
Sea Surface Temperature Predictions in NCEP CFSv2 Using a Simple
Ocean Initialization Scheme

JIESHUN ZHU

Climate Prediction Center, NOAA/NWS/NCEP, College Park, and Innovim, Greenbelt, Maryland

ARUN KUMAR

Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

HUI WANG

Climate Prediction Center, NOAA/NWS/NCEP, College Park, and Innovim, Greenbelt, Maryland

BOHUA HUANG

Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, and Center for

Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

(Manuscript received 10 September 2014, in final form 18 April 2015)

ABSTRACT

In contrast to operational climate predictions based on sophisticated ocean data assimilation schemes at the

National Centers for Environmental Predictions (NCEP), this study applied a simple ocean initialization scheme

to theNCEP latest seasonal predictionmodel, theClimate Forecast System, version 2 (CFSv2). In the scheme, sea

surface temperature (SST) was the only observed information applied to derive ocean initial states. The physical

basis for the method is that, through air–sea coupling, SST is capable of reproducing some observed features of

ocean evolutions by forcing the atmospheric winds. SST predictions based on the scheme are compared against

hindcasts from the National (lately North American) Multimodel Ensemble (NMME) project.

It was found that due to substantial biases in the tropical eastern Pacific in the ocean initial conditions

produced by SST assimilation, ENSO SST predictions were not as good as those with sophisticated initiali-

zation schemes (e.g., hindcasts in the NMME project). However, in other basins, SST predictions based on

a simple ocean initialization procedure were not worse (sometimes even better) than those with sophisticated

initialization schemes. These comparisons indicate that it was helpful that subsurface ocean information be

assimilated to improve the tropical Pacific SST predictions, while SST-based ocean assimilation was an ef-

fective way to enhance SST prediction capability in other ocean basins. By examining multimodel ensembles

with the simple scheme-based hindcasts either included or excluded in NMME, it is also suggested that

including the hindcast would generally benefit multimodel ensemble forecasts. In addition, possible ways to

further improve ENSO SST predictions with the simple initialization scheme are also discussed.

1. Introduction

Sea surface temperature (SST) is one of the major

factors being used to forecast the climate variations for

one to a few seasons ahead. In particular, the SST var-

iability in the tropical Pacific associated with El Niño–
Southern Oscillation (ENSO) has a profound influence

on weather and climate worldwide. Since its first dy-

namical prediction conducted around three decades ago

(Cane et al. 1986), the ability of dynamical models to

predict ENSO has been improved significantly, and SSTs

can be successfully predicted several seasons ahead (e.g.,

Ji et al. 1994; Wang et al. 2002; Zhang et al. 2003; Chen

et al. 2004; Keenlyside et al. 2005; Luo et al. 2005, 2008;

Jin et al. 2008; Kirtman and Min 2009; Zhu et al. 2012b,

2013a,c, 2014; Xue et al. 2013). In addition, there are also

forecast studies about other ocean basins, such as the

tropical Indian Ocean (e.g., Luo et al. 2007), tropical
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Atlantic Ocean (e.g., Hu and Huang 2007), and the ex-

tratropical oceans including the North Atlantic (e.g., Hu

et al. 2013), the North Pacific (e.g., Hu et al. 2014), the

southern subtropical Indian and Atlantic (e.g., Yuan

et al. 2014), and the southern subtropical Pacific (e.g.,

Guan et al. 2014).

At theNationalCenters for Environmental Predictions

(NCEP), development of dynamical seasonal prediction

systems was initiated in the early 1990s (Ji et al. 1994),

targeting at predicting climate conditions (including SST)

at the seasonal time scale. Since then, several prediction

systems have followed, including the Seasonal Forecast

System 2000 (Kanamitsu et al. 2002), the Climate Fore-

cast System, version 1 (CFSv1; Wang et al. 2005; Saha

et al. 2006), and currently the Climate Forecast System,

version 2 (CFSv2; Saha et al. 2014). During their de-

velopment course at NCEP, coupled ocean–atmosphere

model and ocean data assimilation have been two major

foci. Ocean data assimilation is chosen as a focus because

the memory for seasonal climate forecasting mainly re-

sides in the ocean. At NCEP, a 3D variational technique

(Derber and Rosati 1989) with gradual upgrades is ap-

plied to assimilate different surface/subsurface and sat-

ellite ocean observations.

The strategy of using sophisticated ocean data assimi-

lation schemes to initialize seasonal prediction systems is

also pursued at other operational centers, including the

European Centre for Medium-Range Weather Forecasts

(ECMWF) (Stockdale et al. 1998), Australian Bureau of

Meteorology Research Centre (BMRC) (Wang et al.

2002), and others. The advantage of the strategy is that the

derived ocean initial states (including the subsurface

states) use all available ocean observations and can be

closer to the reality. However, because of differences in

the observed and the model-simulated states (including

mean and variability), the analyzed ocean initial states can

significantly deviate from the model’s own mean climate,

and could lead to certain disadvantages. During the pre-

diction, starting from the initialized ocean states, such

discrepancies could introduce substantial imbalances (or

shocks), which may degrade the prediction performances.

Another disadvantage of the use of ocean initial condi-

tions based on ocean data assimilation systems is that

seasonal hindcasts are seldom extended back prior to the

1980s (e.g., Chen et al. 2004; Deng and Tang 2009; Zheng

et al. 2009). This limitation restricts the sample size of

hindcasts that are typically over a 30-yr period.

