead, referred as “lead 0”). 
Unless otherwise mentioned, all subsequent analyses and 
anomalies are taken relative to the 1982–2010 period.

In evaluating the NMME system performance, multiple 
CGCMs are evaluated individually before eventual aggrega-
tion into the NMME mean. Hindcast vertical wind shear is 
taken as the difference of zonal wind (u) between 200 and 
850 hPa (u200–u850). Wind shear is evaluated over the months 
of August–October (ASO) due to this period accounting for 

approximately 90% of historical hurricane activity, as in 
numerous prior studies (e.g. Bell and Chelliah 2006; Knut-
son et al. 2007), despite the official Atlantic hurricane season 
spanning 1 June through 30 November. ASO seasonal mean 
wind shear is obtained via averaging the three individual 
monthly mean values. Forecast u values at leads 3 and 0 
during 2011–2016 are also utilized, with identical treatment 
to the hindcasts with the exception of the CFSv2 forecasts 
being taken across the first 8 days of the month instead of 
every fifth day (32 members).

Observed SST is taken from the NOAA Optimum Inter-
polation SST (OISST) Version 2 (Reynolds et al. 2002) on 
a 1° grid for use as a possible predictor. For subsequent 
comparison, reanalysis SST and u data are taken from the 
NCEP CFS Reanalysis (CFSR; Saha et al. 2010) on a 2.5° 
grid. ASO means are generated by averaging across those 
respective months.

Retrospective hurricane data are taken from the NOAA 
Hurricane Best Track Database (HURDAT; Landsea et al. 
2004). Hurricane-related information is referred to as 
“Atlantic” throughout this document, but is intended to 
only describe events within the northern hemisphere por-
tion of the basin. Predictands in the hybrid model include 

Table 1   NMME CGCM members and associated information

CanCM3 and CanCM4 are combined here into the 20 ensemble member CanCM34

CGCM name Operating center Ensemble size Ensemble arrangement References

CanCM3 Canadian Meteorological Centre 10 All first of the month 0000 UTC Merryfield et al. (2013)
CanCM4 Canadian Meteorological Centre 10 All first of the month 0000 UTC Merryfield et al. (2013)
CCSM4 National Center for Atmospheric 

Research
10 All first of the month 0000 UTC Kirtman et al. (in preparation)

CFSv2 National Centers for Environmental 
Prediction

12 Four members (0000, 0600, 1200, 1800 
UTC) every fifth day. Last three runs 
prior to the 8th day of initial month 
are used

Saha et al. (2014)

Fig. 1   Time series of the observed annual North Atlantic hurricanes (a), tropical storms (b), and ACE (c) during 1982–2010 (black line), with 
trend (red line) overlaid. d–f are as in a–c but with trend removed from observations

3  Hindcast MDR shear values at lead 0 between CanCM3 and 
CanCM4 were correlated at 0.95, otherwise stated ≥90% of the var-
iance of the individual CGCMs could be retained by averaging the 
two together while limiting their combined influence on the NMME 
mean.
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number of hurricanes, number of tropical storms, number of 
major hurricanes, and accumulated cyclone energy (ACE) 
as a percentage of the 1981–2010 median (89.6 × 104 kt2). 
Here results for major hurricanes are omitted for brevity. 
Figure 1 shows observed hurricane count, tropical storm 
count, and ACE for the Atlantic for 1982–2010 along with 
their linear trend, detrended activity, and anomalous activ-
ity. An increasing trend in each predictand is seen over time 
(Fig. 1a–c), and with relatively inactive (1982–1994) and 
active (1995–2010) eras. These periods are closely tied to 
the AMO (Goldenberg et al. 2001) and Atlantic Multidec-
adal Mode (Vimont and Kossin 2007; Patricola et al. 2014). 
Standard deviations of hurricane count, tropical storms, 
and ACE are 3.2, 5.0, and 67.4 × 104 kt2, respectively, while 
the corresponding detrended time series (Fig. 1d–f) exhibit 
standard deviations of 2.8, 4.1, and 59.4 × 104 kt2, respec-
tively. Aforementioned values support interannual variability 
dominating the 1982–2010 period, accounting from 67 to 
79% of the variance depending upon the predictand.

In developing the empirical regression model, anomalies 
of SST and wind shear are utilized. For cross-validation over 
the hindcast period (1982–2010), anomalies are generated by 
omitting the target year and building the climatology based 
on the remaining 28 years of hindcast data, while for the 
2011–2016 forecasts the anomalies are taken relative to the 

climatology from the full 1982–2010 period. A multiple lin-
ear regression analysis is then performed on the anomalous 
SST and vertical wind shear values averaged over specified 
regions, defined in Sect. 4. These regression coefficients are 
then applied to the hindcast (or forecast) anomalies of each 
CGCM ensemble member for the target year to predict the 
interannual component of hurricane count and ACE. These 
interannual values are then added back to their respective 
long-term mean values over a climatological period, yielding 
the final forecast numbers. In defining climatology, the full 
29-year period is utilized with average seasonal activity of 
6.4 hurricanes, 12.0 tropical storms, and 104.4 × 104 kt2 of 
ACE (117% of median).

