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1 Introduction

Recently, considerable efforts have been devoted to predict-
ing the evolution of climate with a lead time of 1–30 years. 
These efforts are referred to as decadal climate predictions, 
and were included as part of the CMIP5 model evaluations 
(Taylor et al. 2012). The success of skillful decadal predic-
tions relies on the premise in our ability to predict the low-
frequency modes of coupled ocean–atmosphere variabil-
ity (Soloman et al. 2011; Meehl et al. 2013). Examples of 
such low-frequency modes are Pacific Decadal Oscillation 
(PDO); Atlantic Multi-decadal Oscillation (AMO). The 
sea surface temperature (SST) signature of these modes 
often has extratropical fingerprint (Zhang and Delworth 
2006; Meehl and Hu 2006; Wang et al. 2009; Sutton and 
Dong 2012). It is the expectation that skillful prediction of 
these SSTs, and subsequent response in atmospheric and 
terrestrial variability will lead to useful prediction of vari-
ables of societal relevance such as surface temperature and 
precipitation.

The ongoing assessment of skill of decadal prediction 
efforts in forecasting terrestrial surface temperature and 
precipitation so far has been disappointing. The skill of 
decadal predictions is generally assessed based on value 
added by initializing the current state of the ocean and com-
paring skill against the uninitialized predictions (Goddard 
et al. 2013). Of the analyses that do provide an assessment 
of skill over terrestrial regions (Teng et al. 2011; van Old-
enborgh et al. 2012; MacLeod et al. 2012; Kim et al. 2012; 
Muller et al. 2012; Goddard et al. 2013; Doblas-Reyes 
et al. 2013), the results have not been encouraging. In some 
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of the analyses it has also been noted that for ensemble 
mean prediction the observed associations between the 
SST fingerprint of low-frequency modes of SST variability 
and the atmospheric and terrestrial variability are not repli-
cated (Teng et al. 2011; van Oldenborgh et al. 2012; Mul-
ler et al. 2012). Some specific examples from the published 
literature include: “…A1B and Commitment ensembles 
produce similar AMOC, subsurface temperature, and SST 
mean signals during the first decade. It is more difficult 
to find coherent signals in the atmospheric circulation….” 
(Teng et al. 2011); “…In spite of the fact that these telecon-
nections were also active over the period 1960–2009, the 
multi-model ensemble does not show skill in these regions, 
nor in other regions with AMO or decadal ENSO telecon-
nections…” (van Oldenborgh et al. 2012). In the ensem-
ble prediction mode, is the inability to reproduce observed 
associations between the SST fingerprint of PDO, AMO 
and corresponding atmospheric and terrestrial variables an 
artifact of model biases or a consequence of some funda-
mental property of coupled evolution of ocean–atmosphere 
system in extratropical latitudes?

On the shorter lead time prediction of variability of sea-
sonal time scales, a similar issue of predictive value of SST 
fingerprint associated with PDO and AMO is continued to 
be debated. Observational results based on the simultane-
ous analysis of SST, atmospheric, and terrestrial variabil-
ity show distinct associations between them (Gershunov 
and Barnett 1998; Dai 2013; Mills and Walsh 2013). Such 
associations are then conjectured to add predictive value 
towards improving skill of seasonal predictions, for exam-
ple, “…Considering the large consistency of the atmos-
pheric variables associated with the PDO within a season 
and the persistence of the PDO index over several months, 
there is the potential for modest amounts of PDO-derived 
atmospheric predictability on monthly to seasonal time 
scales over the geographical regions highlighted here…” 
(Mills and Walsh 2013).

Against the backdrop of observational studies on sea-
sonal time scale, a different set of observational stud-
ies analyzing the predictive value of SST associated with 
low-frequency modes such as PDO, done in forecast mode 
(in that only the past value of SSTs is used to predict the 
atmospheric and terrestrial variability in future) has not 
shown promising results (Davis 1976; Guztler et al. 2002). 
Inferences based on general circulation model simulations 
have also found little influence of extratropical SSTs in 
constraining atmospheric and terrestrial variability (Pierce 
2002; Kumar et al. 2013). We note that a constraining 
influence of extratropical SST anomalies in modulating 
atmospheric and terrestrial anomalies is a prerequisite for 
the predictive value of those SSTs in climate predictions; 
the influence of SST anomalies associated with El Niño—
Southern Oscillation (ENSO) being such an example 

(Trenberth et al. 1998; Hoerling et al. 2001). Once again, 
is the dichotomy between results based on simultaneous 
analysis versus done in a predictive mode a consequence of 
some fundamental property of coupled evolution of ocean–
atmosphere system in extratropical latitudes?