In contrast to sophisticated ocean data assimilation

schemes, there are also approaches using simple ocean

initialization schemes that are proposed for seasonal

predictions. For example, the ocean initial states can be

derived by running a coupled model with its SST or SST

anomalies strongly nudged to observations. These simple

initialization methods have been used in ENSO pre-

dictions with both intermediate complexitymodels (ICMs;

e.g., Zhang et al. 2003; Chen et al. 2004)mostly by nudging

SST anomalies, and coupled global climate models

(CGCMs; Keenlyside et al. 2005; Luo et al. 2005) fre-

quently by nudging full SSTs. The physical basis for the

potential success of these methods is that, in addition to

providing a realistic oceanic mixed layer temperature,

through air–sea interaction and coupling, the observed

SST information is able to reproduce at least part of re-

alistic ocean subsurface evolutions by forcing the atmo-

spheric winds. The simple initialization scheme used in the

Scale Interaction Experiment-Frontier Research Center

for Global Change (SINTEX-F) model has been docu-

mented to have skillful ENSO predictions with useful

prediction skill extending up to 2yr (Luo et al. 2008). Al-

though, in comparison with the sophisticated assimilation

schemes, the ocean initial states based on the simple

scheme may have larger deviations from the reality due to

deficiencies in the coupled models, they are likely to be

closer to models’ own mean states leading to lesser initial

shock at the beginning of the forecast integration. This

feature could potentially benefit climate forecasts as a re-

sult of smaller shocks.

Such simple initialization schemes have not been tried

in any NCEP’s seasonal prediction models. In this study

we attempt to fill in this gap by applying thismethod to the

latest seasonal prediction model at NCEP (i.e., CFSv2).

However, we note that our experimental design is not

optimal, that is, the model generating ocean initial con-

ditions (i.e., CFSv1) is not the same as that used for pre-

dictions (i.e., CFSv2). Being cognizant of this discrepancy,

we proceeded with the forecast experiments as a pre-

liminary step toward (i) assessing the feasibility, and

forecast skill of SSTs over different ocean basins using a

simple SST based ocean data assimilation system; and

more importantly (ii) exploring the possibility of extend-

ing the generation of such ocean initial states and hind-

casts over a much longer period prior to 1980 because the

only information required for this approach is the ob-

served SSTs. The assessment of forecast skill, and its

comparison with skill achieved in a seasonal prediction

system with more advanced ocean data assimilation sys-

tems also highlights the potential importance of sub-

surface ocean observations and their assimilation.

By evaluating global SST predictions, we also explore

the regional dependence of two factors influencing SST

seasonal predictions (i.e., the accuracy of ocean initial

conditions and the balance between forecast model cli-

matology and initial states). For this purpose, hindcasts

initialized by the simple scheme will be compared with

hindcasts from multiple systems [i.e., hindcasts from the

National (lately North American) Multimodel Ensemble
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(NMME) project; Kirtman et al. (2014)]. All NMME

hindcasts were initialized by sophisticated data assimi-

lation systems.

The paper is organized as follows. The forecast model,

the experimental design, and the datasets are described

in the next section. Section 3 evaluates the SST forecast

results, including comparisons with NMME hindcasts.

The summary and discussion are given in section 4.

2. Model, hindcast experiments, and datasets

a. Model

The forecast model used in this study is NCEP CFSv2

(Saha et al. 2014). CFSv2 has been the operational fore-

cast system for seasonal-to-interannual prediction at

NCEP sinceMarch 2011, replacing its predecessor, CFSv1

(Saha et al. 2006). In CFSv2, the ocean model is the

GFDLMOMversion 4, which is configured for the global

oceans with a horizontal grid of 0.58 3 0.58 poleward of

308S and 308N and meridional resolution increasing

gradually to 0.258 between 108S and 108N. The vertical

coordinate is geopotential (z) with 40 levels (27 of them in

the upper 400m), with a maximum depth of approxi-

mately 4.5km. The atmospheric model is the Global

Forecast System (GFS),which has horizontal resolution at

T126 (105-km grid spacing, a coarser resolution than that

used for the GFS operational weather forecast), and 64

vertical levels in a hybrid sigma-pressure coordinate. The

oceanic and atmospheric components exchange surface

momentum, heat and freshwater fluxes, as well as SST,

every 30min. More details about CFSv2 can be found in

Saha et al. (2014).

b. CFSv2 hindcasts with a simple initialization
scheme

In contrast to operational forecasts with CFSv2 at NCEP

wheremany subsurface and satellite data are assimilated

in a complex way to derive its ocean initial conditions

(OICs), a simple initialization scheme is applied in this

study. In the scheme only SSTs are specified as the ob-

served information in coupled model integrations (e.g.,

Keenlyside et al. 2005; Luo et al. 2005). In particular,

model SSTs in CFSv1 are nudged to the observed daily

SST, with a restoring time scale of 3.3 days (Wang et al.

2013; Kumar et al. 2014). The observed daily SSTs are in-

terpolated from the weekly SSTs from the National Oce-

anic andAtmospheric Administration (NOAA)Optimum

Interpolation SST (OISST) version 2 (Reynolds et al.