3 � CGCM performance for SST and vertical wind 
shear prediction

With accurate depiction of SST and wind shear being the 
foundation of the hybrid model, it is necessary to evaluate 
the representation of these fields by the NMME models first. 
Anomaly correlation (AC) scores of the hindcast ASO SST 
for the NMME models with the CFSR SST as observations 
at leads 3 and 0 are shown in Fig. 2a, c. Also included are 
the scores of SST persistence for initial conditions of lead 

Fig. 2   Spatial distributions of anomaly correlations for 1982–2010 
between observed and hindcasts initialized in April (lead 3) with 
ASO SSTs for NMME (a) and persisted CFSR SST anomaly values 
from April through ASO (b). c and d are as in a and b except using 
hindcasts initialized in and persisted from July (lead 0), respectively. 
Correlations are only shaded at ≥0.4 and when statistically significant 

above the 1% level using a two-sided Monte Carlo test. Boxes indicat-
ing the MDR (10–20°N, 20–80°W) and NATL (55–65°N, 30–60°W) 
are shown with solid black and dashed black lines, respectively. Cor-
relations for the MDR and NATL are listed below the figure and 
include the NMME member CGCMs
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3 (April) and lead 0 (July) respectively (Fig. 2b, d). ASO 
SSTs are reproduced best throughout the tropical Pacific, 
particularly extending east of the date line where El Niño 
events typically manifest. NMME SST forecasts typically 
outperform persistence, with notable exceptions south of 
Greenland and just north of the equator in the Atlantic. The 
former North Atlantic region (NATL; 55–65°N, 30–60°W), 
is associated with deep water formation within the thermo-
haline circulation (Koltermann et al. 1999), and is linked 
to hurricane activity through the AMO (Goldenberg et al. 
2001). The latter region is the Atlantic’s main development 
region (MDR; 10–20°N, 20–80°W), where the majority of 
the basin’s hurricanes form. Across each of these regions 
at both leads the persisted SST anomalies prove superior to 
the NMME forecasts. Some of the poor performance in the 
NMME for these focal regions appears due to the CFSv2 
at both leads while CCSM4 lead 3 forecasts in the NATL 
are notably poor with an AC score of 0.1. Marginal skill 
decreases are generally seen in both NMME forecast and 
persisted SSTs as a function of lead. Barnston and Tippett 
(2013) note a shift in Central Pacific SST bias characteristics 
post-1999 in CFSv2 forecasts that is attributed to a spurious 
signal from the CGCM being initialized with CFSR condi-
tions. CCSM4 is also initialized with CFSR, with this bias 
after 1999 potentially impacting both CGCM forecasts as 
well as the CFSR being used as reanalysis. As will be shown 
later, forecast SSTs are not used as predictors in the hybrid 
model so that these issues would not affect the prediction 
results.

AC scores of vertical wind shear corresponding to lead 
3 and lead 0 are shown in Fig. 3a, c. Vertical wind shear 

AC scores are relatively lower compared to those of SST 
(Fig. 2), with largest values focused within the equato-
rial Pacific where values exceed 0.8 east on Indonesia and 
south of Panama at both leads. Persisted wind shear values 
at both leads are generally inferior to the NMME predic-
tions, apparent in both the extent of high AC values and 
their magnitudes. Of particular interest is the MDR where 
NMME yields AC scores of 0.47 at lead 3 and 0.69 at lead 
0 while corresponding persistence values are 0.01 and 0.58. 
NMME AC scores across the MDR also exceed the compa-
rable values of individual member CGCMs, demonstrating 
the improved ability of NMME to reproduce the observed 
wind shear distribution for the MDR relative to individual 
models. Relative to SST, wind shear predictive skill over 
the MDR is lower and decreases more rapidly as function 
of lead-time.

4 � Atlantic hurricane activity relationships 
with SST and vertical wind shear

To assess how closely SST and vertical wind shear are 
associated relative to long-term trend and interannual vari-
ability in Atlantic hurricane activity, correlations are com-
puted between the ASO environmental conditions and the 
time series of the hurricane linear trend (red line in Fig. 1a) 
and detrended interannual variability (Fig. 1d). Since hur-
ricane counts are well correlated to tropical storm counts 
(0.91 overall; 0.90 for interannual variability) and ACE 
(0.90 overall; 0.87 for interannual variability), spatial cor-
relations with environmental variables are only shown for 

Fig. 3   As in Fig. 2, but for vertical wind shear. Correlations for the MDR are listed below the figure and include the NMME member CGCMs
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hurricane activity in this section. Other predictands exhibit 
comparable results.

SST correlations with hurricane activity in terms of trend 
and interannual components are shown in Fig. 4. NMME 
exhibits broad regions of positive trend correlations across 
the Atlantic at both leads, indicative of the increasing trend 
in hurricane activity (Fig. 1a) being associated with warmer 
SSTs. Observed ASO SSTs (Fig. 4e) also exhibit these posi-
tive correlations, albeit at a greater magnitude than the hind-
cast projections with average values of 0.75 for the MDR 
and NATL. The NMME mean correlations with hurricane 
trend across the MDR and NATL are both below observa-
tions at each lead, with increased values at the shorter lead 
time. CanCM34 is the closest performing NMME member to 
observations for each lead and focal region, with the CFSv2 
being the most disparate from the observed trend relation-
ship but this cannot be wholly attributed to CFSR being used 
for initialization given the performance of CCSM4. Notable 
is CCSM4’s exceptionally poor relationship with hurricane 
trend at lead 3 for the NATL, with a correlation of −0.02.

SST relationships with interannual hurricane variability 
(Fig. 4b, d, f) typically exhibit lesser correlations than those 
with hurricane trend. Positive correlations are again apparent 
across the MDR and NATL, linking increased SST values 
to enhanced hurricane activity. The NATL shows limited 
association with interannual hurricane activity, as observed 
correlations are only 0.04. Conversely the MDR exhibits an 
observed correlation of 0.25 with the detrended hurricane 
time series, identical to that seen in the NMME at lead 3. 
The NMME at lead 0 sees this value increase to 0.41. Great-
est correlation magnitudes in NMME and observations with 
hurricane interannual variability are negative values span-
ning the Niño 3.4 and Niño 3 (5°S–5°N; 90–150°W) regions 
with peaks of ≤−0.5. These strong values are expected, 
given that anomalous warming (cooling) in the Central and 
Eastern Pacific associated with El Niño (La Niña) tends to 
reduce (enhance) Atlantic hurricane activity (Gray 1984a; 
Goldenberg and Shapiro 1996; Bell and Chelliah 2006; 
Wang et al. 2014).

