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Abstract Daily output from the hindcasts by the National

Centers for Environmental Prediction (NCEP) Climate

Forecast System version 2 (CFSv2) is analyzed to under-

stand the skill of forecasting atmospheric variability on

quasi-biweekly (QBW) time scale. Eight dominant quasi-

biweekly oscillation (QBWO) modes identified by the

extended empirical orthogonal function analysis are

focused. In the CFSv2, QBW variability exhibits a signif-

icant weakening tendency with lead time for all seasons.

For most QBWO modes, the variance drops to only 50 %

of the initial value at lead time of 11–15 days. QBW var-

iability has better prediction skill in the winter hemisphere

than in the summer hemisphere. Skillful forecast can reach

about 10–15 days for most modes but those in the winter

hemisphere have better forecast skills. Among the eight

QBWO modes, the North Pacific mode and the South

Pacific (SP) mode have the highest forecast skills while the

Asia–Pacific mode and the Central American mode have

the lowest skills. For the Asia–Pacific and Central Ameri-

can modes, the forecasted QBWO phase shows an obvious

eastward shift with increase in lead time compared to

observations, indicating a smaller propagating speed.

However, the predicted feature for the SP mode is more

realistic. Air–sea coupling on the QBW time scale is per-

haps responsible for the different prediction skills for dif-

ferent QBWO modes. In addition, most QBWO modes

have better forecasting skills in El Niño years than in La

Niña years. Different dynamical mechanisms for various

QBWO modes may be partially responsible for the dif-

ferences in prediction skill among different QBWO modes.

Keywords Quasi-biweekly oscillation �
Prediction skill � Monsoons � ENSO

1 Introduction

Intra-seasonal oscillation is one of the most important

components of the tropical atmospheric variations that

significantly affect the local weather and climate as well as

the global atmospheric circulation. It generally involves

two major modes: the Madden Julian Oscillation (MJO)

with a characteristic period of 30–60 days (Madden and

Julian 1971, 1972) and the quasi-biweekly oscillation

(QBWO) with a typical time band of 10–20 days (e.g.

Krishnamurti and Ardanuy 1980; Chen and Chen 1993,

1995; Fukutomi and Yasunari 1999, 2002; Wen and Zhang

2007; Jiang and Lau 2008; Kikuchi and Wang 2009; Wen

et al. 2011; Jia and Yang 2013). Previous studies have
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indicated that both the QBWO and MJO influence the

active and break phases of the Indian summer monsoon

(e.g. Krishnamurti and Ardanuy 1980; Yasunari 1981;

Chen and Chen 1993, 1995; Goswami et al. 2003) and the

South China Sea (SCS) monsoon (e.g. Chen et al. 2000;

Mao and Chan 2005; Zhou and Chan 2005; Lin and Li

2008). The QBWO also plays an important role in the

interaction between the summer monsoons in East Asia

and the SCS (Chen et al. 2000). The East Asian sub-

tropical monsoon, represented by the Mei-yu and Baiu

fronts, is significantly influenced by the transition of

QBWO (e.g. Yang et al. 2010; Jia and Yang 2013). In

addition, the North Pacific tropical cyclone activity is also

modulated by QBWO (Li et al. 2012). The QBWO

associated with the North American monsoon is also

investigated by many studies (e.g. Mullen et al. 1998;

Kiladis and Hall-McKim 2004; Jiang and Waliser 2009;

Wen et al. 2011). QBWO is a predominant component not

only in the Asian and North American monsoon regions

but also in other subtropical regions. Kikuchi and

Wang (2009) defined eight QBWO modes in a global

perspective, including three boreal summer modes in

Asia–Pacific, Central America, and subtropical South

Pacific (SP) and five austral summer modes in the

Australia–southwest Pacific, South Africa–Indian Ocean,

South America–Atlantic, subtropical North Pacific, and

North Atlantic–North Africa.