2002). Kumar et al. (2014) have indicated that the coupled

integration generated a realistic evolution of subsurface

ocean temperature, and particularly, the evolution of slow

variability related to ENSO has a good resemblance to its

observational counterpart. More details about the SST

nudging procedure (including a brief description of CFSv1)

can be found in Kumar et al. (2014). As we mentioned

earlier, although the experimental setup is not optimal

in which an SST-based assimilation using CFSv1 is used

to initialize CFSv2 forecasts, we consider this as a first

step toward developing a simple procedure for initial-

izing ocean states and extending seasonal hindcasts

over a much longer period.

Based on the SST-derived OICs, hindcasts are con-

ducted starting from each April during 1982–2009 and

last for 12 months. April is chosen because it is an im-

portant month to predict whether an El Niño event will

occur in a particular year. We also note that in com-

parison with predictions starting from other seasons,

hindcasts initialized in April generally have lower pre-

dictive skill, possibly due to the effect of the spring

predictability barrier (Jin et al. 2008).

For each hindcast year, four ensemblemembers are used

based on a combination of two different OICs and two

different atmosphere–land surface conditions. The two

OICs are randomly chosen from nine CFSv1 integrations

constrained by observed SSTs (Kumar et al. 2014). The

atmosphere–land surface conditions are the instantaneous

fields from 0000 UTC of the first two days of April in the

NCEP Climate Forecast System Reanalysis (CFSR; Saha

et al. 2010). We acknowledge that such ensemble genera-

tion schememight generate less balanced initial conditions

between ocean and atmosphere than that in the SINTEX-F

practice (Luo et al. 2005, 2008). The hindcast experiment is

referred to as the SSTnudging hindcast.

Figure 1 examines the consistencyof theupper-oceanheat

content (HC; defined as the depth-average temperature

of the upper 300m) evolutions between the SST-derived

OICs and the NCEP Global Ocean Data Assimilation

System (GODAS; Behringer and Xue 2004). It is sur-

prising to see that, in addition to good consistency in the

tropical Pacific, there is also high consistency in the ex-

tratropical Pacific and Atlantic. However, in the eastern

tropical Pacific, there is a correlation minimum along the

equator, which is likely to influence ENSO prediction. In

addition, it is also noticed that the correlation pattern,

particularly north of 308S, resembles well the consistency

map of HC anomalies in different ocean analyses [see

Fig. 1 in Zhu et al. (2012a) for the map of signal-to-noise

ratios], which implies that the uncertainties in the SST-

derived ocean states might also be similar to those in

present generation of ocean analyses.

c. NMME hindcast data and data for validations

To evaluate the prediction skill in CFSv2 with the

simple initialization scheme, SSTnudging is compared

with hindcasts in the NMME project (Kirtman et al.
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2014). In the Phase-1 NMME, seven U.S. models par-

ticipated, with several decades of hindcast data available

to the public. These models include COLA-RSMAS-

CCSM3 (Kirtman and Min, 2009), GFDL-CM2.2 (Zhang

et al. 2007), IRI-ECHAM4.5a (DeWitt, 2005), IRI-

ECHAM4.5f (DeWitt, 2005), NASA-GMAO-GEOS-5

(G. Vernieres et al. 2011, unpublished manuscript),

NCEP-CFSv1 (Saha et al. 2006), and NCEP-CFSv2 (Saha

et al. 2010). In this paper, hindcasts from the seven

systems are referred to as CCSM3, CM2.2, ECHAM4a,

ECHAM4f, GEOS-5, CFSv1, and CFSv2, respectively.

Specifically, there are 29-yr (1982–2010) hindcast data, with

ensemblemembers of eachmodel ranging from6 to 24, and

forecasts up to 8–12 months. All the NMME hindcasts are

initialized by sophisticated ocean data assimilation systems.

More details about NMME and their hindcast descriptions

can be found in Kirtman et al. (2014).

It is worthwhile to clarify that the CFSv2 hindcasts

conducted by NCEP as part of the NCEP CFS Reanalysis

and Reforecast project (CFSRRR; Saha et al. 2014) is

also amember ofNMME.TheCFSv2hindcasts inNMME

(referred to as CFSv2) were initialized by a sophisticated

data assimilation system (i.e., CFSR; Saha et al. 2010).

Thus, the major difference between hindcasts CFSv2 and

SSTnudging lies in their respective ocean initializations.

Considering that seasonal predictability of SSTs, for

example ENSO SSTs (Kumar and Hu 2014), mostly re-

sides in the mean shift of the probability density function

(PDF) with its spreads as a secondary source, the fol-

lowing analyses will focus on the ensemble mean SST as

the forecast. In addition, the multimodel ensemble mean

forecast based on the seven systems in the NMME is

referred to as hindcast NMME. We also constructed an-

other multimodel ensemble forecast (referred to as

NMMEpSSTndg) by additionally including SSTnudging

(i.e., totaling eight system predictions). By comparing

hindcast NMME with hindcast NMMEpSSTndg, the pur-

pose is to examine whether there is a gain or loss of skill

when SSTnudging is included as part of NMME. In con-

structing the two multimodel ensemble forecasts, equal

weights are given to each system instead of each forecast

member. This choice prevents the multimodel ensemble

from strongly leaning toward forecasts with large ensemble

members, like CFSv2 with 24 members.

The above strategy of skill validation reflects a practical

view; that is, making the most skillful forecast with largest

ensemble size available for the seasonal prediction system.

