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[1] A dynamical-statistical forecast model for the annual tropical cyclones over the western
North Pacific is developed based on the empirical relationship between the actual annual
number of tropical cyclones (ANTCs) and the dynamical predictions of large-scale variables
by the Climate Forecast System version 2 of the National Centers for Environmental
Prediction (NCEP). On interannual time scales, the ANTCs are significantly and negatively
correlated with the July–October tropical North Atlantic sea surface temperature, tropical
western Pacific vertical zonal wind shear (WPVZWS), and subtropical Pacific geopotential
height at 500 hPa (HGT500). They are also positively correlated with the zonal wind at
850 hPa over the tropical Pacific Ocean. Skillful forecasts of the above four potential
predictors are made with the 24-member ensemble predictions by the NCEP model. The
two-predictor model with the HGT500 and the WPVZWS shows the most skillful hindcasts
at 0–2month leads assessed by the leave-one-out cross validation for the ANTCs over the
31 year record between 1982 and 2012. The corresponding correlation coefficients and the
root-mean-square errors (RMSEs) between the observed and hindcast ANTCs are in the
ranges from 0.73 to 0.79 and from 3.11 to 2.75, respectively. Observed ANTCs during El
Niño–Southern Oscillation events are generally well captured with RMSEs ranging from
3.12 to 3.04 during El Niño years and from 3.62 to 2.44 during La Niña years. The forecast
skill of the model for the past 10 years (2003–2012) is competitive with the current forecast
schemes. The forecast model initialized in March, May, and June 2013 suggests an inactive
season for 2013, with about 22 tropical cyclones.
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1. Introduction

[2] Reliable prediction of the year-to-year tropical cyclone
(TC) activity is of great societal and scientific importance.
The variations of TC activity over the western North Pacific
(WNP) are primarily due to the El Niño–Southern
Oscillation (ENSO) effects by modulating the intensity and
location of local monsoon trough and changing the vertical
wind shear [e.g., Camargo and Sobel, 2005; Camargo
et al., 2007a; Chan, 2000; Chen et al., 1998; Wu et al.,

2012]. During an El Niño event, TCs tend to form over the
southeastern WNP and can develop very intensively [Chan,
2000; Wang and Chan, 2002; Camargo and Sobel, 2005;
Chan, 2007; Camargo et al., 2007a, 2007b]. Moreover, the
central Pacific El Niño (also known as El Niño Modoki)
events [Ashok et al., 2007] are shown to shift the TC forma-
tion westward to the western Pacific [Kim et al., 2010]. In
addition, the variations of TC frequency are also related to
other factors, for example, the quasi-biennial oscillation in
the stratosphere [Chan, 1995; Ho et al., 2009], winter or
spring sea ice cover over the North Pacific [Fan, 2007a],
the North Pacific oscillation [Wang and Fan, 2007],
the Antarctic Oscillation [Wang et al., 2007], Hadley circula-
tion and the sea surface temperature (SST) near Australia
[Zhou and Cui, 2008; Zhou and Cui, 2011], and the boreal
summer SST anomalies in the eastern Indian Ocean [Zhan
et al., 2011].
[3] Following the pioneering work of statistical forecasts

for seasonal Atlantic hurricane activity [Gray, 1984a,
1984b], various seasonal forecasting techniques have been
applied to issue forecasts for TCs over the Atlantic basin
and other basins. Several statistical seasonal prediction
schemes using the empirical relationships between target
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season TC activity and influential preceding large-scale vari-
ables have been developed and applied to operational predic-
tion [e.g., Gray et al., 1993, 1994; Elsner and Schmertmann,
1993; Klotzbach and Gray, 2004; Chu and Zhao, 2007]. For
the WNP basin, real-time forecasts of the annual number of
TCs (ANTCs) were first undertaken as an operational scheme
that included predictors from the environment conditions and
factors related to ENSO around 2000 [Chan et al., 1998,
2001], and an updated version was established later [Chan,
2008]. Recently, new statistical schemes based on both local
and remote influences were developed for predicting the
frequency of intense TCs over WNP [Fan, 2007b; Fan and
Wang, 2009]. Most of these statistical forecasts are first
issued before or at the beginning of TC season and then
updated in the early part of the season.
[4] In addition to the purely statistical approaches, state-

of-the-art dynamic models are used to perform seasonal pre-
diction of TC activity in the recent years. In the last decade,
the skill of dynamic model-based approaches for predicting
the seasonal TC activity over the North Atlantic and the east-
ern Pacific is comparable to that of statistical schemes
[Vitart, 2006; Vitart et al., 2007; Zhao et al., 2010; Chen
and Lin, 2011]. The direct dynamical approach, however, is
rather unreliable in predicting the TC activity over the WNP
basin, due likely to lack of strong correlation between TC
activity and local SST [Chen and Lin, 2013]. The dynami-
cal-statistical approach that provides an alternative way to
predict seasonal TC activity has been developed in the recent
years. Based on the statistical relationships between the
interannual variability of TC frequency and the physically
relevant concurrent or future large-scale conditions from
ensemble forecasts of dynamical models, the so-called hybrid
dynamical-statistical models for predicting the seasonal TC
activity over the Atlantic and WNP basins have been
established [Wang et al., 2009; Kim and Webster, 2010;
Vecchi et al., 2011; Sun and Chen, 2011; H.-S. Kim et al.,
2012]. Encouragingly, these hybrid models have displayed
significant skills in predicting TC activity.
[5] In this study, a hybrid model for predicting the annual