At present, dynamical prediction of the MJO has been a

popular subject (e.g. Vitart et al. 2007; Lin et al. 2008;

Agudelo et al. 2009; Seo 2009; Gottschalck et al. 2010;

Rashid et al. 2011) and a skillful forecast can reach 21 days

(Rashid et al. 2011). However, few attempts have been

made to dynamically predict QBWO. In this paper, we

examine the skill of forecasting global dominant QBWO

modes by the National Centers for Environmental Predic-

tion (NCEP) Climate Forecast System (CFS) version 2

(CFSv2; Saha et al. 2013). The CFSv2 is a fully coupled

atmosphere–ocean–land–sea ice dynamical seasonal pre-

diction system, which replaced the CFS version 1 (Saha

et al. 2006) for operations at the NCEP in March 2011. The

CFSv2 has upgrades to nearly all aspects of the data

assimilation and forecast model components of the system,

and greatly improves the forecast skills in many aspects

over the CFSv1, such as the MJO, 2-m temperatures over

the US, and global SST (Saha et al. 2013).

In Sect. 2, model output, observational data, and anal-

ysis methods are briefly described. A general examination

of the prediction of quasi-biweekly variability by the

CFSv2 is shown in Sect. 3. Skills of prediction of the eight

global dominant QBWO modes defined by the extended

empirical orthogonal function (EEOF) are analyzed in Sect.

4. A discussion and summary are given in Sects. 5 and 6,

respectively.

2 Model output, observational data and analysis

methods

The retrospective forecast data are from the 45-day hind-

casts run by the CFSv2 initiated from every 0, 6, 12, and 18

UTC cycle over the 12-year period from 1999 to 2010.

Daily mean outputs, including outgoing longwave radiation

(OLR), precipitation, surface temperature, and 850-hPa

winds, are analyzed.

The observations used for model verification include the

daily OLR dataset from the National Oceanic and Atmo-

spheric Administration (NOAA) advanced very high res-

olution radiometer (AVHRR; Liebmann and Smith 1996),

and daily OLR, circulation variables, surface temperature

and precipitation from the NCEP CFS Reanalysis (CFSR;

Saha et al. 2010). The CFSR is a coupled atmosphere–

ocean–land–sea ice reanalysis product and provides reli-

able estimates of the atmospheric and oceanic state (Xue

et al. 2010; Wang et al. 2010).

Using a tracking method and the EEOF analysis,

Kikuchi and Wang (2009) defined eight QBWO modes in a

global perspective. These modes include three boreal

summer patterns in Asia–Pacific (AM mode), Central

America (CA mode), and subtropical SP mode and five

austral summer patterns in the Australia–Southwest Pacific

(AU–SP mode), South Africa–Indian Ocean (SAF mode),

South America–Atlantic (SAM mode), subtropical North

Pacific (NP mode), and North Atlantic–North Africa

regions (NAF mode). In this study, the Lanczos filter

(Duchon 1979) is used to obtain the 10–20-day band-pass

filtered time series representing the QBWO variability.

Considering that the response of the filter is different for

different data window lengths, data processing methods are

completely the same for both forecasts and observations

when applying the 10–20-day band-pass filtering. For

observations, the length of data is 92 days (90 days) for

JJA (DJF), and then a 10–20-day band pass filtering can be

applied in these data. The CFSv2 hindcasts were made for

the period from 1999 to 2010 initiated from 0, 6, 12, and

18UTC every day. All hindcasts were run for 45 days and

daily mean output data are used. Therefore, we have a total

of 4,380 (365 days 9 12 years) forecasts and each forecast

produces 45-day results. Thus, for each lead time (total

available lead time is 45 days from 1 to 45 days), we have

4,380 forecast results, which can form a consecutive time

series at each lead time. For example, the output of first day

for all 4,380 forecasts can form a forecast series from 1

January 1999 to 31 December 2010, which represents the

forecast for the lead time of 1 day. The output of the

second day can construct a series from 2 January 1999 to 1

January 2011, which represents the forecast for the lead

time of 2 days. The last day’s output forms a series that is

from 14 February 1999 to 13 February 2011, representing
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the forecast for 45-day lead. Consequently, we can extract

the data of 92 day for JJA (total 12 years) and the data of

90 days for DJF (totally 11 years) from these 4,380 fore-

cast results for each lead time. Then we can apply the

10–20-day band-pass filtering on these data of 92 days and

90 days in forecast just the same as applied on

observations.