Such validations, however, are influenced by differences in

ensemble size. To rule out skill differences due to en-

semble size, we also constructed another group of hind-

casts with four ensemblemembers for eachNMMEmodel

(referred to as CCSM3_4E, CM2.2_4E, ECHAM4a_4E,

ECHAM4f_4E, GEOS-5_4E, CFSv1_4E, and CFSv2_4E,

respectively). Accordingly, these hindcasts have the same

ensemble size as SSTnudging. The multimodel ensemble

mean forecast based on the new group of hindcasts is re-

ferred to as hindcast NMME4E. Also, to rule out skill

differences in multimodel ensembles due to different

model numbers, we also constructedmultimodel ensemble

mean forecast (referred to as NMME4EwSSTndg), which

is the same as NMME4E but with its CFSv2_4E compo-

nent replaced by SSTnudging.

All the analyses are based on forecasts over the common

period (i.e., 1982–2009). The predicted SST anomalies

(SSTAs) are derived by subtracting lead-time-dependent

climatologies from the total SSTs, but no additional time

smoothing is applied. The climatologies are based on the

whole hindcast period of 1982–2009. The observation-

based monthly SST analysis used for validation is from

OISSTV2 on a 1.08 3 1.08 (latitude3 longitude) grid. The

subsurface ocean temperatures from the NCEP GODAS

(Behringer and Xue 2004) are used for HC validations.

FIG. 1. Distribution of anomaly correlations between the GODAS-analyzed upper-ocean 300-m

heat-content anomalies and those derived by CFSv1 with SSTs nudged to observations.
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3. Results

Figures 2 and 3 show the horizontal distributions of

quasi-global SST prediction skill at the lead times of 3

and 6 months, respectively, with each system using their

respective ensemble sizes. Validations with each NMME

model also using four ensemble members generally show

little difference in the tropical Pacific and some difference

in the other two tropical basins (figures not shown), but

relatively large differences over the tropical Pacific are

found for somemodels (e.g., CFSv2). The reason for small

sensitivity to ensemble size in the tropical Pacific is due to

high predictability and signal-to-noise ratio, a scenario

where small ensemble size is adequate to realize expected

value of skill (Kumar and Hoerling 2000).

For both lead times, regions with the highest correlation

are located in the tropical Pacific in all systems. Among

hindcasts from different NMME component models

(Figs. 2a–g and 3a–g), however, it is interesting to notice

substantial spreads in their SST prediction skill, even in the

tropical Pacific. For example, at the 3-month lead time,

GEOS-5 seems better than others; its correlation skill is

greater than 0.7 over a large area of the central and

eastern tropical Pacific with few patches even greater

than 0.8, while in other systems regions of correlations

greater than 0.7 are clearly smaller. With the increase in

lead times, the correlation first drops gradually in the

tropical Pacific during the ENSO developing phase

(figures not shown), then increases modestly when ap-

proaching the boreal winter when ENSO events gener-

ally peak. As a result, the ENSO SSTA prediction skill

does not dropmuch in all systems at the 6-month lead time

(Fig. 3) in comparison with at the 3-month lead time

(Fig. 2). Comparedwith other systems, CFSv1 andGEOS-

5 seem to have better skill at the 6-month lead time, with

correlations larger than 0.7 over a sizable region of the

central and eastern Pacific. For CFSv1, there is even a

discernible region with correlation greater than 0.8.

As for the CFSv2 skill, it should be noted that a better

SST prediction skill could be achieved in the tropical

Pacific if two climatologies are applied as suggested by

Xue et al. (2013). The resulting skill can be comparable

to (or even slightly better than) CFSv1 (Xue et al. 2013).

The procedure takes into account the factor that there

FIG. 2. Distribution of anomaly correlations between observed and predicted SST anomalies at the 3-month lead time in (a) CCSM3,

(b) CM2.2, (c) ECHAM4a, (d) ECHAM4f, (e) GEOS-5, (f) CFSv1, (g) CFSv2, (h) SSTnudging, and (i) persistence. The hindcasts start

from April initial conditions.
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is a discontinuity in the CFSv2 reforecast and reanalysis

data with significantly warmer mean SST appearing in

the tropical Pacific after 1999 than before. The discon-

tinuity likely results from the assimilation of new satel-

lite observations in the CFSR initial conditions starting

from 1999 (Kumar et al. 2012), which should be taken

into account in defining the predicted SST anomalies.

However, it was also found that applying two climatol-

ogies clearly degrades SST prediction skill in other

ocean basins, particularly in the extratropical oceans.

Because the global SST predictions are evaluated in this

study, we chose to use one climatology derived from the

whole forecast period. This choice is also more consis-

tent with evaluations of other hindcasts.

Compared with the NMME component systems

(Figs. 2a–g and 3a–g), SST prediction in the SSTnudging

hindcast (Figs. 2h and 3h) generally shows equivalent skill

in the western and central Pacific at both 3- and 6-month

lead times. On the other hand, the SSTnudging skill is

clearly lower than those from the others in the eastern

equatorial Pacific. At the 3-month lead time, there is a

region with correlation below 0.4 in SSTnudging (Fig. 2h),

extending from the central to eastern equatorial Pacific

and farther southward along the coastal South America,

which is lower than all NMME component systems

(Figs. 2a–g). The correlation skill also drops faster from

the 3- to 6-month lead time in SSTnudging over these

regions. For 6-month lead time, SSTnudging correlation

skill is mostly below 0.4, clearly lower than the NMME

component systems. However, SSTnudging skill is still

generally better than persistence (i.e., Figs. 2i and 3i) in

the eastern equatorial Pacific, especially at the 6-month

lead time.