Fig. 4   Spatial distributions of correlation of hindcast ASO SST for 
April initial conditions with long-term hurricane trend (left column) 
and detrended interannual variation (right column) for NMME at lead 
3 (a, b), NMME at lead 0 (c, d), and CFSR observations during ASO 
(e, f). Correlations are only shaded at ≥|0.4| and when statistically 

significant above the  1% level using a two-sided Monte Carlo test. 
Boxes are the same as in Fig. 2. Correlations for the MDR and NATL 
with the hurricane trend (red line in Fig.  1a) and detrended time 
series (Fig. 1d) are listed below the figure without and with parenthe-
ses respectively, and include the NMME member CGCMs
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Correlation of vertical wind shear anomalies with hur-
ricane trend and detrended hurricane activity is shown in 
Fig. 5. Little relationship is seen between vertical wind shear 
and hurricane trend across the MDR in NMME at either lead 
(Fig. 5a, c), despite CFSR average values of −0.28 implying 
reduced vertical wind shear playing a role in the increased 
hurricane activity since 1982. NMME’s poor performance 
appears due to CCSM4 and CFSv2 at lead 3 when both get 
the correlation’s sign wrong (0.07 and 0.13 respectively), 
while CFSv2’s relationship is negligible at lead 0 (−0.01). 
One potential explanation for the lead 3 shear correlations 
with long-term trend from CCSM4 and CFSv2 possessing 
the wrong sign may be due to the ENSO predictability bar-
rier that is most pronounced in boreal Spring (e.g. Barn-
ston et al. 2012) at longer leads. ENSO activity did shift 
over the cross-validation period, as ASO observations in 
1982–1994 and 1995–2010 show each period experienced 
31% of years with El Niño conditions while the former (lat-
ter) period saw 8% (38%) La Niña conditions.4 Given the 
knowledge that El Niño (La Niña) is less (more) conducive 

for Atlantic hurricane activity (e.g. Bell and Chelliah 2006), 
the increased La Niña frequency by a factor of five late in the 
validation period and poor predictions of the future ENSO 
state may be responsible for the lead 3 shear correlations 
with trend of CCSM4 and CFSv2.

Vertical wind shear correlations with hurricane interan-
nual variability (Fig. 5b, d, f) exhibit greater MDR averaged 
consistency as at each lead all member CGCMs, the NMME 
mean, and CFSR observations exhibit negative correlations. 
CFSR indicates the observed relationship across the MDR 
to be −0.37, which is similar to the NMME lead 3 value 
(−0.38) that nearly doubles at lead 0 (−0.64). One consist-
ent pattern between NMME and CFSR correlations with 
detrended hurricane activity is the negative values across 
the western Indian Ocean and eastern Pacific Ocean, while 
the equatorial region extending east from the maritime con-
tinent to near the dateline possesses positive correlations. 
These patterns reassert Walker circulation enhancement dur-
ing La Niña events being conducive for increased Atlantic 
hurricane activity.

Despite inconsistencies by the NMME members in repro-
ducing wind shear, interannual variability predictions for 
the MDR still appear skillful. This ability of NMME to 
reproduce vertical wind shear across the MDR is shown in 

Fig. 5   As in Fig. 4, but for vertical wind shear. Correlations for the MDR with the hurricane trend (red line in Fig. 1a) and detrended time series 
(Fig. 1d) are listed below the figure without and with parentheses respectively, and include the NMME member CGCMs

4  http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml.

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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Fig. 6 relative to observed CSFR shear. CGCM hindcast 
MDR shear anomalies tend to be of the same sign and have 
comparable magnitudes to observed CFSR values, with 
some notable exceptions (e.g. lead 3 in 1984). As expected, 
improvement is also generally seen from lead 3 to lead 0 
with some exceptions (e.g. 1985) and NMME member pro-
jections also tend to cluster together, with few exceptions 
(e.g. CanCM34 at lead 3 for 1992). Observed hurricane 
activity is also shown in Fig. 6, with the inverse relationship 
between hurricanes (or tropical storms or ACE, not shown) 
and vertical wind shear readily apparent. The upward trend 
in NMME wind shear is not as clear as in CFSR, with this 
potentially responsible for the poor correlation between fore-
cast wind shear and hurricane trend (Fig. 5a, c, e).

5 � Prediction of Atlantic hurricane activity 
with NMME

In selecting predictors for the regression model, Wang et al. 
(2009a) serves as a starting point. That study revealed NATL 
SST and MDR shear were generally independent of one 
another, whereas SST in the Niño 3.4 region or MDR were 
highly correlated with MDR shear due to the ocean–atmos-
phere coupling associated with ENSO. Here, similar results 
are found with lead 0 NMME mean MDR SST and vertical 
wind shear correlated at a value of −0.53, while the corre-
sponding Niño 3.4 SST and MDR vertical wind shear have 
correlations of 0.80 (SST in the tropical Pacific region from 
Wang et al. (2009a) exhibits a similar correlation of 0.79 

Fig. 6   Time series of the nega-
tive of ASO hindcast wind shear 
anomalies (1982–2010) for the 
MDR with lead 3 (a) and lead 0 
(b) initial conditions compared 
to observed North Atlantic hur-
ricane activity (black line)