TC activity over the WNP is developed using the combination
of the National Centers for Environmental Prediction (NCEP)
Climate Forecast System version 2 (CFSv2) and an empirical
linear regression model. The CFSv2 is a fully coupled ocean-
land-atmosphere dynamical model that represents a significant

modification to model components, data assimilation system,
and ensemble configuration and provides operational seasonal
predictions at NCEP (S. Saha et al., The NCEP Climate
Forecast System version 2, submitted to Journal of Climate,
2013). Previous studies have suggested that the model can
skillfully capture ENSO and its related features over the tro-
pics and the North Pacific [H.-M. Kim et al., 2012a, 2012b]
and the air-sea interaction in the North Atlantic [Hu et al.,
2012]. It has also been demonstrated that the model is capable
of capturing and predictingmany features of the Asianmonsoon
[e.g., Jia and Yang, 2013; Jiang et al., 2013a, 2013b; Liu et al.,
2013]. Incorporating with the predictors provided by the skill-
ful CFSv2 seasonal forecasts, we here show that the hybrid-
type model makes significant advances on current statistical
schemes used for the WNP basin [e.g., Chan et al., 2001].
[6] The rest of this study is organized as follows. Section 2

introduces the details of forecast and observational data and
the prediction techniques applied. Section 3 presents the
observational relationships between the interannual varia-
bility of WNP TCs and oceanic/atmospheric variables. The
CFSv2 predictive skills for large-scale variables are de-
scribed in section 4. Section 5 presents results from the
hybrid model for predicting the WNP TC activity. Finally,
concluding remarks are given in section 6.

2. Data and Methods

[7] The present study takes advantage of the observational
data that include the TC best track data set for the WNP, the
monthly mean SSTs, and the monthly mean atmospheric
fields for 1982–2012. The actual ANTCs over the WNP,
representing TC activity, are from the Regional Specialized

Figure 1. Spatial map of correlations between observed annual number of tropical cyclones (ANTCs) over
western North Pacific and June–October (JASO) mean sea surface temperature (SST) from observation for
the period 1982–2012. The bold box identifies the primary regions for predictor selection (see Table 1).

Table 1. List of Regions for Defining Predictors and 4-Month
(JASO) Averaged Correlation (COR) Between the Observed
Predictors and ANTC Seriesa

Predictors Latitude Longitude COR

NATLSST 10–20°N 280°W–330°W �0.72
WPVZWS 10–20°N 130°E–190°W �0.73
U850 10–20°N 130°E–190°W 0.67
HGT500 10–30°N 120°E–160°E �0.69

aAll correlations significantly exceed the 99% confidence level estimated
by the Monte Carlo test.
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Meteorological Center Tokyo–Typhoon Center best track
data set. Here we only use the TCs with maximum sustained
wind speed reaching or exceeding 34 kt (17.0m s�1).
[8] The observational SSTs are taken from the National

Oceanic and Atmospheric Administration (NOAA) optimum
interpolation SST version 2 (OISST v2) [Reynolds et al.,
2002]. The observational atmospheric fields, including the
zonal winds at 200 hPa and 850 hPa and the geopotential
height at 500 hPa, are from the NCEP CFS Reanalysis
(CFSR) [Saha et al., 2010]. The vertical zonal wind shear
(VZWS) is defined as the difference between the 200 hPa
and 850 hPa zonal winds.
[9] The CFSv2 9 month retrospective forecast (or hindcast)

data set covers a 29 year period from 1982 to 2010 (Saha et al.,
submitted manuscript, 2013). The ensemble hindcasts run ev-
ery 5 days from the 00, 06, 12, and 18 UTC cycles over that
period. The CFSv2 data for years 2011 and 2012 are taken
from the CFSv2 9 month real-time products, which have been
implemented operationally at the NCEP since 2011. Details
about the CFSv2 and the data are given by Saha et al. (submit-
ted manuscript, 2013).
[10] About 75% of the WNP TCs are formed during July,

August, September, and October (JASO), the main TC sea-
son. Thus, our analysis focuses on the statistical relationship
between the interannual variability of WNP TCs and the
oceanic and atmospheric conditions in JASO. In the CFSv2,
we use 24-member ensemble seasonal forecasts for target sea-
son JASO with 24 different initial conditions (ICs) in each
month from January to June, which correspond to the forecasts
of 5, 4, 3, 2, 1, and 0 month leads, respectively.
[11] All seasonal mean observational and CFSv2-predicted

oceanic and atmospheric data are derived by averaging the
monthly mean values over JASO with a horizontal resolution
of 1° × 1° (latitude and longitude). To identify the potential
predictors for ANTCs, we examine the simultaneous correla-
tions between the ANTC time series and large-scale environ-
ments from observations and CFSv2 forecasts, respectively.
The CFSv2 forecast skill for a target season is calculated as
an anomaly correlation based on the ensemble mean of sea-
sonal predictions and the JASO observations. The JASO
season anomalies of all variables are determined based on
the 31 year climatology of 1982–2012. The statistical signif-
icance of the correlations is estimated by the Monte Carlo
technique outlined by Wilks [2006].
[12] For the hybrid dynamical-statistical model for ANTC

predictions, we employ the empirical prediction system

highlighted by Wang et al. [2009]. The system is known as
a simple linear (one predictor only) or multiple linear (multi-
ple predictors) regression analysis between the area-averaged
CFSv2 forecasts of JASO anomalies and the ANTC time
series over the 31 year period.
[13] To assess the hybridmodel forecast skill, a leave-one-out

cross-validation method is applied. In this approach, the model
is trained for all ANTCs years except for one target year and a
hindcast is made for that year. Using the hindcasts in the leave-
one-out cross-validation method, the mean square skill scores

Figure 2. Observed composite differences between active TC years and inactive TC years for 850 hPa wind
(vector, m s�1). Thick arrows indicate areas where the difference in wind speed is larger than 1.0m s�1

Figure 3. Same as Figure 1 but for (a) vertical zonal wind
shear (200 hPa–850 hPa), (b) zonal wind at 850 hPa, and (c)
geopotential height at 500 hPa from observations for the
period 1982–2012. The bold boxes identify the primary
regions for predictor selection (see Table 1).
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(MSSSs) are calculated from the mean square error (MSE), as
expressed by H.-S. Kim et al. [2012]:

MSSS ¼ 1�MSEmodel

MSEobs
¼ 1�

1
n∑

n
i¼1 f obsi � f i

� �2

1
n∑

n
i¼1 f obsi � f obs

� �2 ; (1)

where n is the total number of years, f obsi and fi are the num-
bers of WNP TCs from observation and hindcast for the ith
year, respectively, and fobs is the observational mean number
of WNP TCs. The MSSS is a metric for the skill comparison
of the present model and climatology-based forecasts, with
high values indicating a good model.