In this paper, by revisiting a simple model of coupled 
ocean–atmosphere variability we attempt to demonstrate 
that the discrepancy noted in seasonal and decadal predic-
tion efforts, viz, skillful prediction of ensemble mean SST 
anomalies does not translate into added predictive value of 
atmospheric and terrestrial variables, is related to a funda-
mental property of coupled evolution of ocean–atmosphere 
system in extratropical latitudes. Our analysis is based on 
the model of Barsugli and Battisti (1998) and Bretherton and 
Battisti (2000) (hereafter referred to as BB1998 and BB2000 
respectively), and particularly the analysis of BB2000. We 
note that although part of our analysis may seem like merely 
a revisit of BB2000, it is different, and is of importance in 
two aspects: (i) the analysis establishes the connection 
between the analyses of BB2000 and series of recent results 
on the disappointing side of initialized decadal predictions 
in improving skill of terrestrial quantities, or the discrepancy 
between associations noted in observational studies and their 
inability for improving skill of seasonal predictions. We note 
that a connection with the analyses of BB200 has not been 
put forth as a possible explanation for the lack of predictive 
skill over land, and (ii) the analyses of BB2000 are extended 
in a predictive mode that was discussed only peripherally in 
the concluding section of BB2000.

2  The model and its validation

The simple model of BB1998 and BB2000 is for the cou-
pled evolution of an atmospheric (Ta) and an oceanic (To) 
temperature index. The time evolution of two indices is 
given by the following equations:

The nomenclature follows that of BB2000, and a 
(=1.12) and d (=1.08) are the damping terms, c (=1) and 
b (=0.5) provide the coupling between ocean and atmos-
phere, β (=40) is related to the heat capacity of the oceanic 
mixed layer, and N is the Gaussian white noise. Details 
about the model formulation are given in BB1998 and 
BB2000. The indices Ta can be interpreted as the index 
associated with an atmospheric signature of the variability, 
the PDO, for example, and To as the index for the corre-
sponding fingerprint in the ocean SST variability.

(1)
∂Ta

∂t
= −aTa + bTo + N(t)

(2)β
∂To

∂t
= cTa − dTo
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We first demonstrate the applicability of the simple 
model by comparing it against results from a coupled 
ocean–atmosphere general circulation model (COAGCM). 
The COAGCM simulation used in this analysis is a 500-
year simulation with the National Centers for Environmen-
tal Prediction (NCEP) Climate Forecast System (CFS) cou-
pled model version 1 (Saha et al. 2006). Results from the 
same simulation were also reported in Kumar et al. (2013).

For the purpose of comparison between COAGCM and 
the simple model, we focus on the ocean and atmosphere 
variability related to the PDO. For COAGCM, Fig. 1 (top 
panels) shows the spatial structure of the atmospheric and 
oceanic components of the PDO variability, and the corre-
sponding time series are shown in the bottom panels. The 
PDO in the COAGCM simulation was identified based 
on empirical orthogonal function (EOF) analysis. Further 

Fig. 1  a Spatial pattern of H200 anomalies (unit: gpm) associated 
with the leading EOF of monthly mean H200 computed over the 
Pacific–North American region (20°–90°N, 150°E–30°W), b SST 
anomalies (unit: K) associated with the EOF of H200 in (a), (c) nor-

malized PC time series (red) of the first EOF of H200, and d normal-
ized time series (blue) of projection coefficients for SST anomalies 
projecting onto the SST pattern in (b). The time series in (c) and (d) 
are only shown from year 100 to 200
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details appear in Kumar et al. (2013) who also referred to 
the SST fingerprint of the PDO as the oceanic signature of 
the PDO (OPDO) and the atmospheric fingerprint as the 
atmospheric signature of the PDO (APDO).