Fig. 7   Time series of observed 
preseason OISSTv2 SST within 
the NATL during JFM (blue) 
and AMJ (red) along with 
annual hurricane activity. Filled 
circles on the SST time series 
indicate the data was included 
in the hindcast period, while 
open circles are indicate usage 
during the 2015 and 2016 real-
time forecast evaluation
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with NMME lead 0 MDR vertical wind shear). NATL SST 
is distinct from the tropical predictors with correlations <0.3 
between NMME lead 0 MDR vertical wind shear and CFSR 
preseason NATL SST. Given the superior skill exhibited by 
persistence relative to NMME forecasts across the NATL, 
preseason SST observations may serve as a potential predic-
tor. Figure 7 depicts January–March (JFM) and April–June 
(AMJ) averaged SSTs for the NATL along with hurricane 
activity over the associated year. The NATL region is closely 
associated with the AMO, with the change in AMO phase 
prior to the 1995 hurricane season apparent in the sudden 
increase in NATL SST values, and the subsequent period 
tied to increased hurricane activity (e.g. Trenberth and Shea 
2006).

Given the lack of a codependence between NATL SST 
and MDR vertical wind shear, these regions are isolated for 
generating independent hurricane predictions. Anomaly cor-
relations of ASO NATL SST for persisted values exceed 
those from NMME hindcasts (Fig. 2), while this region is 
highly correlated with the increasing trend in hurricane 
activity (Figs. 4, 7). Anomaly correlations of ASO MDR 
vertical wind shear meet or exceed persisted values for all 
NMME member CGCMs and the multi-model mean at leads 

3 and 0 (Fig. 3), while these projections are highly correlated 
with interannual hurricane variability (Fig. 5).5 As such, this 
methodology utilizes predictors of NATL observed SST 
averaged over the 3 months preceding the forecast month 
(i.e. January–March for lead 3 and April–June for lead 0) 
and CGCM hindcast MDR vertical wind shear during ASO.

The NMME member CGCMs are run through the 
1982–2010 cross-validation period with the hybrid model 
to produce annual hurricane, tropical storm, and ACE pre-
dictions for the Atlantic. These individual model ensemble 
mean predictions are then averaged, without weighting to 
account for ensemble size, to produce the NMME mean 
predictions. Figure 8 shows the time series of predictions 
for each CGCM and the multi-model mean for hurricanes, 
tropical storms, and ACE. Underdispersive tendencies are 
apparent for every predictand at both leads, particularly 

Fig. 8   Hindcasts of North Atlantic hurricane activity with predictors of observed preseason 3-month NATL SST and ASO hindcast MDR wind 
shear with April (a) and July (b) initial conditions. c and d are as in a and b but for a predictand of tropical storms, while e and f are for ACE

5  The 1999 shift in bias characterstics from CFSR initialized models 
(CFSv2 and CCSM4) noted by Barnston and Tippett (2013) for Cen-
tral Pacific SST was similarly evaluated for MDR vertical wind shear 
relative to the NCEP/NCAR reanalysis (Kalnay et al. 1996), and no 
distinctive shifts in bias characteristics were observed over 1982–
2010 (not shown), particularly relative to CanCM3 and CanCM4, that 
are initialized with ERA-Interim (Dee et al. 2011).
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for active hurricane seasons (i.e. 1995, 2005). Differences 
between the individual CGCMs and NMME mean in the 
predictions for individual seasons are all ≤3 hurricanes or 
tropical storms and ≤50% of median ACE at each lead, with 
typical differences of 1 hurricane, 2 tropical storms, and 
10–20% median ACE.

Hindcast performance of the member CGCMs and multi-
model mean predictions is quantified in Table 2 via cor-
relation and root-mean-square error (RMSE) of predicted 
hurricane, tropical storm, and ACE activity respectively 
with observations. As expected from the greater anomaly 
correlations (Figs. 2, 3), improved correlations and RMSE 
are seen in each predictand at shorter forecast leads. Cor-
relations of observed and predicted hurricane activity are 
greatest in the member CGCMs at lead 3 for the CCSM4 and 
CFSv2 (0.46) and lead 0 from the CanCM34 (0.68) while 
the NMME has correlations of 0.51 and 0.70 at leads 3 and 
0 respectively, outperforming all CGCMs at both leads. 
The NMME yields the lowest hurricane RMSE values with 
reductions of 20–30% relative to the best performing mem-
ber. Also as a point of comparison in Table 2 are correla-
tion and RMSE of a prediction solely utilizing the long-term 
trend (i.e. red lines from Fig. 1a–c) as a form of persistence. 
While the NMME members generally exhibit comparable 
correlations and RMSE to the trend predictor at lead 3, the 
individual CGCMs exhibit superior predictions at lead 0. 
Most importantly, the NMME predictions surpass the cor-
relations and RMSE of the trend predictions at both leads 
(with the exception of tropical storm predictions at lead 3), 
further indicating the utility of the interannual predictions 
from the multimodel ensemble.

Hindcast tropical storm correlations are typically larger 
than those for hurricanes. Tropical storms exhibit the strong-
est correlations from CanCM34 (0.59 and 0.70 at leads 3 
and 0, respectively), superior to the corresponding NMME 
values of 0.57 and 0.66. As with hurricanes, tropical storm 
RMSE values are again reduced for NMME relative to all 
individual members, here on the order of 20–35% improve-
ment over the best member. Hindcast ACE projections 
exhibit correlations of a similar magnitude to tropical storms 

and typically larger than those for hurricanes. NMME out-
performs all members with correlations of 0.58 at lead 3 
and 0.73 at lead 0. Yet again, RMSE is reduced for NMME 
relative to the member GCMs, here by 15–25% over the best 
performing members across each lead.