3. Potential Predictor Identification

[14] To identify the potential ANTC predictors, we select
predictor variables on the basis of coefficients of spatial
correlation between the ANTCs and large-scale environ-
ment from observations and CFSv2 forecasts. Previous
studies have indicated that candidate variables for potential

predictors are mostly limited to SSTs, VZWS, 850 hPa zonal
wind, and 500 hPa geopotential height [e.g., Chan et al.,
2001; Wang et al., 2009; Werner and Holbrook, 2011].
[15] Figure 1 shows the spatial map of the correlations be-

tween ANTC time series and observed SST for the JASO
season. Positive correlations prevail over the tropical central
Pacific, while significant negative correlations exist over the
tropical North Atlantic, implying that the interannual varia-
tions of WNP TCs are not only linked to the central Pacific
El Niño [H.-M. Kim et al., 2011; Richard et al., 2012] but also
strongly and negatively correlated with the tropical North
Atlantic SSTs. It has been suggested previously that the posi-
tive SST anomalies of the tropical North Atlantic are mainly
due to the Pacific ENSO teleconnection at both interannual
and decadal time scales [e.g., Enfield and Mayer, 1997;
Chang et al., 1997; Huang et al., 2002; Liu et al., 2004; Hu
et al., 2011]. More importantly, the tropical North Atlantic
SST forcing is the main cause of the WNP anomalous anticy-
clones associated with reduced convections [Lu and Dong,
2005; Rong et al., 2010]. Thus, the interannual variations of

Figure 4. Anomaly correlation maps between (left column) observed and CFSv2-predicted JASO SSTs
and (right column) CFSv2-predicted JASO SSTs with the time series of ANTCs from 1982 to 2012. The
CFSv2-predicted JASO SSTs are 24-member ensemble mean forecast with (a, e) June, (b, f) May, (c, g)
March, and (d, h) January initial conditions. Shadings indicate the correlations exceeding the 95% confi-
dence level (Monte Carlo test). The bold boxes are the same as in Figure 1.
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WNP TCs are likely resulted from the changes in the plane-
tary-scale atmospheric circulation associated with ENSO
[Chan, 2007], which is consistent with the previous finding
that there is no strong local correlation between the SST anom-
alies and TC activity over the WNP [e.g., Wang and Chan,
2002; Chan and Liu, 2004]. Therefore, we derive a tropical
North Atlantic SST (NATLSST) index as a potential predictor
(see Table 1) by averaging the JASO mean SST over the trop-
ical North Atlantic (10–20°N, 280–330°W), a region with sig-
nificant negative correlations (Figure 1).
[16] Figure 2 illustrates the composite differences in ob-

served 850 hPa winds between active WNP TCs years
(ANTCs ≥ 29) and inactive years (ANTCs ≤ 22). Here we
identify 1986, 1988, 1989, 1990, 1991, 1992, 1994, and
2004 (1998, 1999, 2003, 2008, 2009, 2010, and 2011) as
the active (inactive) TC years, which represent about 26%
(23%) of the total number of years in the period of investiga-
tion. The remaining years are considered neutral. The anom-
alies of 850 hPa winds indicate that an eastward extension of
the monsoon trough coincides with reduced VZWS, which
implies a favorable large-scale environmental factor for TC
formation [Zhao et al., 2011; Wu et al., 2012]. In contrast,
the anomalous anticyclone over the central Pacific and
WNP, due mainly to the tropical North Atlantic warming

[Lu and Dong, 2005; Rong et al., 2010], is related to the
TC inactivity.
[17] As shown in Figure 3, which displays the spatial corre-

lations between the ANTC series and the observed atmo-
spheric variables for JASO season, the correlation patterns
for VZWS and 850 hPa zonal wind (Figures 3a and 3b) are
consistent with the 850 hPa wind anomaly map (Figure 2).
The VZWS and 850 hPa zonal wind correlation patterns over
the tropical WNP, the main development region for WNP
TCs, reflect that reduced (increased) VZWS and eastward
extension (westward retreat) of the monsoon trough are favor-
able (unfavorable) for TC genesis. The 500 hPa geopotential
height exhibits strong negative correlation throughout the
tropical and subtropical Pacific, maximizing in the WNP,
whereby colder middle-lower troposphere air masses support
the development of TCs (Figure 3c). The regions with signifi-
cant correlations, indicated by the boxes in Figure 3, are
used to construct circulation indices as the potential predictors
for ANTCs.
[18] According to the patterns of correlations between

ANTCs and the circulation fields, four candidate indices,
namely, WPVZWS, U850, HGT500, and NATLSST, are
used as potential ANTC predictors (see boxes in Figures 1
and 3). The definitions of each predictor index and their

Figure 5. Same as Figure 4 but for CFSv2-predicted JASO VZWS. The bold boxes are the same as in
Figure 3a.
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correlations with ANTCs are listed in Table 1. All correlation
coefficients exceed the 99% confidence level estimated
by the Monte Carlo test. The correlation coefficients for
ANTCs with the NATLSST and WPVZWS indices are
over �0.72.