Following Kikuchi and Wang (2009), eight global

QBWO modes are extracted by using an EEOF analy-

sis,which is capable of describing a sequence of convective

disturbances in an efficient way (Weare and Nasstrom

1982). Considering that 7 days are roughly the half peri-

odicity of QBWO, the EEOF analysis was applied to the

observed 10–20-day filtered OLR anomaly for seven con-

secutive days. Thus, the EEOF results from day 1 to day 7

represent the half cycle of QBWO events. The region and

season for which the EEOF analysis was performed for each

QBWO mode were described in Table 1, consistent with

those in Kikuchi and Wang (2009). The principal compo-

nent of the EEOF predicted by the CFSv2 is obtained by

projecting the predicted 10–20-day filtered OLR anomalies

onto the observed first EEOF of each QBWO mode.

3 Prediction of quasi-biweekly variability

The variance of 10–20-day filtered OLR for NOAA, CFSR,

and CFS predictions at lead times of 5, 10, 15, 20, and

25 days in boreal summer and winter are shown in Figs. 1

and 2, respectively. In boreal summer (Fig. 1), large QBW

variances appear in the Asian summer monsoon region, the

western North Pacific, Central America, and South Pacific.

Compared to the results from NOAA OLR data, the CFSR

overestimates the QBW variances over the western North

Pacific, Central America, and South Pacific, and underes-

timates the variance in South Asia. The CFS forecast

captures the geographical distribution feature of QBW

variability, but QBW variances decrease gradually with the

increase in lead time.

In boreal winter (Fig. 2), the largest variance of QBW

variability can be found in the Australia monsoon–SP

convergence zone (SPCZ). Large variance regions also lie

in the North Pacific, the South Africa–south Indian Ocean,

the North Africa–North Atlantic, and the South America–

South Atlantic. Compared to the results based on the

NOAA OLR, the CFSR overestimates QBW variability in

these regions. In boreal winter, the CFS forecast shows the

same problem as in boreal summer, which indicates the

weakening of QBW variability with the increase of forecast

lead time. In order to assess quantitatively the weakening

of the QBW variability with the lead time associated with

different QBW modes, we calculated the percent of vari-

ance of the 10–20-day filtered OLR forecasted by the

CFSv2 with lead times from 1 to 45 days with respect to

the initial variance over the eight QBW mode regions

defined in Table 1, as shown in Fig. 3. For most modes, the

QBW variance decays to near the half of the initial values

at the lead times of 11–14 days.

Above analysis indicates the decay of QBWO variance

accompanying the increase in forecast lead-time, but can-

not reflect the prediction skill at different forecast leads of

time. Therefore, temporal correlation between the fore-

casted and the observed OLR on the time scale of

10–20 days is further calculated at forecast lead times of 6,

9 and 12 days for boreal summer and winter, as shown in

Figs. 4 and 5, respectively. In boreal summer (Fig. 4), the

prediction skill is lower in the northern hemisphere than in

the southern hemisphere. Particularly, the skill decreases to

below the 95 % significance level in the AM mode and CA

mode regions at the lead time longer than 10 days, while

the good skill can be found in the SP mode region even at

the lead time beyond 12 days. In boreal winter (Fig. 5), in

general, the forecast skill is lower in the southern hemi-

sphere than in the northern hemisphere. At lead time of

9 days, low skills appear in southern Indian Ocean, central

western Pacific and South America. At lead time of

12 days, good skills can still be found in the northern

hemisphere, but are absent in the southern hemisphere.

Table 1 Eight dominant

QBWO modes identified by the

EEOF analysis

QBWO mode Latitudes Longitudes Season Variance explained

by EEOF-1 (%)