The relatively poor skill of SSTnudging in the eastern

Pacific could be related to the biases in its ocean initial

conditions. Analysis in Kumar et al. (2014, see their

Figs. 8, 10 and 11; also the current Fig. 1) shows that

nudging SST does not replicate observed variability in

the eastern equatorial Pacific well, with the simulated

variability significantly weaker than the reality along the

thermocline. This is also consistent with the assessment

of HC in Fig. 1. The bias is likely due to a deficiency

commonly appearing in current ocean general models,

that is, the vertical processes are poorly represented,

which is particularly important in regions with shallow

thermoclines like the eastern equatorial Pacific. Because

FIG. 3. As in Fig. 2, but at the 6-month lead time.
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of the deficiency, when simulations are only constrained

by observed SSTs, the observed subsurface variability is

likely weaker in the eastern equatorial Pacific, not to

mention the errors in the SST-forced wind stresses

influencing coupled interactions. These initial errors in

SSTnudging can persist and even grow during the fore-

cast period, while signals propagating eastward from the

areas near date line (where ocean variability in the SST-

nudged simulations replicates observations well) may

also beweakened by the diffused thermocline. Bothmay

contribute to the low prediction skill in the eastern

equatorial Pacific in hindcast SSTnudging. In contrast,

hindcasts initialized from sophisticated ocean data as-

similation systems (e.g., the NMME hindcasts) with

better representation of oceanic variability in the east-

ern Pacific reflect this advantage as better prediction

skill. This skill comparison between the SSTnudging

hindcast and the NMME component hindcasts suggests

that assimilation of subsurface information contributes

to improving the SST predictions in the tropical Pacific,

while the balance between forecast model and initial

conditions may be a secondary factor. The latter argu-

ment is also supported by a recent experiment showing

little skill difference in ENSO SST predictions when

either full or anomaly ocean initializations are applied

(Zhu et al. 2012b).

In addition to the relatively high skill in the tropical

Pacific, there are also other regions with reasonable skill

for most forecast systems. At the 3-month lead time

(Fig. 2), all hindcasts including SSTnudging show

equivalent skill in the tropical southwestern Indian

Ocean where the Seychelles Dome (Yokoi et al. 2008) is

located. In the hindcasts of GEOS-5, CFSv2, and

SSTnudging, skill is also present in the tropical Atlantic

Ocean, better than other hindcasts. In addition, almost

all hindcasts exhibit some skill in the extratropical ocean

basins, like the southern subtropical Pacific, the North

Atlantic, and the North Pacific. At the 6-month lead

time (Fig. 3), relatively high correlation skill appears in

the northern tropical Atlantic in GEOS-5, CM2.2, and

CFSv2, and more or less in SSTnudging, which has been

suggested to be associated with the remote effect from

ENSO (Hu and Huang 2007). Overall, it is encouraging

that SSTnudging can forecast the SSTAs as well as the

NMME component systems do in ocean basins other

than the tropical Pacific at these two lead times.

The above finding suggests that sophisticated ocean

data assimilation do not provide much improvement in

the SST predictions in basins other than the tropical

Pacific. There are many factors that might potentially

contribute to this. First, it is possible that because of

biases the current generation of models is unable to

benefit from sophisticated ocean data assimilation

procedures and the availability of subsurface ocean

observations. In fact, current climate models indeed

present substantial biases in these basins, such as the

tropical Atlantic (Huang et al. 2007). Further, in com-

parison with the tropical Pacific, current ocean analysis

systems also show much higher uncertainties in esti-

mating ocean variability in other ocean basins [e.g.,

Fig. 1 in Zhu et al. (2012a)]. These uncertainties will

undoubtedly bring uncertainties in the predicted SSTs

and thus degrade SST predictions, which will be dis-

cussed more when evaluating HC predictions below

(Fig. 7). It is also possible that, outside major upwelling

zones, the oceanic mixed layer plays a more dominant

role than the thermocline fluctuations on seasonal time

scales. No matter which factor contributes more, our

skill comparison indicates that at present SST nudging is

an effective way to enhance SST prediction capability in

ocean basins other than the tropical Pacific. The

method, by ensuring a balance between forecast models

and initial conditions, might be more effective than use

of subsurface ocean observations in advanced ocean

data assimilation schemes to improve the accuracy of

ocean initial conditions for these basins. It is only with

reduction in model biases and improvement in ocean

data assimilations over these basins that the advantages

from increasing ocean observations can be recognized in

our prediction practice.

To further evaluate the SST predictions of SSTnudging,

Figs. 4–6 present the anomaly correlation and root-

mean-square error (RMSE) between the observed and

predicted SSTA time series as a function of lead time

based on the hindcasts from SSTnudging and NMME

(including both full ensemble members and four mem-

bers). The chosen SSTA time series represent major

modes in three tropical oceans, and in these modes

ocean dynamics plays a critical role for their evolutions.