Of relevance to our analysis are the characteristics of 
time series of the leading EOF of 200 hPa heights (H200) 
and the associated SST. The time series associated with 
H200 has high-frequency variations, while for SST, varia-
tions are on a longer time scale. This contrast is summarized 
succinctly by autocorrelations for the respective time series 
that are shown in Fig. 2 (top panel, black curves). The auto-
correlation for the time series for monthly mean H200 has 
a very sharp drop with 1-month autocorrelation of ~0.2. In 
contrast, the autocorrelation for the time series for the SST 
pattern is on a longer time scale, and the value of ~0.2 auto-
correlation is reached at about 6 months.

The lead-lag correlation between H200 and SST 
time series is shown in Fig. 2 (bottom panel, black curve) 
and illustrates the direction of forcing in the evolution of 
the coupled ocean–atmosphere system. The correlation 
is larger (smaller) when H200 leads (lags) the SST and 

indicates that it is the variability in H200 (the atmospheric 
component of the PDO or the APDO) that forces the var-
iations in SST (the ocean component of the PDO, or the 
OPDO), while the influence of OPDO in constraining the 
future variations of the APDO is much smaller (Kumar 
et al. 2013).

The results shown in Fig. 2 capture the basic concepts of 
coupled ocean–atmosphere variability in the extratropical 
latitudes (Davis 1976; Frankignoul and Hasselmann 1977): 
atmospheric variability can be considered as a white noise, 
and hence has a sharp drop in autocorrelation; a larger 
thermal inertia of the ocean translates white noise atmos-
pheric forcing into variability on a longer time scale, and as 
a consequence, the autocorrelation is also characterized by 
a longer time-scale; the lead-lag correlation being appreci-
ably larger when the APDO index leads the OPDO index 
signifies that the atmospheric variability is the forcing for 
the ocean with little feedback from the ocean back to the 
atmosphere.

We next show that in the simple model if To and Ta 
are considered as a proxy for the APDO and OPDO index 

Fig. 2  a Autocorrelations for 
the 500-year-long monthly PC 
time series of the first EOF of 
H200 (solid black line) and the 
time series of SST projection 
coefficients (dashed black line) 
from the COAGCM simula-
tion and autocorrelations for 
the monthly time series of 
atmospheric anomaly Ta (solid 
red line) and ocean anomaly 
To (dashed red line) from the 
simple model. b Lead–lag cor-
relations between the 500-year 
monthly PC time series of 
the first EOF of H200 and the 
time series of SST projection 
coefficients (black) and between 
the time series of Ta and To 
(red) from the simple model. 
Negative lags in (b) mean that 
the H200 (Ta) leads the SST 
(To)
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respectively, the autocorrelations and lead-lag correlations 
successfully replicate the results based on the COAGCM 
simulation. For a specific choice of parameters listed earlier, 
the simple model was integrated for one million time steps 
and the autocorrelations for Ta and To and lead-lag corre-
lation between Ta and To are also shown in Fig. 2 top and 
bottom panels respectively (red curves). The autocorrelation 
for Ta has a sharp drop while To has a longer time scale. 
Lead-lag correlations are larger when Ta leads To and the 
correlation drops sharply when To leads Ta. The behavior 
of autocorrelations and lead-lag correlation based on the 
simple model captures the corresponding behavior for the 
COAGCM simulation. The simplified model, therefore, cap-
tures the essence of coupled ocean–atmosphere evolution in 
the extratropical latitudes simulated in the COAGCM. With 
this fact in hand, and similar to BB2000, we use the con-
venience of the simple model for further analysis.

3  Results

3.1  Atmospheric response to specified SSTs

We first revisit the results of BB2000 in the setting of an 
atmospheric general circulation model simulation forced 
with specified time evolution of ocean temperature (the so-
called AMIP simulations). This analysis, although is the 
same as in BB2000, provides the necessary background 
and helps in understanding the discussion related to the 
extension of BB2000 in a setting of seasonal and decadal 
predictions.