Cross-validated ACE values exhibit the strongest corre-
lations with observations at lead 3 from the NMME (0.58), 
and at lead 0 (0.73). RMSE for ACE predictions are smallest 
for the NMME mean, again 10–15% less than the best per-
forming NMME member CGCM. In summary the NMME 
predictions are typically at or near the top in terms of cor-
relation performance, but the NMME mean exhibits consist-
ently reduced RMSE relative to the best performing CGCMs 
by around 10–15%.

Given errors in CGCM initialization and boundary condi-
tions, an uncertainty component in the predictions is desir-
able to account for possible errors. One such approach for 
this has been to add and subtract the standard deviation of 
the error between hindcast predictions and observations, 
as in Davis et al. (2015). Such an approach is undesirable 
here however, as it rewards poor predictions that allow the 
error’s standard deviation, and by extension the predicted 
range, to increase. For example, utilizing the mean hurricane 
activity for 1982–2010 (6.38 hurricanes) would produce an 
error standard deviation of 3.20 hurricanes for a range of 
3–10 hurricanes after rounding. This envelope would cap-
ture 86% of the hurricanes during 1982–2010, surpassing 
the 84% mark that the Davis model captures over their full 
1950–2013 period. Instead here the ensemble nature of the 
CGCMs is exploited, and the standard deviation of the pre-
dictions for each year from the individual CGCM member 
projections is added and subtracted to their ensemble mean 
prediction to yield the predictive envelope. Such a method is 
constrained by the CGCM projections rather than the qual-
ity of the forecast, permitting a more meaningful predictive 
range. For the NMME prediction, the standard deviations 
of the member CGCMs are averaged, without accounting 
for weighting by ensemble size, and then used in the same 
manner as the individual CGCMs to devise the uncertainty 
range.

Table 2   Correlations and 
RMSE (in parentheses) of 
hybrid model North Atlantic 
hindcast (1982–2010) 
predictions for the listed 
predictand with lead 3 and lead 
0 initial conditions for NMME 
member CGCMs and NMME 
mean

Hurricane and tropical storm predictions are a function of count, while ACE is a function of percentage 
of median. The last column denotes values with respect to observed linear trend as a predictor (i.e. the red 
lines in Fig. 1a–c)

Predictand Lead CanCM34 CCSM4 CFSv2 NMME Trend

Hurricanes Lead 3 0.44 (2.86) 0.46 (2.80) 0.46 (2.80) 0.51 (2.26) 0.43 (2.83)
Lead 0 0.68 (2.30) 0.62 (2.47) 0.67 (2.36) 0.70 (1.69)

Tropical storms Lead 3 0.59 (4.05) 0.52 (4.21) 0.47 (4.36) 0.57 (3.11) 0.58 (3.97)
Lead 0 0.70 (3.56) 0.57 (4.06) 0.64 (3.80) 0.66 (2.94)

ACE Lead 3 0.54 (55.99) 0.54 (55.89) 0.52 (56.94) 0.58 (46.83) 0.47 (57.87)
Lead 0 0.72 (45.95) 0.70 (47.21) 0.67 (49.35) 0.73 (37.80)
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The NMME cross-validation period predictions incorpo-
rating uncertainty are shown in Fig. 9 for hurricanes, tropi-
cal storms and ACE. NMME hurricane projections (Fig. 9a, 
b) at lead 3 capture only 28% of observed seasons yet by 
lead 0 these values improve substantially, capturing 52% 
of seasonal activity. The predictive envelope does not only 
correctly project hurricane seasons near historical normals, 
as for example the 2010 season (12 hurricanes) and 1997 
season (3 hurricanes) are both captured at lead 0. Tropical 
storm projections (Fig. 9c, d) see 38% (34%) of predictions 
within the envelope at lead 3 (lead 0). ACE (Fig. 9e, f) is 
within the NMME predicted range for 14% (34%) of the 
hindcast record at lead 3 (lead 0).

Some of the performance in Fig. 9 appears due to underd-
ispersive tendencies in the NMME predictions. This is read-
ily apparent if comparing the forecast spread of the NMME 
predictions from Fig. 9 to predictions using an observed 
long-term trend fit (i.e. red lines from Fig. 1a–c) and ±1 
standard deviation of observed detrended variability (from 
Fig. 1d–f), with this method capturing 86% of hurricane 
and tropical storm predictions and 62% of ACE predictions 
(not shown). The issue with such a framework arises in that 

the average spread of the observed trend predictions is quite 
substantial, such as ACE on average being a range of 130% 
of median. The trend predictions, while a potential baseline 
to quantify skill, are overly broad such that value added to 
the users of these predictions is highly questionable. This is 
also apparent in that the forecast spread values of this frame-
work are typically double those issued by Colorado State 
University (CSU) and NOAA in their seasonal outlooks (see 
the following section). A balance must be struck between the 
observed variance and that conveyed in forecast uncertainty, 
so the forecast remains of value to the end users. Subsequent 
models added to the NMME in the future may help increase 
overall diversity of predictions and broaden the resulting 
forecast uncertainty.