AM mode 20�S–40�N 30�–180�E Boreal summer 7.9

CA mode 0�–40�N 20�–160�W Boreal summer 7.8

SP mode 50�S–5�N 120�–360�E Boreal summer 6.7

AU–SP mode 50�S–0� 110�E–90�W Boreal winter 7.5

NP mode 0�–40�N 110�E–80�W Boreal winter 8.1

NAF mode 0�–50�N 80�W–20�E Boreal winter 10

SAF mode 40�S–0� 10�–110�E Boreal winter 8

SAM mode 0�–40�S 0�–80�W Boreal winter 10.3

Prediction of global patterns 1637
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The above results imply that QBW variability has better

prediction skills in winter hemisphere than in summer

hemisphere in the CFSv2. In particular, the prediction skill

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 1 Variance of 10–20-day filtered OLR (unit: W2 m-4) in boreal

summer for NOAA AVHRR (a), CFSR (b), and CFSv2 predictions at

lead times of 5, 10, 15, 20, and 25 days (c–g). Solid boxes in

a represent regions over which EEOF analyses were performed to

identify dominant QBWO modes

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2 Same as Fig. 1 but for the OLR in boreal winter

1638 X. Jia et al.
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is lowest in strong monsoon activity regions, such as the

Asian monsoon region and North American monsoon

region.

4 Prediction skills of the dominant quasi-biweekly

oscillation

In Sect. 3, we present a general analysis on the prediction

skill of the variability of 10–20-day time scales by the

CFSv2 on a global scale. The results indicate that predic-

tion skills show tremendous diversity in different seasons

and over different regions that may be associated with

different QBWO modes. Therefore, in this section, we will

focus on the prediction skill of the eight dominant QBWO

modes defined by the EEOF analysis described in Sect. 2.

Kikuchi and Wang (2009) defined eight QBWO modes

in a global perspective using the EEOF-1 mode. Here, we

focused on examining the prediction skill of EEOF-1 mode

by the CFSv2. Other modes are not considered in the

present study. Figure 6 shows the correlation skills for the

time series of EEOF-1 of the eight QBWO modes in the

CFSv2 with lead times from 1 to 45 days. In general, for

most QBWO modes, the skillful forecasts can be obtained

with lead times of 10–15 days. Among the eight QBWO

modes, the NP mode and SP mode have the highest fore-

cast skills with a useful forecast up to 15 days. The SP

mode has a better skill than the NP mode when the lead

time is shorter than 13 days. Longer 13 days, the correla-

tion skill is slightly better for the NP mode than for the SP

mode. The AM mode and CA mode have the lowest

forecast skills with skillful forecasts up to 10 and 11 days,

respectively. In addition, among the eight QBWO modes,

those modes in winter hemisphere (e.g. SP, NP, and NAF

modes) seem to have better forecast skills than those in

summer hemisphere (e.g. AM, CA, and SAF modes),

which is consistent with the results in Figs. 4 and 5. One

may wonder whether the high (low) prediction skill is

associated with long (short) auto-correlation for these

QBWO modes. We also calculate the lagged auto-corre-

lation for the time series of EEOF-1 of the eight QBWO

Fig. 3 Percent of variance of the 10–20-day filtered OLR forecasted

by the CFSv2 with lead times from 1 to 45 days with respect to the

corresponding initial variance for the eight QBWO modes regions

(see Table 1)

Fig. 4 Temporal correlation

between the 10–20-day filtered

OLR of NOAA AVHRR and

those forecasted by the CFSv2at

lead times of 6, 9, and 12 days

for boreal summer. Shading

areas are for correlations larger

than 0.3 (95 % confidence level)

Prediction of global patterns 1639

123



modes. Result shows that the modes with the highest

(lowest) forecast skill may not necessarily have the longest

(shortest) auto-correlation, because the differences in lag-

ged auto-correlation of eight modes are very small. Indeed,

this result s is reasonable because all the modes have the

periodicity of quasi-biweekly, and thus at lag time of

4 days (about quarter of one QBWO cycle) the auto-cor-

relation is near zero, and by lagging about 7 days (half

cycle) the auto-correlation reaches the minimum.

RMSE and MSSS skills for the time series of EEOF-1 of

the eight QBWO modes forecasted by the CFSv2 are

presented in Fig. 7. It is evident that the AM mode has the

largest RMSE during the entire forecast period, while the

SP mode has the smallest RMSE at lead times shorter than

about 11 days (Fig. 7a). The SP mode has the best MSSS

skill and the CA mode has the worst MSSS skill (Fig. 7b).