4. CFSv2 Prediction Skills

[19] The CFSv2 prediction skills for the atmospheric and
oceanic variables and the correlations between ANTCs and
the CFSv2-predicted SST/atmospheric fields over selected
regions are examined here. Figure 4 (left column) presents
the simultaneous correlation between the observations and
the CFSv2-predicted ensemble mean JASO SST from 5 to
0 month leads. In general, the CFSv2 has a significant skill
in forecasting JASO SST in the tropical North Atlantic, the
ANTC oceanic predictor region. As expected, the predictive
skill is higher in shorter time leads. The maximum correla-
tions are above 0.9 at the 0 month and 1 month leads
(Figures 4a and 4b) and around 0.7 at the 3 month lead
(Figure 4c). The maximum correlations are below 0.7 in the
4 month (not shown) and 5 month predictions (Figure 4d).
The spatial maps of correlation between ANTCs and
CFSv2 forecasts of JASO SST are also shown in Figure 4

(right column), with similar features found in the observa-
tions (Figure 1). The shorter is the lead time, the more signif-
icant are the negative correlations in the western North
Atlantic between 10°N and 20°N (Figures 4e–4h).
[20] Figure 5 (left column) shows the correlations between

the observations and the CFSv2-predicted ensemble mean
JASO VZWS from 5 month to 0 month leads. Significant
skill is found over the western tropical Pacific. The anomaly
correlation is as high as 0.8 at the 0–1month leads
(Figures 5a and 5b). The skill decreases over the western
Pacific with increase in forecast lead time. The correlation
is 0.4 at the 3 month lead (Figure 5c) and less significant at
the 4 and 5 month leads (Figure 5d). The significant negative
correlations between VZWS and ANTCs in the western sub-
tropical Pacific in observations are also found in the forecast
with June (Figure 5e), May (Figure 5f), and April (not
shown) ICs but not with March (Figure 5g), February (not
shown), and January (Figure 5h) ICs. Similar results are
found in the CFSv2 forecasts for U850 (Figure 6).
[21] Figure 7 (left column) displays the correlations between

observations and CFSv2-predicted ensemble mean JASO 500
hPa geopotential height from 5 month to 0 month leads.
Significant skill is found over the western tropical Pacific,
while the skill is relatively low in the predictor area. The

Figure 6. Same as Figure 4 but for CFSv2-predicted JASO U850. The bold boxes are the same as in
Figure 3b.
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anomaly correlation is as high as 0.7 at the 0–1month leads
(Figures 7a and 7b). As compared to VZWS and 850 hPa
zonal wind in the predictor regions (Figures 5 and 6), the pre-
dictive skill for 500 hPa geopotential height in the predictor
regions is less sensitive to forecast lead time, and the skill at
the 3 and 5 month leads (Figures 7c and 7d) is only slightly
lower than that at the 0–1month leads (Figures 7a and 7b).
The negative correlations with ANTCs in the western subtrop-
ical Pacific in observations are found in the forecasts with
June–January ICs (right column). The correlations at the
shorter leads (Figures 7e and 7f) are even slightly more
significant than those in observations (Figure 3c).
[22] Figure 8 presents the forecast skill for the four

potential predictors for all 24 individual ensemble members.
In general, the correlations between the ensemble mean
forecast and observations are much higher than those of indi-
vidual members, particularly for WPVZWS and U850. For
NATLSST, the forecast skills for individual members
(Figure 8a, gray curves) are close to those of ensemble mean
(Figure 8a, black curve) for 0–2month leads. Beyond
2months, the individual member forecast skills are substan-
tially lower than the ensemble mean skill. For WPVZWS
and U850 (Figures 8b and 8c), correlations vary greatly and
forecast uncertainty increases significantly in the long leads.

For HGT500, however, the correlations and spreads of indi-
vidual member skills are less sensitive to forecast lead time
(Figure 8d). Overall, individual correlations are weaker than
those of ensemble mean CFSv2 forecasts. It is therefore
expected that the predictors derived from the ensemble mean
forecasts are more effective than those from the individual
members for the ANTC forecast.
[23] Due to the changes in satellite observations in 1999

that are assimilated in the CFSR [Xue et al., 2011; Wang
et al., 2011], the CFSv2 prediction skills for individual vari-
ables are also examined using two sets of climatologies
(1982–1998 and 1999–2012). Results show that the CFSv2
provides slightly lower skill for predictor NATLSST and
HGT500, and slightly higher skill for WPVZWS and U850
(not shown), suggesting that using the 1982–2012 climatol-
ogy should not limit the hybrid system capability.

5. Empirical Prediction for TC Activity
With CFSv2

5.1. Model Validation

[24] We now employ a simple linear (one predictor only)
and multiple linear (multiple predictors) regression analysis
between the area-averaged CFSv2 forecast anomalies for

Figure 7. Same as Figure 4 but for CFSv2-predicted JASO HGT500. The bold boxes are the same as in
Figure 3c.
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JASO and the observed interannual variations of ANTCs
over the 31 year period. Table 2 shows the hindcast skills
of ANTCs for 1982–2012 based on four individual potential
predictors from the June to January ICs. In general, the best
single predictor is HGT500, with correlations and root-
mean-square errors (RMSEs) between the observation and
the forecast around 0.7 and 3.2, while the predictor with
the least utility as a single predictor is U850, with correla-
tions and RMSEs around 0.4 and 4.1 from 0 to 2 month
leads. Meanwhile, using HGT500, the MSSSs are above
0.5, indicating a skill improvement of at least 50% for the
model over the climatology-based forecasts. The hindcasts
also capture the variability in the observed number of
TCs within one standard deviation of the 24-member
spreads, with about 60% success rate (SRATE) of the
ANTC hindcasts for the April–June ICs. The MSSSs and
SRATEs for the U850 are around 0.2 and 60%, respec-
tively. The SRATEs of the U850 are comparable to those
of HGT500 due mainly to the spread of U850 forecast is