While uncertainty is conveyed in the preceding analysis, 
this method fails to leverage the full range of information 
contained in the multimodel ensemble, as it relies upon the 
mean and variance among the 42 ensemble members. Since 
NOAA’s HSO conveys the odds for below-, near-, and above-
normal seasonal activity it is desirable to similarly convey 
the odds of each tercile. Such probabilities can be developed 
by binning individual ensemble member forecasts from the 

Fig. 9   Hindcast NMME mean North Atlantic hurricane predictions 
(dark gray line), and predictive envelope indicated by ±1 standard 
deviation averaged from member CGCMs (light gray region bounded 
by dark gray dashed lines) at lead 3 (a) and lead 0 (b) initial con-

ditions. Black line indicates observed hurricane activity, while blue 
(red) dots denote that year’s observed activity lying within (outside) 
the predictive envelope. Panels (c) and (d) are as in (a) and (b) but 
for a predictand of tropical storms, while (e) and (f) are for ACE
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hybrid methodology into their respectively classification 
relative to climatology. Below-normal activity is defined as: 
<5 hurricanes, 9 tropical storms, and 71.4 × 104 kt2 of ACE, 
while above-normal activity is defined as: >7 hurricanes, 12 
tropical storms, and 120 × 104 kt2 of ACE, with near-normal 
constituting the range between the two classifications. Prob-
abilities are generated for each member CGCM by counting 
the proportion of forecasts in each tercile category, while 
the multimodel probability is constructed by averaging the 
probabilities of each CGCM.

Forecast probabilities of hurricane activity from each 
CGCM and the NMME mean are shown in Fig. 10 along 

with the observed classification of each season. At lead 3 
(Fig. 10a, c, e), 10 seasons have their hurricane activity 
forecast in the proper classification by CanCM34, CFSv2, 
and NMME while CCSM4 only classifies 6 seasons prop-
erly. The NMME probabilities are nonzero for every hur-
ricane forecast category that verifies with the exception of 
the below normal 2002 season. Unsurprisingly, forecasts 
improve at lead 0 for each of the CGCMs and NMME. 
CanCM34 correctly forecasts 19 of the 29 seasonal hur-
ricane activity, while CFSv2 and NMME accurately cap-
ture 15 seasons, and CCSM4 gets 12 right. NMME at lead 
0 outperforms the member CGCMs in that it fails to have 

Fig. 10   Probabilistic forecasts of below-, near-, or above-normal sea-
sonal hurricane activity in blue, white, and red respectively, over the 
hindcast period from CanCM34, CCSM4, CFSv2, and the NMME 
ensemble at lead 3 (left column) and lead 0 (right column). Markers 
are placed for each year near the bottom, middle, or top of the column 

to delineate whether that season verified as below-, near-, or above-
normal respectively. Circles indicate the category with the greatest 
probability being forecast correctly, whereas an x indicates an incor-
rect forecast
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any seasonal forecast misses with a 0% forecast probability 
for the category that verifies. At both leads, and across all 
models, above-normal hurricane activity is forecast most 
accurately while near- and below-normal seasons exhibit 
the poorest performance, which appears tied to the NATL 
predictor and frequent above-normal seasons observed since 
1995. Given the overconfidence apparent in the probabilities 
at each lead in excess of 80% that fail to verify, reliability 
could be improved from this methodology. A more advanced 
methodology incorporating historical errors could improve 
reliability and overall probabilistic skill (e.g. Unger et al. 
2009).

6 � Real‑time NMME North Atlantic hurricane 
forecast performance

With the hybrid model trained over the 29-year hindcast 
period from 1982 to 2010, the regression coefficients that 
are developed from that period can be evaluated over the 
2011–2016 “real-time” period. While ideally the sample 
sizes between the training (hindcast) and testing (real-time) 
populations would be comparable, there are several argu-
ments against balancing the two. First, given the limited 
availability of climate records and the forecasts being veri-
fied once per year, shrinking the training period inevitably 
yields a decline in forecast skill due to reduced sampling. 
Second, the NMME hybrid forecasts are used operation-
ally in their current format and altering the sampling for the 
purposes of this publication creates discontinuity between 
the implemented version at NOAA and the version herein. 

Fig. 11   Forecast ranges from CSU (green), NOAA (orange), and 
the hybrid NMME method (purple) since 2001 for listed predictands 
for initial outlooks (issuance in April for CSU and NMME, May for 
NOAA) in the left column and final outlooks (issuance in July for 
NMME, August for CSU and NOAA) in the right column. Horizon-

tal black lines indicate observed activity. The vertical black dashed 
line indicates the transition from hindcast to real-time analyses from 
the NMME methodology in 2011. Proportion of predictands forecast 
correctly is detailed below each column, with values since 2011 in 
parentheses
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Third, there is ample precedent for disproportionate training 
and testing datasets in climate research, particularly relating 
to seasonal tropical cyclone forecasts with reported real-time 
results typically being for only a single season (e.g. Wang 
et al. 2009a; Kim and Webster 2010; Vecchi et al. 2011; Li 
et al. 2013; Villarini and Vecchi 2013). Given these limita-
tions the real-time results herein should be taken cautiously 
due to limited sampling, but demonstrate utility of the hybrid 
methodology in an operational setting. The question arises 
as to how the hybrid methodology performs as a comparison 
to the official outlooks from CSU and NOAA. Figure 11 
depicts the predicted ranges for the initial and final hurri-
cane outlooks from CSU, NOAA, and the NMME forecast 
for 2001–2016. NMME results for 2001–2010 are from the 
cross-validation, while real-time NMME forecast data for 
2011–2014 is processed through the hybrid model retrospec-
tively despite the hybrid methodology then being unavail-
able to NOAA forecasters. Some caution should be taken 
in interpreting Fig. 11, given that the NOAA and NMME 
outlooks are not mutually exclusive for 2015–2016, and the 
CSU and NOAA outlooks potentially leverage information 
regarding early season tropical activity that developed prior 
to the outlook issuance while the NMME forecast has no 
such benefit. NOAA and NMME forecasts have specified 
ranges, while CSU outlooks are deterministic with a single 
value forecast. CSU outlooks are converted into forecast 
ranges using ±1 standard deviation of the cross-validated 
standard error from 1982 to 2010.6