The above results indicate that the AM and CA modes,

which occur in the two most important summer monsoon

regions, have the lowest prediction skills among all eight

QBWWO modes, while the SP mode has the best skill. In

the following analysis, we focus on these three modes and

further investigate the detailed structure and propagation

associated with their lifecycles.

Figure 8 shows the 850-hPa wind and OLR anomalies

based on the linear regressions against the time series of

EEOF-1 of the AM mode from time lags of 0 to 8 days for

observations (CFSR). At day 0, weak enhanced convection

emerges in the equatorial central Pacific between 160�E

and 180�E and suppressed convection to the west accom-

panied by an anti-cyclonic circulation, resembling a

Rossby wave response. In the meantime, a weak enhanced

convection band appears over southern Japan, northern

SCS, and central Indian Ocean. From day 2 to day 8,

enhanced convection over equatorial central Pacific

strengthens and propagates northwestward into the SCS

accompanied by strengthened cyclonic circulation

response. Meanwhile, the suppressed convection to its west

also propagates northwestward, reaches its mature phase

over the SCS during day 2 and day 4, then weakens and

shifts into the Indian Ocean. At day 6, a new center of

suppressed convection appears in the equatorial central

Fig. 5 Same as Fig. 4 but for

boreal winter

Fig. 6 Correlation skills for the time series of EEOF-1 of the eight

QBWO modes predicted by the CFSv2 with lead times from 1 to

45 days. The horizontal dashed line represents correlation skill of 0.4

(95 % confidence level)
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Pacific displacing the enhanced convection at day 0. Also,

noteworthy is that the enhanced convection band appears

over the Southern China at days 2 and 4 indicating a strong

Mei-yu and Baiu fronts.

Figure 9 displays the lifecycle of the CA mode. At day

0, an enhanced convection anomaly emerges in the eastern

tropical Atlantic. To its west are suppressed convection,

enhanced convection, and suppressed convection, alterna-

tively, accompanied by anti-cyclonic, cyclonic and anti-

cyclonic circulation to the northwest of the convection

anomalies. From day 2 to day 8, these convection centers

and corresponding cyclonic and anticyclonic circulations

move northwestward. The westernmost convection and

circulation cell finally disappears in the eastern Pacific.

These results are consistent with the study by Kikuchi and

Wang (2009).

To compare the structure and propagation of QBWO

predicted by the CFSv2 with the observations, Fig. 10

displays the linear regressions of forecasted 850-hPa wind

and OLR anomalies by the CFSv2 at lead times of 2, 4, 6,

8, and 10 days against the time series of EEOF-1 of the

observed AM mode. Actually, Fig. 10 reflects the structure

of the AM mode at day 0 (Fig. 8a) predicted by the CFSv2

at different lead times. Compared to the observations, at

lead time of 2 days, the CFSv2 well captures the structure

of convection and circulation associated with QBWO,

including the enhanced convection band extending from

southern Japan to northern SCS and central Indian Ocean,

the suppressed convection to the east of Philippines with

slightly larger amplitude, and the weak enhanced

(a)

(b)

Fig. 7 RMSE (a) and MSSS (b) skills for the time series of EEOF-1

of eight the QBWO modes from the CFSv2 with lead times from 1 to

45 days. In a, the horizontal line represents the RMSE skill of 1.

a Root mean square error, b mean square skill score

Fig. 8 Linear regressions of boreal summer 850-hPa wind anomalies

(m s-1; vectors) and OLR anomalies (W m-2; shadings and

contours) against the time series of EEOF-1 of the AM mode from

time lag 0 to 8 days for observations (CFRR). Only the wind vectors

that significantly exceed the 95 % confidence level are shown.