larger. For NATLSST and HGT500, the prediction skills
of the hindcasts decrease from 3 month to 5 month leads
with the correlations, RMSEs, MSSSs, and SRATEs
around 0.5, 3.8, 0.3, and 50%, respectively. In contrast,
the forecast skills using WPVZWS and U850 singularly de-
crease significantly because of the poor CFSv2 forecast
skill for these two predictors in the long leads, with the cor-
relations, RMSEs, MSSSs, and SRATEs around 0.1, 4.7,
�0.1, and 40%, respectively.
[25] We next perform the hindcast of the interannual vari-

ability of WNP TCs by combining potential predictors.
Owing to the substantial influence of ENSO, it is not easy
to obtain the predictors that are entirely and physically inde-
pendent of each other [H.-S. Kim et al., 2012]. Table 3 presents
a correlation matrix for the four potential predictors at different
time leads. The correlation between NATLSST and HGT500
in observations is 0.78. The remote SST may exert an influ-
ence on theWNP TC activity by altering the large-scale circu-
lation over WNP, which is consistent with the previous

Figure 8. Temporal correlations between observed and CFSv2-predicted (a) NATLSST, (b) WPVZWS,
(c) U850, and (d) HGT500 with time leads from 0month to 5months. Gray curves are for 24 individual
members and black ones are for 24-member ensemble means.
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finding that the tropical North Atlantic SST anomalies are
positively correlated with the WNP anomalous anticyclone
[Lu and Dong, 2005; Rong et al., 2010]. Meanwhile, the
correlations between other combinations of predictors in

observations are weaker than ±0.75. The correlations
between NATLSST and HGT500, as well as between
WPVZWS and U850, in the CFSv2 of all forecast leads are
around ±0.9, stronger than those in observations. These
two-predictor combinations are excluded in further analysis
due to collinearity [Werner and Holbrook, 2011]. The links
of rest combinations of two predictors in the CFSv2 predic-
tions are weaker than those in observations. Furthermore,
the CFSv2-predicted predictor combinations with correla-
tions weaker than ±0.8 are investigated.
[26] Table 4 shows the hindcast skills of ANTCs for

1982–2012 based on two predictors from the CFSv2
June to January ICs. Overall, the two-predictor combina-
tions, NATLSST +WPVZWS, HGT500+ WPVZWS, and
HGT500 +U850, provide further reductions of RMSEs than
those of the best single predictor HGT500 at most time leads
except for NATLSST +U850.
[27] For the NATLSST and WPVZWS combination, the

correlation is moderately high, around 0.74, and the RMSE
ranges from 3.04 to 3.09 at the 0–2month leads (Table 4).
The MSSS is above 0.53, showing a skill improvement of
at least 50% for the model over the climatology-based fore-
casts. The hindcasts capture the variability in the observed
number of TCs within the one standard deviation of the
24-member spreads, with a 58% SRATE of the ANTC
hindcasts at the 0 and 1 month leads and above 70%
SRATE of the ANTC hindcasts at the 2 and 3 month leads.
For the longer leads, the hindcasts exhibit relatively low skill.
With increased leads, the correlations, RMSEs, MSSSs, and
SRATEs vary from 0.61 to 0.46, 3.59 to 4.08, 0.37 to 0.18,
and 71% to 55%, respectively.

Table 2. Model Skills for One-Predictor NATLSST, WPVZWS,
U850, and HGT500 From January To June Initial Conditionsa

Initial Conditions COR RMSE MSSS SRATE (%)

NATLSST
Jun 0.65 3.43 0.42 52
May 0.67 3.35 0.45 42
Apr 0.62 3.55 0.38 48
Mar 0.56 3.74 0.31 55
Feb 0.54 3.82 0.28 55
Jan 0.51 3.93 0.24 58

WPVZWS
Jun 0.59 3.64 0.35 65
May 0.52 3.86 0.26 55
Apr 0.62 3.54 0.38 65
Mar 0.33 4.30 0.09 55
Feb �0.11 4.72 �0.10 42
Jan 0.00 4.70 �0.09 48

U850
Jun 0.41 4.16 0.15 55
May 0.48 3.97 0.22 65
Apr 0.41 4.14 0.16 55
Mar 0.15 4.55 �0.02 39
Feb 0.07 4.61 �0.05 45
Jan �0.01 4.70 �0.09 42

HGT500
Jun 0.71 3.17 0.50 58
May 0.73 3.10 0.52 58
Apr 0.71 3.16 0.51 61
Mar 0.54 3.80 0.29 45
Feb 0.50 3.91 0.25 42
Jan 0.58 3.70 0.33 48

aShown are the correlation coefficients (COR), the root-mean-square er-
rors (RMSEs), and the mean square skill scores (MSSSs) between observed
and hindcast ANTCs that validate the skill of the model. Success rate
(SRATE) is for capturing the variability in ANTCs within hindcast bound-
aries of standard deviation.