In particular, Fig. 4 is for ENSO in the tropical Pacific,

represented by the averaged SSTA over the Niño-3.4
region (58S–58N, 1708–1208W); Fig. 5 is for the ATL3

index (i.e., averaged SSTA in 38S–38N, 208W–08), rep-
resenting the zonal equatorial mode in the tropical At-

lantic; Fig. 6 examines the eastern Indian Ocean (EIO)

(108S–08, 908–1108E) and western Indian Ocean (WIO)

(108S–108N, 508–708E) indices, which respectively repre-

sent the eastern and western poles of the Indian Ocean

dipole in the tropical Indian Ocean. In addition to the skill

comparison of onemodel versus another, comparisons are

also done in the framework of multimodel ensemble

forecast (i.e., NMME vs NMMEpSSTndg and NMME4E

vs NMME4EwSSTndg). The difference between NMME

and NMMEpSSTndg is whether SSTnudging is included

as an extra member or not. Again, this comparison

reflects a practical view, and is conducted to examine
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whether there are any gains or losses if SSTnudging is in-

cluded as part of the overall NMMEmultimodel ensemble

system. On the other hand, the comparison between

NMME4E and NMME4EwSSTndg does not include the

positive influence from different ensemble size, and is a

stricter validation about the effect because of inclusion of

forecasts with the simple ocean initialization scheme.

However, because only one out of seven (or eight) mem-

bers is different between NMME and NMMEpSSTndg

(between NMME4E and NMME4EwSSTndg), the dif-

ferences are expected to be marginal. In fact, signifi-

cance tests based on the two-tailed z test indicate that

differences in correlation skill are not significant at the

90% confidence level. Thus, only a qualitative conclu-

sion can be drawn.

For the Niño-3.4 index hindcasts for each NMME

model (Fig. 4), there is little skill difference between

constructions using their full ensemble members (ex-

tending from 6 to 24) and those using 4 members, which

is consistent with studies by DelSole et al. (2014) and

Zhu et al. (2015), and is due to the high signal-to-noise

ratio in ENSO (Kumar and Hoerling 2000). However,

there are substantial differences evident among the

NMME component systems. In particular, in terms of

anomaly correlation for the NMME models using their

full ensemble members, there are systems with correla-

tions of around 0.8 at all lead times of 8 months, but

there are also systems for which correlation skill drops

quickly to around 0.6 at the lead times of longer than

4 months. The difference in RMSE can also reach above

0.28C. For SSTnudging, as expected from the large biases in

its initial conditions in the easternPacific (Kumar et al. 2014;

Fig. 1), the prediction skill of Niño-3.4 index is generally

below all the NMME component systems, but clearly

better than persistence at lead times longer than 3 months.

The multimodel ensemble hindcasts (i.e., NMME,

NMMEpSSTndg, NMME4E, and NMME4EwSSTndg)

generally improve on all component hindcasts in terms

of both anomaly correlation and RMSE, which proves

the utility of themultimodel ensemblemethod (Kirtman

and Min 2009; Kirtman et al. 2014). The difference be-

tween bothNMMEandNMMEpSSTndg and that between

NMME4E and NMME4EwSSTndg are small as expected.

Comparing them more closely, NMME (NMMEpSSTndg)

looks slightly better at short (long) lead times. What is

more interesting is that NMME4EwSSTndg shows

FIG. 4. (a) Anomaly correlation coefficients and (b) RMSEs (8C) of Niño-3.4 index as a function of forecast lead

months (x axis) after removing the mean bias. Solid curves in blue (gray) are for forecasts of SSTnudging (each

NMMEmembermodel with full ensemble size). Solid curves in green (red) are formultisystem ensemble forecasts of

NMME (NMMEpSSTndg). Dashed curves in dark gray are persistence forecast. Solid gray curves with3marks are

for each NMME member model with four ensemble members. Dashed curves in green (red) are for multisystem

ensemble forecasts of NMME4E (NMME4EwSSTndg).
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certain improvements that are different thanNMME4E,

which seems to suggest that the CFSv2 model can better

cancel errors in other NMME models when using the

simple ocean initialization scheme than using the CFSR

(Saha et al. 2010). In addition, there is a skill rebound at

the lead times of 7–9 months in all hindcasts, which re-

flects that prediction systems are generally more skillful

in predicting the SSTs during the mature ENSO state

(when slowly evolving subsurface heat-content anoma-

lies emerge at the surface as SSTs) than the transient

ones during developing stage.

For the ATL3 index (Fig. 5), prediction skill is clearly

lower than that of the Niño-3.4 index for all systems, and

further, could not even beat persistence for short lead

forecasts. In contrast to little difference in Niño-3.4
(Fig. 4), substantial differences appear in some NMME

component systems when using four ensembles instead

of their full ensemble, and are likely due to the low signal-

to-noise ratio in ATL3 (Kumar and Hoerling 2000).

Further, the skill difference among the NMME com-

ponent systems is also larger than that for the Niño-3.4
index, which can reach 0.6 (0.58C) in anomaly correla-

tion (RMSE) at some lead times. It is encouraging that

the prediction skill (in terms of both anomaly correla-

tion and RMSE) of SSTnudging lies within the skill

range of the NMME component systems. Furthermore,

the SSTnudging skill is better than the median skill of all

hindcasts at most lead times. Compared with persis-

tence, skill for SSTnudging is clearly better at lead

times longer than 4 months, and also is not below it

much at short lead times. In addition, the multimodel

ensemble hindcasts (i.e., NMME, NMMEpSSTndg,

NMME4E, and NMME4EwSSTndg) generally have

better skills than individual system. However, NMME is

clearly better than NMME4E, which confirms that the

low signal-to-noise ratio in ATL3 requires larger en-

semble sizes that in tropical Pacific to realize skill. More

encouragingly, NMMEpSSTndg (NMME4EwSSTndg) is

better than NMME (NMME4E) in terms of anomaly

correlationmetric for almost all lead times of 0–7months,

which is indicative of the benefit from SSTnudging.