Contour interval for OLR is 0.01 W m-2 and values that significantly

exceed the 95 % confidence level are shaded

Prediction of global patterns 1641
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convection near the central Pacific which is the origin

region of QBWO of the AM mode. These characteristics

are also predicted by the CFSv2 at lead times up to

10 days. However, two deficiencies are also obvious. One

is that the amplitudes of QBWO decrease with the increase

in the forecast lead time, which is consistent with the

results in Fig. 3. The other is that, compared to the

observations, the forecasted convection and circulation

shift eastward with the increase in lead time, which indi-

cates a slower propagating speed. Similar problems can

also be found in the forecast of the CA mode as shown in

Fig. 11. In particular, both the enhanced convection over

the Caribbean Sea and the suppressed convection over the

central Atlantic present a northeastward shift with the

increase in lead time, while the convection cells over

the southwestern America have no obvious shift. Thus, the

forecasted structure of the CA mode seems to be more in

disorder than that of the AM mode. For the AM and CA

modes, the eastward shift in structure forecasted by the

CFSv2 is displayed more clearly in Fig. 12. For the AM

mode, the eastward shift of QBWO convection occurs over

the whole AM region. A rough estimate of the speed is

about 2.5 longitudes/day. Beyond 10 days, the CFSv2 fails

to predict the observed QBWO phase. For the CA mode,

the eastward shift is weaker than that of the AM mode.

As mentioned above, among the eight QBWO modes,

the SP mode has the best prediction skill. Figure 13 shows

the linear regressions of 850-hPa wind anomalies and OLR

anomalies in the observations from time lag 0 to 8 days

against the time series of EEOF-1 of the SP mode. Unlike

the AM and CA modes, the SP mode occurs in winter

hemisphere and is characterized by an eastward propagat-

ing Rossby wave train extending from New Guinea to

southern Brazil (Fig. 13). Shown in Fig. 14 are the fore-

casts by the CFSv2 at lead times of 2, 4, 6, 8, 10 days. The

CFSv2 well captures the structure of the SP mode. More-

over, compared to the AM and CA modes, no obvious

phase shift can be found with the increase in the lead time,

which is more clearly seen in a longitude-lead time dia-

gram shown in Fig. 15. The CFSv2 can obtain skillful

predictions beyond 10 days, and there is no obvious phase

bias when the lead time is shorter than 15 days. The results

indicate that the propagating speed of the SP mode in the

CFSv2 is more realistic than that of the AM mode, which

contributes to the better prediction skill for the SP mode.

5 Discussions

The dominant QBWO modes tend to occur over different

regions and be associated with the global monsoons

(Kikuchi and Wang 2009). In a monsoon region, there also

exists strong air–sea interaction on subseasonal time scales,

particularly in the tropical Indo-western Pacific (Hendon

and Glick 1997; Waliser et al. 1999; Woolnough et al.

2000; Kemball-Cook and Wang 2001; Fu et al. 2003; Wu

et al. 2008). However, most of these studies focused on the

20–60-day time scales, except for Wu et al. (2008). A

discussion of the local air–sea interaction on the 10–20-day

Fig. 9 Linear regressions of boreal winter 850-hPa wind anomalies

(m s-1; vectors) and OLR anomalies (W m-2; shadings and

contours) against the time series of EEOF-1 of the CA mode from

time lag 0 to 8 days for observations (CFSR). Only the wind vectors

that significantly exceed the 95 % confidence level are shown.

Contour interval for OLR is 0.01 W m-2 and values that significantly

exceed the 95 % confidence level are shaded
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Fig. 10 Linear regressions of forecasted 850-hPa wind anomalies

(m s-1; vectors) and OLR anomalies (W m-2; shadings and

contours) by the CFSv2 at lead times of 2, 4, 6, 8, and 10 days

against the time series of EEOF-1 of the observed AM mode in boreal

summer. Only the wind vectors that significantly exceed the 95 %

confidence level are shown. Contour interval for OLR is

0.01 W m-2and values that significantly exceed the 95 % confidence

level are shaded

Fig. 11 Linear regressions of forecasted 850-hPa wind anomalies

(m s-1; vectors) and OLR anomalies (W m-2; shadings and

contours) by the CFSv2 at lead times of 2, 4, 6, 8, and 10 days the

time series of EEOF-1 of the observed CA mode in boreal summer.

Only the wind vectors that significantly exceed the 95 % confidence

level are shown. Contour interval for OLR is 0.01 W m-2 and values

that significantly exceed the 95 % confidence level are shaded

Prediction of global patterns 1643
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time scales may be helpful for understanding the difference

in prediction skill of different QBWO modes.