Table 3. CorrelationMatrix Among the Four Predictors From Both
Observations and CFSv2 Ensemble Forecasts, and the ANTC Series

Predictor HGT500 U850 WPVZWS

NATLSST
Observations 0.78 �0.47 0.75
0 month lead with Jun ICs 0.92 �0.47 0.55
1 month lead with May ICs 0.94 �0.46 0.48
2 month lead with Apr ICs 0.93 �0.35 0.50
3 month lead with Mar ICs 0.95 �0.22 0.33
4 month lead with Feb ICs 0.94 �0.38 0.31
5 month lead with Jan ICs 0.88 �0.49 0.54

WPVZWS
Observations 0.59 �0.75 1.0
0 month lead with Jun ICs 0.53 �0.87 1.0
1 month lead with May ICs 0.46 �0.91 1.0
2 month lead with Apr ICs 0.52 �0.92 1.0
3 month lead with Mar ICs 0.32 �0.91 1.0
4 month lead with Feb ICs 0.22 �0.92 1.0
5 month lead with Jan ICs 0.29 �0.96 1.0

U850
Observations �0.58 1.0
0 month lead with Jun ICs �0.46 1.0
1 month lead with May ICs �0.45 1.0
2 month lead with Apr ICs �0.35 1.0
3 month lead with Mar ICs �0.16 1.0
4 month lead with Feb ICs �0.27 1.0
5 month lead with Jan ICs �0.25 1.0

Table 4. Same as Table 2 But for Selected Predictors NATLSST
and WPVZWS, NATLSST and U850, HGT500 and WPVZWS,
and HGT500 and U850 From January To June Initial Conditions

Initial Conditions COR RMSE MSSS SRATE (%)

NATLSST+WPVZWS
Jun 0.73 3.09 0.53 58
May 0.74 3.07 0.54 58
Apr 0.74 3.04 0.54 77
Mar 0.61 3.59 0.37 71
Feb 0.49 3.96 0.23 55
Jan 0.46 4.08 0.18 61

NATLSST+U850
Jun 0.66 3.40 0.43 55
May 0.72 3.15 0.51 61
Apr 0.68 3.30 0.46 71
Mar 0.58 3.70 0.33 71
Feb 0.50 3.95 0.23 55
Jan 0.45 4.12 0.16 58

HGT500+WPVZWS
Jun 0.78 2.83 0.61 77
May 0.77 2.86 0.60 71
Apr 0.79 2.75 0.63 74
Mar 0.61 3.59 0.37 74
Feb 0.47 4.03 0.20 42
Jan 0.55 3.80 0.29 55

HGT500+U850
Jun 0.73 3.11 0.52 74
May 0.77 2.90 0.59 77
Apr 0.77 2.89 0.59 77
Mar 0.59 3.65 0.34 74
Feb 0.49 3.95 0.23 52
Jan 0.56 3.77 0.30 58
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[28] For the NATLSST and U850 combination, the
hindcasts of WNP TC activity are shown in Table 4. At the
0–2month leads, the correlations, RMSEs, MSSSs, and
SRATEs range from 0.66 to 0.72, 3.15 to 3.40, 0.43 to
0.51, and 55% to 71%, respectively. For the longer leads,
the hindcasts also exhibit relatively low skill.
[29] The hindcasts of WNP TC activity using HGT500 and

WPVZWS as the predictors are shown in Table 4. The
hindcasts provide the highest correlations ranging from

0.77 to 0.79, the lowest RMSEs ranging from 2.75 to 2.86,
and the highest MSSSs ranging from 0.60 to 0.63, while
the SRATEs are about 74% at 0–2month leads. In contrast,
at the 0–2month leads, the HGT500 and U850 predictor
model shows relatively low skill compared to the former
combination, with correlations, RMSEs, MSSSs and
SRATEs being around 0.75, 3.0, 0.56, and 76%, respectively
(Tables 4). Both combinations show substantial low hindcast
skills in the long leads.

Figure 9. Time series of observed (black solid lines with closed circles) and hindcast (lines with open
circles) ANTCs using the HGT500 +WPVZWS predictor model from 1982 to 2012 with (a) June, (b)
May, (c) April, (d) March, (e) February, and (f) January initial conditions. Shadings indicate ±1 standard
deviation of the spreads among 24 ensemble members.
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[30] Overall, the hybrid system with predictors HGT500
and WPVZWS combination has the greatest skill in the 31
year hindcast of ANTCs. However, it is noticed that the
hindcasts at the 1 and 2 month leads with single predictor
or combinations may have better performance compared to
the 0 month lead hindcasts, including the HGT500 and
WPVZWS model.
[31] Figure 9 presents the observed and hindcast ANTCs

for 1982–2012 based on the HGT500 and WPVZWS predic-
tor model with January to June ICs. The hindcast captures the
five active years of 1986, 1990, 1991, 1992, and 2004 and the
six inactive years of 1999, 2003, 2008, 2009, 2010, and 2011
but misses the active (inactive) years of 1988, 1989, and
1994 (1998) (Figure 9a). In contrast, the hindcasts capture
9 years of active and inactive seasons at 1–2month leads
(Figures 9b and 9c). As expected, the hindcasts show lower
skills in capturing ANTC activity at 3–5month leads
(Figures 9d–9f). As mentioned above, we demonstrate that
in spite of the slightly low performances of the model at
0 month lead, the model performs very well in capturing
ANTC occurrences across most of the active and inactive

years characterized by higher SRATEs. However, some
extreme ANTC activity is not well predicted by the model
at 0–2month leads.
[32] In the following section, we examine the capability of

the HGT500 and WPVZWS model in capturing the ANTC
occurrence during ENSO events. We also explain why the
model at 1–2month leads performs slightly better in reaching
the highest correlations, lowest RMSEs, and greatest MSSSs.