The ensemble of AMIP simulations for the analysis is 
based on following steps:

•	 From a single integration of the simplified model for 
one million time steps we have the time series of Ta and 
To;

•	 The evolution of To time series is then specified in the 
integration of the atmospheric component (Eq. 1) (i.e., 
the AMIP mode) of the simplified model but with a dif-
ferent realization of the Gaussian white noise. The lat-
ter choice is justified on the basis that the atmospheric 
forcing is stochastic, and the same stochastic forcing 
that led to the generation of the original Ta and To is not 
expected to be replicated in initialized predictions;

•	 An ensemble of atmospheric realizations with 1,000 
members was generated with different stochastic 
forcing, and the atmospheric time series thus gener-
ated is denoted by T’ia where prime differentiates the 
“replayed” atmospheric time series from the original 
time series Ta, and i indicates the ensemble member.

The process described above is equivalent to generating 
ensemble of initialized climate predictions with perturbed 
initial conditions based on COAGCMs.

The correlations between original atmospheric time series 
Ta and the replayed time series T’ia, for various time aver-
ages (achieved by band-pass filtering of time series with dif-
ferent frequencies) are shown in Fig. 3. As for BB2000 the 
correlations are done in two ways: (i) correlation of individ-
ual T’ia in the ensemble of 1,000 realizations with Ta, and 
(ii) correlation of ensemble mean T’a with Ta. The results 
reproduce those of BB2000: 

•	 The average of the correlations between individ-
ual replayed realizations and original atmospheric 
time series increases as longer time scales are retained. 

Fig. 3  Correlations (solid line) 
between band-pass filtered 
original atmospheric time 
series and band-pass filtered 
1,000-member ensemble mean 
time series of the AMIP simula-
tions and the averages (dashed 
line) of the correlations between 
the band-pass filtered original 
atmospheric time series and 
band-pass filtered time series 
of individual members of the 
AMIP simulations. The grey 
shading indicates ± one stand-
ard deviation of the spreads of 
the correlations with the 1,000 
members around the mean 
values
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At lower frequencies, the replayed atmospheric 
time series, therefore, captures larger and larger fraction 
of the original atmospheric time series Ta. For very long 
time-averages, the correlation between two time series 
asymptotes at ~0.5 or ~25 % variance of original Ta is 
captured;

•	 Due to sampling variability in individual realizations 
induced by different realizations of atmospheric noise, 
there is a spread in the correlations and is indicated by 
the grey area straddling the average correlation;

•	 The correlation of the ensemble mean of individual 
realizations T’a with Ta is substantially higher. For long 
time-averages, the correlation for the ensemble mean 
asymptotes to one indicating that all of low-frequency 
variations in the original atmospheric time series Ta 
can be captured by the replayed ensemble mean time 
series when To is specified. However, the amplitude of 
the ensemble mean time series is smaller (not shown). 
The reason that correlation with the ensemble mean 
is higher is because the noise component in the T’a is 
removed (Kumar and Hoerling 2000).

In the traditional setting of AMIP simulations where the 
observed time series of SST (or in our case, To) is speci-
fied, the component of the variance of the original atmos-
pheric time series captured by the replayed atmospheric 
time series is interpreted as the atmospheric response to 
specified SSTs. Indeed, such interpretation is generally 
made in the context of assessment of potential predictability 
using AMIP simulations (Barnett et al. 1997; Phelps et al. 
2004). This interpretation has been successfully used in the 
context of atmospheric response to tropical SST variability 
particularly related to ENSO. Further, this interpretation is 
justified in the context of ENSO where SSTs indeed repre-
sent an external forcing for the atmospheric variability (Wu 
et al. 2006; Chen et al. 2012), and the atmospheric response 
is potentially predictable if ENSO SSTs themselves can be 
predicted.