Predictions of EIO andWIO indices (Fig. 6) are similar

to ATL3, but the beneficial effect from SSTnudging is

larger for EIO than WIO. In addition, we analyzed the

prediction skill (figures not shown) for the averaged SSTA

in the tropical southwestern Indian Ocean (SWIO; 208–
108S, 508–708E) and the Atlantic’s main development

region for hurricanes (MDR; 108–208N, 808–208W). It was

found that their predictive skill in SSTnudging was com-

parable to the NMME component systems.

To better understand SST prediction skill, HC pre-

dictions were also evaluated by comparing CFSv2 with

SSTnudging (note that HC fields or three-dimensional

ocean temperatures from NMME are unavailable). The

FIG. 5. As in Fig. 4, but for the ATL3 index.
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HC forecasts at the 0-month lead time reflect the quality

of ocean initial conditions in the upper oceans, which is

evidenced by high spatial resemblance between Figs. 1

and 7b. By comparing them between CFSv2 and

SSTnudging, it is clear that HC states are better initial-

ized in CFSv2 due to assimilations of subsurface obser-

vations. As prediction continues, however, the HC

prediction skill drops faster in CFSv2 than SSTnudging,

whichmight suggest a smaller initial shock in SSTnudging.

For the 6-month lead time the HC prediction skills be-

come comparable in a global view, even though some

regional differences can be noted. Specifically, in the

eastern tropical Pacific, HC evolutions are always pre-

dicted worse in SSTnudging than CFSv2 mainly due to

FIG. 6. As in Fig. 4, but for (a),(b) EIO and (c),(d) WIO indices.
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the larger biases in SSTnudging’s initial states (Kumar

et al. 2014; Fig. 1), which explain the lower SST pre-

diction skills in SSTnudging shown above (i.e., Figs. 2, 3,

and 4). On the other hand, it should be noted that, be-

cause more propagating signals appear in HCs than in

SST, a rather large portion of HC prediction skill might

not rely on the regional HC initial states. The skill over

the equatorial Atlantic in SSTnudging is a good example

of this (Figs. 7b,d,f,h). The skill seems to propagate from

the northern tropical Atlantic into the equatorial

waveguide, and propagate farther along the equator into

the eastern Atlantic, which also reflects westward after

reaching the eastern boundary. All these processes look

consistent with the physics identified previously (Huang

and Shukla 1997; Zhu et al. 2012c), which, however, are

less evident in hindcast CFSv2 (Figs. 7a,c,e,g).

The differences between hindcasts for SSTnudging

and CFSv2 might also be due to the influence of assim-

ilation of subsurface observations in generating the

initial states of hindcast CFSv2 (Saha et al. 2010).

FIG. 7. Distribution of anomaly correlations between GODAS-analyzed and predicted heat-content anomalies in

the upper 300m at a (a),(b) 0-, (c),(d) 3-, (e),(f) 6-, and (g),(h) 9-month lead time; (left) CFSv2 and (right)

SSTnudging.
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Assimilating subsurface observations could introduce

unphysical (or numerical) noises. For basins like the

tropical Atlantic where the signal-to-noise ratios are

relatively low, the numerical noises could explain a large

amount of variance (Zhu et al. 2012a). Accordingly, the

derived ocean state might deviate substantially from

the physics of prediction models, which could bring

inconsistencies (or shocks) during the prediction, and

consequently contaminate prediction skill. In contrast, in

the simple initialization scheme, the subsurface condi-

tions are purely derived from the ocean model forced by

SST-driven fluxes. This may lead to larger consistency

between the initial subsurface ocean and the physics of

prediction model, potentially benefitting both HC and

SST predictions. Therefore, we argue that it is an effec-

tive way to enhance SST prediction capability in most

basins other than tropical Pacific by pursuing the balance

between forecast models and initial conditions.

Finally, we evaluate the value of SSTnudging in the

frame of multimodel ensemble forecast (Kirtman and

Min 2009; Kirtman et al. 2014). Figure 8 presents the

global correlation skill differences between NMME and

NMMEpSSTndg for the 3- and 6-month lead times.

Again, significance tests based on the z test indicate that

differences in correlation skill are significant at the 90%

confidence level over few regions, and thus only a quali-

tative conclusion can be drawn.At the 3-month lead time,

except for a few locations the skill improvement by in-

cluding SSTnudging is almost globally distributed. The

largest improvement appears in the tropical western

Pacific–Indian Oceans and the extratropical Pacific. At

the 6-month lead time, while improvements over the

above regions are still evident, there are more regions

with decreased skill, including the eastern Pacific. This

suggests that, in a global view, SSTnudging benefits the

multimodel ensemble more at the short than long lead

times, probably because it takes time for the initial large

subsurface biases of SSTnudging to be evident in the

surface temperature. It is also probable that smaller ini-

tial shock in SSTnudging benefits the multimodel en-

semble at the short lead times. In general, the global skill

difference maps suggest that SSTnudging would benefit

themultimodel ensemble forecast. Figure 9 presents the skill

difference between NMME4E and NMME4EwSSTndg, in

FIG. 8. The correlation skill difference of twomultimodel at (a) 3- and (b) 6-month lead time.