5.2. ENSO Years

[33] ENSO years are identified based on the Niño-3.4
index during the TC season. The El Niño years are 1982,
1987, 1991, 1994, 1997, 2002, 2004, and 2009; the La
Niña years are 1984, 1985, 1988, 1995, 1998, 1999, 2000,
2007, and 2010; and the remaining years are neutral. The
model performs well during the ENSO years (Table 5). At
the 0–2month leads, the hindcasts capture the ANTCs during
El Niño years with RMSEs of 3.04, 3.12, and 3.05 and
SRATEs of 75%, 63%, and 50%. They also capture the
ANTCs during La Niña years, with RMSEs of 3.62, 3.22,
and 2.44 and SRATEs of 56%, 67%, and 89%, respectively.
It is notable that the forecast skills for La Niña years at
1–2month leads are higher than the skill at 0 month lead, espe-
cially the skill at 2 month lead, with a RMSE of 2.44. During
89% of the La Niña years, ANTC hindcasts fall within one
standard deviation of the 24-member spreads. As lead time
increases from 3 months to 5 months, the HGT500 and
WPVZWS model has less skill in capturing ANTCs during
the ENSO years, with an increase in the RMSEs from 3.86
to 4.63.
[34] In general, as time lead increases, the model

hindcasts skills in El Niño and neutral years decrease,
except for La Niña years, suggesting that the higher
RMSEs for 31 year hindcasts at the 0 month lead compared

Table 5. Forecast Model Using Two Predictors HGT500 and
WPVZWS for El Niño Years and La Niña Years From January To
June Initial Conditions

Initial
Conditions

El Niño Years La Niña Years Neutral Years

RMSE SRATE (%) RMSE SRATE (%) RMSE SRATE (%)

Jun 3.04 75 3.62 56 2.00 93
May 3.12 63 3.22 67 2.41 79
Apr 3.05 50 2.44 89 2.75 79
Mar 3.95 75 3.70 56 3.28 86
Feb 4.35 50 4.63 22 3.38 50
Jan 3.86 63 4.22 33 3.47 64

Figure 10. Temporal evolution of JASO area averaged anomaly for predictors (a) HGT500 and (b)
WPVZWS from observations (gray bars) and CFSv2 24-member ensemble means with June (black solid
lines), May (red solid lines), and April (green solid lines) initial conditions. Numbers indicate the mean cor-
relation coefficient over 31 years.
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to those at the 1–2month leads are resulted from the relatively
poor performance of the CFSv2 system in predicting ENSO-
related climate variability at the 0 month lead. The failure
in capturing the ANTC variability at the 0 month lead could
be mainly resulted from the contributions of a number of
years: 1988, 1989, and 1998, the strong ENSO-related events
(Figure 9a).
[35] Jin et al. [2008] and Kim et al. [2011] have compared

the seasonal prediction skills for ENSO in various dynamical
models. They suggested that the growing phases of ENSO
events were better predicted than the corresponding decaying
phases. In the springs of 1988 and 1998, the 1987 and 1997
El Niño episodes were in a decaying phase, followed imme-
diately by strong La Niña events. The decaying phase of La
Niña in 1988 was found from October 1988 to July 1989,
while the La Niña condition in 1998 remained a cold episode
throughout 1999 and into the year 2000. Figure 10 presents
the year-to-year variability of JASO area-averaged anomalies
for predictors HGT500 and WPVZWS at the 0–2month
leads. In spite of the highest correlations between observation
and CFSv2 predictions at the 0 month lead, the CFSv2 pre-
diction at the 1 month or 2 month lead shows slightly good
skills in 1988, 1989, and 1998 when ENSO episodes were
in decaying phase and rapid transitions, consistent with pre-
vious findings [Jin et al., 2008; Kim et al., 2011].

5.3. Comparing With Other Models

[36] To summarize, the forecast skills of the two-predictor
models using CFSv2 0–2month leads predictions are higher
than those using 3–5month leads. The HGT500 and
WPVZWSmodel has the greatest skill in the 31 year hindcast
of ANTCs among all two-predictor models. This combina-
tion is thus selected in the final configuration of the empirical
prediction model.
[37] The dynamical-statistical forecast model developed in

this study is evaluated further by comparing it with previous
operational statistical forecasts issued by the Tropical Storm
Risk (referred to as TSR, http://www.tropicalstormrisk.com)
and the Guy Carpenter Asia-Pacific Climate Impact Centre
(referred to as GCACIC [Chan et al., 2001], http://www.
cityu.edu.hk/gcacic/pacific.htm) for the past 10 years
(2003–2012). These models are purely statistical models

which are based on lagged relationships between TC activity
and preseason atmosphere/ocean conditions in observations.
For this comparison, the data used in the regression analysis
consist of only years prior to the target year. To make a fore-
cast for 2003, for example, we use the CFSv2-predicted
JASO HGT500 and WPVZWS for 1982–2002 to establish
the relationship with the observed ANTC activity using the
multiple linear regression technique.
[38] Table 6 lists the forecasts of ANTCs for the 2003–2012

seasons with the CFSv2-predicted JASO HGT500 and
WPVZWS at 3 month (March ICs), 1 month (May ICs), and
0 month (June ICs) leads and those issued by the TSR
and GCACIC during March to early July. The actual number
of annual WNP TCs in each year, RMSE, SRATE, and the
possible range of the forecasts are also listed in Table 6.
Given a forecasted value based on ensemble mean predictors
and a standard deviation of individual member forecast
spreads, the possible range of TC numbers can be determined.
The forecasts based on the regression equations are rounded to
the nearest integer to obtain the number of TCs. The result
suggests that the annual TC forecast based on the CFSv2-
predicted large-scale geopotential height and vertical zonal
wind shear is competitive with the TSR and GCACIC forecast
schemes. The CFSv2 forecasts at 0–1month leads have
smaller RMSE than those at 3 month lead. The SRATEs at 3
and 1 month leads are up to 70% with only 3 years (30%)
out of a total of 10 being outside of the model standard devia-
tion. At the 0 month lead, the observed ANTC totals are
captured within the forecast range in 9 of 10 inactive years
(except 2009), displaying that the hindcasts based on the
CFSv2 predictions at 0 month lead are more skillful. The
ANTCs in 2013 season forecasts yielded from the hybrid sys-
tem, as well as the forecast range, are also listed in Table 6,
showing that the season is an inactive season.