The interpretation of the replayed atmospheric vari-
ability as an atmospheric response to ocean forcing (To) 
for the extratropical ocean–atmosphere variability, and the 
use of the atmospheric response interpretation in a predic-
tive sense, however, is problematic. This is so because (i) 
as the lead-lag correlation analysis indicates (Fig. 2) that 
the forcing for the ocean is primarily from the stochastic 
atmospheric variability, and (ii) the future state of the ocean 
(for it to subsequently replay Ta) can only be known if the 
evolution of atmospheric stochastic noise can be predicted 
in the first place. Therefore, interpretation of the replayed 
component of the atmospheric variability as an atmospheric 
response in a predictive sense cannot be made as it relies on 
a knowledge of future evolution of atmospheric stochastic 
(and unpredictable) noise. This was the essence of the brief 

concluding section of BB2000 stating that “Despite the 
excellent hindcast skill of an atmospheric ensemble forced 
by observed SSTs, less than 15 % of the variance in the 
seasonal atmospheric anomaly is predictable six months in 
advance….” In the next section we clarify this concept fur-
ther using initialized prediction experiments based on the 
simple model, and this analysis is a more detailed articula-
tion of BB2000 concluding remark. In Sect. 3.3 we validate 
prediction results based on a simple model using data from 
a seasonal prediction system.

3.2  Skill of Ta and To for initialized predictions

The fallacy of atmospheric response interpretation in the 
context of predictive utility is clarified by assessing the 
correlation skill of initialized predictions and how it dif-
fers from the correlation obtained in the AMIP simulations 
(Fig. 3). The set of initialized predictions is done in the fol-
lowing manner:

•	 From the original time series of Ta and To we start ini-
tialized predictions by selecting 1,000 initial values of 
Ta and To that are 1,000 time steps apart;

•	 For each pair of initial values of Ta and To an ensem-
ble of predictions of size 100 based on Eqs. 1 and 2 is 
generated by using different realizations of atmospheric 
noise.

The average skill of initialized predictions is computed 
based on temporal correlation between the ensemble aver-
age of 100 predictions of Ta and To and the correspond-
ing original Ta and To (which can now be interpreted as the 
verifying observations) over predictions from 1,000 differ-
ent initial conditions. The difference between the analysis 
done in AMIP mode (discussed in Sect. 3.1) and the initial-
ized predictions is that for the former, Eq. 1 is integrated 
with specified To to simulate subsequent values of Ta; for 
the initialized prediction both Ta and To are predicted using 
both Eqs. 1 and 2.

The average prediction skill for monthly mean Ta and 
To is shown in Fig. 4 (black curves). The skill for Ta has a 
much smaller value than for To from the very beginning of 
the forecast. This difference in prediction skill is consistent 
with the autocorrelations (or the persistence time scale) for 
respective time series (Fig. 2)—atmospheric anomalies lose 
their memory on a much faster time scale than the ocean 
anomalies do.

To give a better feel for initialized predictions, we illus-
trate two specific examples in Fig. 5. For the example in the 
top panel, integration starts from a state when both Ta and 
To have substantial initial anomalies. The example on the 
bottom panel starts from a state for which the initial values 
of Ta and To are closer to the climatological value of zero. 
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For the first case, the ensemble mean prediction of Ta (red 
line) and of To (blue line) drifts towards the climatology, 
and is to be expected for initialized ensemble predictions, 
i.e., for longer lead predictions, the probability density 
function (PDF) of the ensemble of predictions will con-
verge to the climatological PDF (Peng et al. 2011; Bransta-
tor and Teng 2010). Even though predictions started with 
the same initial conditions, the spread among predictions 
for Ta quickly reaches the climatological value (Fig. 5, 
orange curves). For To, one also sees the evolving diver-
gence between initialized predictions within the ensemble 
members with lead time, and convergence to the climato-
logical spread. For the case when the prediction starts from 
an initial state closer to the climatology, features similar to 
the previous case are also found. For completeness, Fig. 5 
also shows the verifying time series of Ta and To (black 
curves).

One might argue that increasing time averages may 
lead to a better predictive skill. This, however, is not the 
case as is also illustrated in Fig. 4 where prediction skill 
for longer time-averages is also shown (color curves). This 
is because of two factors that have opposing influence on 
the prediction skill (Chen et al. 2013). The time-averaging, 
by reducing the contribution of stochastic noise, increases 
the signal and should lead to higher predictive skill due 
to an increase in signal-to-noise ratio (Kumar and Hoer-
ling 2000). However, increasing the lead time of predic-
tion that is necessary for longer time averages also leads 
to a reduction in skill countering the positive influence of 
increased time-averaging on prediction skill (Chen et al. 
2013). Therefore, in contrast to increasing simulation skill 
for longer time averaging as was the case for the AMIP 
simulation (Fig. 3), such is not the case for initialized 
predictions.