In the initial outlooks (Fig. 11a, c, e; April for CSU, 
May for NOAA, and lead 3 for NMME) the NMME fore-
casts are within 1 correct forecast difference from CSU 
and NOAA, with the exception of tropical storms and ACE 
during the hindcast period of 2001–2010. Some successes 
of the NMME at the longer lead are apparent in the real-
time period, with the NMME outlooks being the only of the 
three forecasts to correctly capture the observed activity in 
both 2015 and 2016 for all three predictands while in use at 
NOAA. NMME has also forecast more seasons correctly at 
the longer lead (4) than CSU (3) over the real-time period, 
despite having a smaller forecast range to work with in each 
of the six seasons. For the 2001–2016 final outlooks (Fig. 11 
b, d, f) results are more mixed, with CSU having the best 
hurricane outlooks but the lowest proportion of ACE fore-
casts to verify, with NOAA performing the best for tropical 
storm and ACE predictions but being inferior to NMME hur-
ricane forecasts over this period. During the real-time period 
from 2011 onward all methods predict four of six hurricane 
seasons correctly, while NOAA (4) outperforms NMME (3) 
and CSU (2) in accurate tropical storm forecasts, and ACE 

forecasts are best from NOAA and NMME (3) while CSU 
only captures the 2014 season correctly. On a whole, the 
NMME method is competitive with CSU and NOAA out-
looks, particularly over the real-time period where it matches 
or surpasses CSU performance at the shortest forecast lead. 
These results are further compelling for the utility of the 
NMME hybrid forecast, particularly given that: the NMME 
outlook is available prior to that of CSU and NOAA, the 
NMME forecast lacks any insight into antecedent tropical 
activity during the year that the other outlooks can take 
into account, and the NOAA outlook being an aggregation 
of a wealth of tools (including the NMME guidance). The 
initial operational use of the NMME hybrid methodology 
at CPC for the 2015 season is explored in greater detail in 
“Appendix 1”.

7 � Conclusions

Here a hybrid dynamical–statistical model for North Atlan-
tic hurricane activity is developed utilizing NMME inputs. 
The model is unique for its hybrid nature bridging statisti-
cal relationships with the dynamical component to predict 
the future atmospheric state rather than relying upon lagged 
relationships. The dynamical component is further enhanced 
through the NMME representation that incorporates multi-
ple CGCMs with their inherent strengths and weaknesses 
for reproducing the observed atmospheric and oceanic state 
to provide a broader perspective and increase uncertainty 
conveyance. Deterministic and probabilistic forecasts of hur-
ricane season activity is yielded by these methods, and used 
operationally to supplement as a guidance tool in producing 
the NOAA HSO.

A predictive method is developed; utilizing ASO fore-
cast MDR vertical wind shear and observed NATL presea-
son SST and the full retrospective climatology. With this 
methodology, the multi-model mean prediction based upon 
the NMME member CGCMs yields typical reductions of 
10–35% in RMSE dependent upon the predictands, rela-
tive to the best performing member CGCM. NMME mean 
correlations with observed activity surpass the majority of 
member CGCMs and typically all members. The statistical 
envelope of the NMME projections for hurricane, tropical 
storm, and ACE activity exhibits considerable skill in repro-
ducing observations for both inactive and active seasons. Ini-
tial probabilistic forecast guidance also proves skillful over 
the hindcast period, but appear underdispersive and overcon-
fident and could be subsequently improved by incorporating 
more advanced methods (e.g. Unger et al. 2009). NMME 
forecasts are competitive with CSU and NOAA outlooks 
in recent years, despite being available prior to the release 
of those products and lacking the knowledge of any ante-
cedent tropical activity prior to the official forecast release. 

6  As per Sect.  3 of http://webcms.colostate.edu/tropical/media/
sites/111/2017/04/2017-04.pdf.

http://webcms.colostate.edu/tropical/media/sites/111/2017/04/2017-04.pdf
http://webcms.colostate.edu/tropical/media/sites/111/2017/04/2017-04.pdf
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Difficulties remain for extremely active (e.g. 2005) and inac-
tive seasons (e.g. 2009), however subseasonal contributions 
such as MJO impacts (e.g. Klotzbach 2014; Klotzbach and 
Oliver 2015) and extratropical impacts via Rossby wave 
breaking (e.g. Zhang et al. 2016) may complicate hurricane 
variability at the seasonal scale. The proposed subseasonal 
NMME project (Pegion 2015) can introduce opportunities to 
refine the NMME hybrid model approach at these timescales 
and potentially yield improved predictions.

Predictability among NMME members varies widely for 
both SST and vertical wind shear. SST anomaly correla-
tions are generally superior to those of vertical wind shear. 
SST, and particularly ENSO, predictability appears to be a 
strong focus for the NMME member CGCMs (e.g. Kirtman 
et al. 2014; Merryfield et al. 2013; Saha et al. 2014) while 
lesser attention is seemingly paid toward the atmospheric 
circulation. This prioritization is manifested to some extent, 
in zonal wind not being deemed a mandatory output variable 
for NMME. Future attention towards the reproduction of the 
circulation characteristics would serve to improve the hybrid 
model, in addition to adding insight into other NMME varia-
bles that are deemed mandatory such as temperature and pre-
cipitation. The NMME hindcast archive continues to grow 
with models incorporating zonal wind information, such as 
the NASA Goddard Earth Observing System Model Version 
5 (GEOS-5; Vernieres et al. 2012) and NCAR Community 
Earth System Model (CESM) Version 1 slated for inclusion. 
Inclusion of additional models will act to extend the perspec-
tive of the NMME multi-model mean and potentially lead 
to further improvements in predictability and hybrid model 
performance.
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Appendix 1: Initial performance of the hybrid 
NMME forecast for CPC operations