6. Concluding Remarks

[39] This study presents a substantial improvement in the
potential for more accurate statistical forecasting of the annual
TC activity over the western North Pacific by using a hybrid
dynamical-statistical model. The prediction model is built
upon the empirical relationships between the interannual

Table 6. Forecasts of the Annual Western Pacific TCs Using HGT500 and WPVZWS Predictor Model and Other Forecast Models for the
2003–2012 TC Seasonsa

Year Obs

CFSv2 TSR GCACIC

March ICs May ICs June ICs March/April May/June Early July April June

2003 21 25(23–28) 23(21–25) 23(21–25) 26.7(±5.1) 25.8(±4.8) 26.3(±4.9) 26 26
2004 29 26(24–29) 28(26–30) 28(26–30) 25.9(±5.1) 26.6(±4.9) 27.0(±5.0) 29 29
2005 23 24(22–26) 19(17–21) 22(21–23) 25.9(±4.0) 27.6(±3.7) 27.6(±3.7) 24 25
2006 23 26(24–28) 21(19–23) 22(21–24) 27.1(±4.0) 29.0(±3.7) 29.0(±3.7) 27 28
2007 24 25(22–28) 24(22–26) 24(22–26) 24.3(±3.9) 26.8(±3.7) 26.8(±3.7) 25 24
2008 22 28(25–31) 22(20–24) 22(20–24) 28.3(±3.7) 28.3(±3.7) 28.3(±3.7) 30 30
2009 22 25(22–28) 26(24–29) 25(23–27) 25.6(±3.9) 27.5(±3.8) 28.0(±3.9) 27 27
2010 14 16(14–18) 11(9–14) 15(13–17) 24.2(±3.8) 24.1(±3.8) 23.0(±3.8) 24 23
2011 20 20(18–23) 21(19–23) 20(19–22) 27.8(±4.2) 28.0(±4.0) 28.3(±4.0) 27 27
2012 25 24(21–27) 20(18–23) 22(20–25) 25.5(±4.6) 25.5(±4.6) 26.8(±4.2) N/A N/A
RMSE 3.08 2.74 1.55 5.34 5.74 5.71 5.59 5.51
SRATE(%) 70 70 90
2013 23(21–26) 21(20–22) 22(20–24) 25.5(±4.2) 25.4(±4.3)

aValues in parentheses are the possible range of annual western Pacific TC forecasts. The observed annual number of TCs (Obs), RMSE, and SRATE of the
forecasts over 10 years are presented. Forecasts for the 2013 season based on the CFSv2 predictions and issued by TSR are also listed.
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variability of the actual annual number of TCs (ANTCs) and
the variability of large-scale atmospheric and oceanic variables
in the CFSv2 seasonal mean hindcasts for JASO.
[40] The approach comprises an identification of potentially

skillful predictors during JASO that represent important main
metrics for predicting the annual TC formation. They are (1)
the tropical North Atlantic SST (NATLSST), which exerts a
remote influence on the anomalous anticyclone over the cen-
tral Pacific and WNP that is unfavorable for TC formation;
(2) vertical zonal wind shear between 200 hPa and 850 hPa
over the tropical WNP (WPVZWS); and (3) the zonal wind
at 850 hPa over the tropical WNP (U850). The positive anom-
alies of U850 indicate that an eastward extension of the
monsoon trough coincides with reduced WPVZWS, implying
a favorable large-scale environmental factor for TC formation.
The predictors also include (4) the 500 hPa geopotential height
over the subtropical WNP (HGT500) where colder middle-
lower troposphere air masses support the development of
TCs. Then, the four predictors (Table 1) derived from the
CFSv2 24-member ensemble forecasts for JASO are incorpo-
rated into a linear regression model to predict the WNP
TC totals.
[41] Using the hybrid model with the four potential predic-

tors singularly or in combination, we assess the WNP TC
hindcast skill for 1982–2012 through leave-one-out cross val-
idation. Four 2-predictor combinations except one 2-predictor
model with NATLSST and U850 are more skillful than
one-predictor HGT500model by the assessment of correlation
coefficients and the root-mean-square errors (RMSEs) be-
tween observed and hindcast ANTCs (Tables 2 and 4).
The forecasts based on NATLSST and WPVZWS, and on
NATLSST and U850, from the CFSv2 predictions have a sim-
ilar skill, producing correlations higher than 0.70 and around
70% interannual variations of WNP TCs within the hindcast
boundaries of standard deviation (SRATE) at shorter leads. In
contrast, using the combination of HGT500 and WPVZWS,
and HGT500 and U850, the hindcasts achieve a greater skill
with correlations, RMSEs, and SRATEs ranging from 0.73
to 0.79, 3.11 to 2.75, and 71% to 77%, respectively.
[42] Using the most skillful combination of HGT500 and

WPVZWS, the hybrid system demonstrates generally well
the performances during El Niño years, with RMSEs slightly
high than those of 31 year hindcasts (Table 5). The relatively
poor performances of dynamic model predictions in captur-
ing the ENSO events in decaying phases and the rapid transi-
tion from El Niño to La Niña conditions [Jin et al., 2008;Kim
et al., 2011] could be the main cause for small skill in captur-
ing the ANTCs during La Niña years at short leads, rather
than a deficiency of regression in the model.
[43] Furthermore, for the past 10 years from 2003 to

2012, in comparison to the current forecast schemes in op-
erations, the HGT500 and WPVZWS model achieves
RMSEs and SRATEs ranging from 3.08 to 1.55 and from
70% to 90% with March to June ICs, respectively
(Table 6). The result shows that the hybrid system is quite
compelling. The forecasts for ANTCs in the 2013 season
yielded from the hybrid system show that the season is an
inactive season.
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