3.3  Validation of simple model results based on seasonal 
prediction system

Results pertaining to forecast skill in Figs. 4 and 5 from 
the simple model are validated using the extensive hind-
cast data from a seasonal forecast system. Compared to the 
paucity of start dates and a small size of the ensemble for 
each start date in the current generation of decadal hind-
casts (Taylor et al. 2012), seasonal forecast systems provide 
a much richer data set.

The seasonal forecast system used in this analysis is 
the NCEP Climate Forecast System version 2 (CFSv2). 
Of relevance for our discussion is the CFSv2 seasonal 
hindcasts for which four runs for nine target months were 
made every five days starting 1 January without consider-
ing 29 February in leap years. In this study, hindcasts from 
1982–2010 are analyzed. For each month, an ensemble 
mean of 24 forecasts taken from the six available initial 
dates in the month is used to analyze forecasts for the sub-
sequent months. For example, forecasts from 8, 13, 18, 23, 
28 October, and 2 November, with four forecasts from each 
day, are used to compute ensemble mean forecast for nine 
subsequent months after October. Following this exam-
ple, forecasts from October initial conditions for target 
months of November, December, January, etc., are referred 
to as forecasts at the lead time of 0, 1, 2 months, and so 
on. Further details about the CFSv2 hindcast configuration, 
and seasonal forecast system, in general, can be found in 
Kumar et al. (2012) and Saha et al. (2014).

Over the hindcast period, we analyze the skill for the 
ensemble mean of predicted ocean, atmosphere and ter-
restrial PDO indices against their observational counter-
parts. The ocean PDO index for observations and forecast 
are computed by projecting monthly mean SST anomalies 

Fig. 4  Forecast skills of Ta 
and To with data averaged over 
different time averages from 
monthly mean to 12-month 
mean based on prediction using 
the simple model
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on the spatial pattern of SST associated with the observed 
PDO pattern (which is similar to Fig. 1, top right panel). 
Similarly, for the 2-m temperature (T2m) over land the cor-
responding observed and predicted PDO indices are com-
puted by projecting monthly mean values over the North 
America domain (20°N–75°N, 55°W–170°W) on the spa-
tial patterns of T2m associated with the PDO.

Figure 6 shows the time evolution of skill for the ensem-
ble predicted PDO indices associated with SST over North 
Pacific with T2m over North America. Similar to that in 
Fig. 4 for results based on the simple model, the skill for 
the oceanic PDO index is initially much higher than skill 
for T2m index related to PDO. Differences in skill once 
again imply that after initializing the seasonal forecasts, 
although the fingerprint of the SSTs associated with the 
PDO can be predicted at longer leads (mainly due to larger 
thermal inertia of the oceans), it does not impart predicta-
bility on its terrestrial counterpart that is driven much more 
by stochastic variability.

Corresponding to Fig. 5 we also show examples of pre-
dictions for two specific years—forecasts from October 
2001 and 2004 initial conditions. In Fig. 7, forecasts are 
shown for the evolution of projection coefficients of T2m 
and SST on the corresponding PDO patterns. The evolu-
tion of corresponding observed projection coefficients are 
shown in black. For T2m, the ensemble mean prediction 
(red line) converges quickly to zero, and further, the spread 
among 24 forecasts also reaches the climatological spread 
indicating a near complete loss of predictability. For SST, 
on the other hand, convergence of ensemble mean towards 
climatology, and further, the convergence of spread among 
individual forecasts towards the climatological spread are 
on a longer time scale. These results based on a compre-
hensive fully coupled seasonal prediction system are simi-
lar to those in Fig. 5 based on a simple model.