The contour interval is 0.05 with negative contours dashed. The shaded regions represent

positive values.
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which skill differences due to ensemble size were ruled

out. Comparing Fig. 9 with Fig. 8, it can be found that the

major findings remain unchanged. FromFig. 9, however,

it is surprising to see that ENSO prediction would also

slightly benefit from the replacement of hindcast CFSv2

with SSTnudging.

4. Conclusions and discussion

In this study, we applied a simple ocean initialization

scheme to the NCEP latest seasonal prediction model,

CFSv2. The scheme ismuch simpler than the sophisticated

ocean data assimilation schemes as applied in operational

climate predictions at NCEP. In the scheme, SST is the

only observed information applied to derive ocean initial

states. The physical basis for the method is that, through

air–sea interaction, SST is able to reproduce some realistic

ocean evolutions by forcing the atmospheric winds.

We examined the SST predictions based on the

scheme and also compared with hindcasts from the

NMME project. It was found that, due to substantial

biases in the eastern Pacific in the ocean initial condi-

tions, its SST predictions for this region are not as good

as those with sophisticated initialization schemes (e.g.,

hindcasts in the NMME). However, in other basins, SST

predictions seem comparable to those with sophisticated

initialization schemes. These comparisons indicate that, at

the present, assimilating subsurface information greatly

improves the prediction skill in the tropical Pacific, while

nudging observed SST information is an effective way to

enhance SST prediction capability in other ocean basins.

In addition, by skill evaluations in the frame ofmultimodel

ensemble forecast, we found that the hindcast using the

simple initialization scheme would also generally benefit

the NMME forecast.

As for ENSO predictions, we note that, using the sim-

ilar initialization scheme, SINTEX-F (Luo et al. 2005,

2008) reported skills clearly higher than ours. There are

many factors that can potentially contribute to the dif-

ference. First, our predictions start fromApril only, which

is the most challenging month for ENSO prediction pos-

sibly due to the existence of the spring predictability

barrier (e.g., Luo et al. 2005; Jin et al. 2008). We also

found our SST-derived subsurface conditions in the

eastern equatorial Pacific were the least accurate in

April (Fig. 10), which will definitely degrade the SST

FIG. 9. As in Fig. 8, but for the difference between NMME4EwSSTndg and NMME4E.
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predictions starting from April. Therefore, it is reason-

able to expect that higher skills could be achieved for

forecasts starting from all seasons as in Luo et al. (2005,

2008). Second, as mentioned, our application of the

simple initialization scheme is not optimal in its design

[i.e., the model generating OICs (i.e., CFSv1) is not the

same as that used for predictions (i.e., CFSv2)]. Even

though the two models show some common biases, like

the warm SST biases in the southeast Pacific and At-

lantic (figures not shown), each model has its own bias

distribution. There could still be an initial shock because

of the differences between the climatologies of CFSv1

and CFSv2. Third, our atmospheric initial conditions are

directly taken from CFSR (Saha et al. 2010), different

from the practice in Luo et al. (2005, 2008) that adopted

both atmospheric and oceanic initial conditions from a

continuous run with SST nudged to observations. Thus,

our scheme generates less balance initial conditions be-

tween the ocean and atmosphere than that in SINTEX-F

(Luo et al. 2005, 2008), even though the effect from the

imbalance might be smaller in CFSv2 than other models

(Zhu et al. 2012b). However, it is also noted that, even

for the same start month (i.e., April), SINTEX-F still

seems to have better skills than found in our analysis

[Fig. 5a in Luo et al. (2008)]. Thus, the last two factors

may be the major reasons for the difference between

SINTEX-F and our results. In addition, there is another

issue, which could potentially further reduce the initial

shocks, that is, nudging the model to the observed SST

anomalies instead of the full SST fields. This procedure

could reduce the shocks due to the differences in cli-

matology between model and the reality.

In summary, the skill presented here is a baseline es-

timate for this approach, as we implied in introduction.

The present analysis is a first step toward testing the

feasibility of obtaining ocean initial states based on SST

nudging, and exploring the possibility of extending the

hindcasts over a longer period. We expect a better

FIG. 10. Seasonality (monthly variation) of anomaly correlations betweenGODAS-analyzed

heat-content anomalies and those derived by CFSv1 with SSTs nudged to observations along

the equator (averaged over 58S–58N) in the Pacific.
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balance between the forecast model and initial condi-

tions, if the same model (e.g., CFSv2) is used for both

generating OICs (and/or atmospheric initial conditions)

and predictions. The better balance is likely to bring

improvements over the present SST prediction skill in the

tropical Pacific. The corresponding experiments with

CFSv2 are under consideration. These experiments will

also help quantify usefulness of the subsurface oceans in

predicting ENSO. Further, recent studies have identified

the importance of perturbing OICs in climate predictions

(Zhu et al. 2012b, 2013a,b; Bellucci et al. 2013), and we

argue that such a simple ocean initialization scheme can

be another way to generate different set of OICs, which

would be a good supplement to most current operational

practices with sophisticated schemes.
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