The NMME hybrid model was incorporated as a tool for 
the Atlantic Hurricane Seasonal Outlook issued by the Cli-
mate Prediction Center preceding the 2015 season. This 

year proved to be an interesting gauge, given building El 
Niño conditions early in the year, culminating with El Niño 
declaration by NOAA during March.7 Observed JFM SST 
anomalies for the NATL (Fig. 7) were −0.14 °C relative 
to 1982–2014, the 16th lowest ranked value relative to the 
1982–2014 period. Lead 3 forecasts for ASO wind shear in 
2015 (Fig. 12) projected above normal wind shear across the 
MDR throughout the NMME members (Fig. 12a–c), with 
the strongest shear on the periphery of the MDR with the 
exception of CanCM34. CanCM34 forecasted the strongest 
MDR shear (4.91 m/s) with enhanced shear across much of 
the MDR, followed by the CCSM4 (2.06 m/s) and CFSv2 
(0.46 m/s) that instead portrayed positive shear anomalies 
for the southwestern MDR and negative shear anomalies 
in the eastern MDR. The NMME mean shear forecast 
(Fig. 12d) for the MDR lies in between the CanCM34 and 
other members at 2.45 m/s, with modest positive anomalies 
throughout the MDR.

Climate conditions further suggested reduced 2015 hurri-
cane activity at lead 0 during 2015. Observed NATL SST for 
AMJ (Fig. 7) was −0.58 °C relative to 1982–2014 for the 7th 
lowest ranked year. By early July, many ENSO predictions 
were indicating the potential for a major El Niño event to be 
established by ASO,8 implying potential severe reduction in 
hurricane activity. NMME forecasts of lead 0 ASO vertical 
wind shear are shown in Fig. 13. Apparent are the extreme 
shear forecasts for the tropical Atlantic by CanCM34 
(Fig. 13a), a value exceeding four standard deviations above 
normal and far larger than any shear magnitude forecast at 
this lead in the hindcast period. These strong shear projec-
tions were present in both CanCM3 and CanCM4 as they 
forecast +4 and +5 standard deviation events relative to their 
individual climatologies. While the extent of the CanCM34 
positive shear anomalies extend across the entirety of the 
MDR, the greatest values generally are found in the southern 
Caribbean Sea. The remaining NMME members (Fig. 13b, 
c) are less extreme in their ASO shear projections, with 
CCSM4 exhibiting above normal shear from the northwest 
to southeast across the MDR with a mean magnitude of 3.40 
m/s, while the CFSv2 forecasts near normal MDR shear 
(0.02 m/s) with negative values off the African coastline 
through 40°W. Strong positive shear anomalies are seem-
ingly associated with the developing El Niño by CFSv2, 
however they are predominantly constrained to the East 
Pacific (peaking >18 m/s) and south of the MDR across 
the Atlantic basin. Averaging the three members yields the 
NMME mean in Fig. 13d with 4.00 m/s of shear across the 

7  http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_
disc_mar2015/ensodisc.pdf.
8  http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_
disc_jul2015/ensodisc.pdf.

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_mar2015/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_mar2015/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_jul2015/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_jul2015/ensodisc.pdf
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Fig. 12   Forecast anomalous vertical wind shear for ASO 2015 at 
lead 3 (April initial conditions) relative to 1982–2010 for CanCM34 
(a), CCSM4 (b), CFSv2 (c), and multi-model mean (d). Contour 

intervals are 2 m/s, with the zero contour omitted. MDR averages are 
listed in the title of each panel 

Fig. 13   As in Fig. 12, but at lead 0 (July initial conditions)
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MDR with this number strongly influenced by the CanCM34 
projections both in magnitude and spatial distribution with 
positive anomalies extending across the full entirety of the 
MDR despite the weakness in the eastern Atlantic from the 
CCSM4 and CFSv2.

NMME forecasts for the 2015 season in Table 3 for hur-
ricane, tropical storm, and ACE activity were included as 
part of guidance towards development of the 2015 NOAA 
HSO. The 2015 season yielded 4 hurricanes, 11 tropi-
cal storms, and an ACE value of 59.3 × 104 kt2 (64.2% of 
median). NMME predicted ranges capture the observed hur-
ricane activity (Table 3) at both leads for hurricanes, with 
the best performing member being CCSM4, which captured 
the observed activity within its forecast range at both leads. 
Tropical storm activity was also reasonably well captured 
by NMME, with forecast ranges only failing to match obser-
vations for lead 0, but outperformed by the CFSv2 which 
saw observed activity fall within its predicted ranges at 
each lead. The failure by the NMME at lead 0 is largely 
attributable to the CanCM34 which projected an average 
of two tropical storms for the season, despite three tropical 
storms developing prior to the HSO update release in August 
2015. NMME best captured ACE during 2015, with forecast 
ranges aligning with observations for both leads. Also note-
worthy with ACE forecasts is that the CFSv2 failed to repro-
duce the observed ACE range for any lead, underscoring 
the original hybrid method conditioned solely on the CFS 
would have failed in its ACE projections for 2015. The 2015 
hurricane season was somewhat unusual in that despite the 
near-normal tropical storm activity there were reduced hur-
ricane and ACE activity. Nevertheless, the NMME predic-
tion was able to reproduce the observed distributions for five 
of the six analyzed forecast combinations of forecast lead 
and predictands. This underscores the ability of the multi-
model mean to aggregate diverse forecasts into an improved 
product that is not restricted to any singular model with its 
individual strengths, weaknesses, and biases.
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