In the final analysis we demonstrate that for the seasonal 
forecast analyzed while the associations between oceanic 
and atmospheric or terrestrial variability are replicated on 

Fig. 5  Two examples of the original time series (black) of Ta (left 
panels) and To (right panels), the predicted time series of 100-mem-
ber ensemble mean Ta (red) and To (blue) from month 0 to 60, and 
the time series (green) of 100-member ensemble mean Ta (left pan-

els) from corresponding AMIP runs. Grey shadings denote the range 
of ± one standard deviation of the spreads of the 100 members 
around the mean values. The orange lines are ± one standard devia-
tion of the climatological PDFs around the mean values
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Fig. 6  Forecast skill of PDO-
related SST (blue) in North 
Pacific and T2m (red) over 
North American land based on 
24-member CFSv2 ensemble 
mean hindcasts with all initial 
conditions from January to 
December

Fig. 7  Top panels CFSv2 9-month hindcasts with October 2001 ini-
tial conditions (24 members); Bottom panels CFSv2 9-month hind-
casts with October 2004 initial conditions (24 members); T2m (left), 
SST (right); Black lines OBS; Red and blue lines 24-member ensem-

ble mean forecasts for T2m and SST; The standard deviation of the 
spreads (grey shading) is normalized by the standard deviation of the 
climatological PDFs (orange line) to eliminate the seasonality
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an individual forecast basis, the same does not happen for 
the analysis based on ensemble mean forecasts. Figure 8 
shows the composite of SSTs (over the ocean), T2m (over 
land) and 500 hPa height based on selecting positive (neg-
ative) phases of OPDO index that are above (below) one 
standard deviation during each month of the forecast. We 
note that for each forecast month a pool of 696 (=24 initial 
conditions × 29 years) forecasts is available. The compos-
ites shown are defined as the difference between months 
with positive and negative phases of the OPDO index and 
divided by 2. This compositing procedure does not pay any 
attention to the initial value of the OPDO index or the fore-
cast continuity.

Notable features in Fig. 8 are: (a) a smooth temporal 
progression of various spatial patterns that is reflection of 
slowly evolving associative relationship between differ-
ent variables in the context of the PDO variability, and (b) 
almost a continuous transition from SST anomalies over the 
ocean to T2m over land reasons for which can be argued 
on the basis that both are driven by circulation anomalies 
as shown by 500 hPa height composites. The respective 
spatial patterns shown in Fig. 8 are very similar to those 
obtained based on simultaneous regression of SST, T2m 
and 500 hPa heights with the OPDO index (not shown).

For analyzing the ensemble mean forecasts we form 
composites based on the initial value of the OPDO index. 
We select positive (negative) phases of the OPDO index 
that are above (below) one sigma, and then follow the 
evolution of SST, T2m and 500 hPa height anomalies dur-
ing subsequent forecast months. Based on this procedure 
5 years (1982, 1987, 1992, 1993, 1997) with positive val-
ues of the OPDO index and 6 years (1998, 1999, 2001, 
2005, 2007, 2010) with negative values of the OPDO index 
were selected. Forecast evolution in Fig. 9 is shown as one 
half the difference of composites between positive and neg-
ative OPDO years. We note that preponderance of positive 
(negative) phases of OPDO index before (after) 1998 is due 
to a low-frequency shift in the OPDO index from a positive 
to a negative phase around the same time.

In comparison of composites in Fig. 8, contrasting fea-
tures to note in Fig. 9 following the evolution of ensemble 
mean composite of forecast are: (a) the spatial structure 
of SSTs in Fig. 9 over North Pacific is similar to that in 
Fig. 8. This is because years selected for the construc-
tion of composite in Fig. 9 are the years that had large 
projection of initial SST state on the oceanic fingerprint 
of the PDO. The results also show that the SSTs over the 
North Pacific slowly evolve towards the climatology; (b) 
the spatial continuity in anomalies from SSTs over the 
ocean to T2m over the land that is apparent in Fig. 8 is 
no longer maintained in Fig. 9. In fact, there is an abrupt 

Fig. 8  Composite differences (+PDO minus −PDO)/2 of CFSv2 hind-
casts with October initial conditions for SST (shadings over ocean, unit: 
K), T2m (shadings over land, unit: K), and 500-hPa height (contours) 
based on 24 individual members and corresponding PDO index. The 
contour interval is 10 gpm with zero contours omitted. Prior to the com-
posite, ENSO-related anomalies are removed
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transition from positive SST anomalies over the western 
coast of the U.S. to negative inland anomalies. The rea-
son for this is lack of appreciable atmospheric circulation 
anomalies (also shown in Fig. 9) that provided the reason 

for an apparent connection between SST anomalies over 
the ocean and T2m anomalies over the land for the com-
posites shown in Fig. 8.

The results shown in Figs. 8 and 9 are reminiscent of 
those described in earlier studies, i.e., although on an indi-
vidual forecast basis apparent teleconnection between oce-
anic fingerprints of low-frequency modes of coupled vari-
ability and atmospheric and terrestrial variability exists, the 
same connection is missing when the analysis is based on 
the ensemble mean prediction. The reason being that once 
initialized, ensemble mean SST anomalies, because of 
larger thermal inertia, persist over a period. However, their 
lack of constraint on the atmospheric variability does not 
lead to appreciable (or consistent) atmospheric circulation 
anomalies that exist on an individual forecast basis. On an 
individual forecast basis, changes in SST (superimposed on 
the persistence) still occur and are forced by chaotic atmos-
pheric variability, and are reflected as associations between 
SST and atmosphere as modes of coupled variability.

4  Summary and discussion

The results of BB2000 simple model run in the predictive 
mode, and evolution of skill with lead time, are fundamen-
tal in explaining the dichotomy seen in the results reported 
for decadal predictions and for resolving the debate about 
the potential utility of the SST fingerprint of PDO and 
AMO in enhancing seasonal prediction skill. Initialized 
decadal and seasonal predictions start from the observed 
state of SSTs, often with initial SSTs projecting strongly 
on the low-frequency modes of coupled ocean–atmosphere 
variability. Ensemble of these predictions essentially fol-
lows the experimental setup discussed in Sect. 3.2.

If SSTs in extratropical oceans do not constrain the 
atmospheric variability in the extratropical latitudes (as evi-
dence by lead-lag correlations in Fig. 2), then as the ensem-
ble mean of SST anomalies evolves towards the climatol-
ogy following their typical persistence (and slower) time 
scale, the ensemble mean of atmospheric and terrestrial 
anomalies still converges to climatology on much faster 
time scale. The prediction skill of atmospheric and terres-
trial quantities, assessed by comparing ensemble mean of 
initialized predictions against the corresponding observed 
single realization then leads to a low prediction skill. This 
is the case noticed in decadal and seasonal predictions in 
the context of having a demonstrable skill for extratropi-
cal SSTs without finding corresponding skill in terrestrial 
quantities.

The other characteristic of initialized predictions—asso-
ciations that are found for individual forecasts but are not 
found between ensemble means of predicted SSTs and ter-
restrial quantities—also follows from the discussion above. 

Fig. 9  As in Fig. 8, but for composites of 24-member ensemble 
mean anomalies based on initial observed PDO phases
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The associations (or teleconnections) between atmospheric 
and SST variability based on analyzing individual model 
simulations or forecasts capture the near-simultaneous 
relationship between the coupled evolution of ocean and 
atmosphere. Indeed, as was demonstrated in Sect. 3.3 and 
Fig. 8, for the individual forecasts such relationships are 
captured. For the evolution of the ensemble mean of fore-
casts, however, it is the atmospheric response to SST fin-
gerprints related to extratropical modes of coupled variabil-
ity that is of relevance, and while the SST fingerprint can 
be found in the early part of the forecast integration, cor-
responding atmospheric response consistent with associa-
tions inferred based on individual forecasts is non-existent.

Our analysis building upon the analysis of BB2000 pro-
vides an explanation for (a) why the skill of atmospheric 
and terrestrial quantities in initialized decadal predictions 
is not much better than their uninitialized counterpart, 
(b) why the observed teleconnection between SST and 
atmospheric and terrestrial quantities is not replicated in 
the ensemble of initialized decadal prediction runs, and 
(c) why similar teleconnection relationships on seasonal 
time scale have not translated to their application towards 
improving skill of seasonal predictions. The explanation is 
related to a fundamental aspect of coupled ocean–atmos-
phere variability in extratropical latitudes, and although, 
reductions in model biases will lead to improvements 
in prediction skill, the constraint of the coupled ocean–
atmosphere variability will still be a basic limitation on 
prediction skill.
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