Figure 16 shows the lead-lag correlations between 10-

and 20-day filtered precipitation and SST for observations,

which reflects the air–sea interaction on the 10–20-day

time scales. Daily SST data are the surface temperature

data from the NCEP CFSR and the same period as the

CFSv2 forecast from 1999 to 2010 is used. It can be found

that the intensity of air–sea coupling strongly depends on

the season with the most prominent interaction in the

summer hemisphere. In summer, as shown in Fig. 16a, the

strong air–sea interaction occurs in the Asian monsoon

region, African monsoon region and North American

monsoon region in the Northern Hemisphere. The strongest

interaction occurs in the tropical Indo-western Pacific. In

the Asian monsoon region, positive correlation appears

when SST anomalies lead precipitation anomalies with the

maximum exceeding 0.4. Significant negative correlation

appears when SST anomalies lag anomalous precipitation

with the maximum exceeding 0.5. The time lag also shows

notable spatial variations. The lead time for SST signifi-

cantly correlating with precipitation is slightly shorter in

the Arabian Sea and the western Pacific than in the Bay of

Bengal and SCS, and the corresponding lag time is longer

in the western Pacific than in the Bay of Bengal and SCS.

These results are very similar to the study by Wu et al.

(2008), though broader time scales are included in the data

they used. Additionally, the characteristics of the lead and

lag times are also consistent with Wu et al. (2008), which is

shorter than those obtained from the 20–60-day band-pass

filtered data (Hendon and Glick 1997; Waliser et al. 1999;

Woolnough et al. 2000; Kemball-Cook and Wang 2001; Fu

et al. 2003). Compared to the Northern Hemisphere, the

lead and lag correlations are much weaker in the Southern

Hemisphere (Fig. 16b). Similarly, in winter, they are also

much weaker in the Northern Hemisphere than those in the

Southern Hemisphere (Figs. 16c, d). The results indicate

that, for those QBWO modes in summer hemisphere,

particularly in the monsoon regions, the air–sea interaction

on the 10–20-day time scales perhaps plays a more

important role in maintaining QBWO.

Examining the air–sea interaction on the 10–20 day time

scales in the CFSv2 is helpful for understanding the fore-

casted QBWO by the CFSv2. Here, we calculate the lead-

(a)

(b)

Fig. 12 Longitude–lead time diagrams of the regressions of OLR

anomalies (W m-2) forecasted by the CFSv2 with lead times from 1

to 30 days onto the time series of EEOF-1 of the observed AM mode

(a along 0�–15�N) and CA mode (b along 5�–25�N). Values

significantly exceeding the 95 % confidence level are shaded.

a AM mode JJA (CFS) (0�–15�N). b CA mode JJA (CFS) (5�–25�N)

Fig. 13 Linear regressions of boreal summer 850-hPa wind anom-

alies (m s-1; vectors) and OLR anomalies (W m-2; shadings and

contours) for observations (CFSR) from time lag 0 to 8 days against

the time series of EEOF-1 of the SP mode. Only the wind vectors that

significantly exceed the 95 % confidence level are shown. Contour

interval for OLR is 0.01 W m-2 and values that significantly exceed

the 95 % confidence level are shaded
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lag correlations between 10- and 20-day band-pass filtered

precipitation and surface temperature averaged over the

regions associated with the eight QBWO modes forecasted

by the CFSv2 with lead times from 1 to 45 days, as shown

in Fig. 17. For the five summer hemisphere modes (AM,

CA, Au–SP, SAF, and SAM modes), there exists obvious

air–sea interaction on the 10–20-day time scales. However,

it weakens rapidly with the increase of lead time except for

the SAM mode. For the SAM mode, the strong air–sea

interaction can maintain much longer, which may con-

tribute to the relatively higher forecast skill than the other

four modes. For the winter hemisphere modes (SP, NAF,

and NP modes), which can be better forecasted than those

summer modes, however, air-sea interaction seems much

weaker, consistent with the observation shown in Fig. 16.

This feature indicates that air-sea interaction is perhaps less

crucial for prediction of winter hemisphere modes.

ENSO is the most important climate phenomenon as a

result of air–sea interaction on the inter-annual time scales.

Different ENSO phases provide different air–sea back-

grounds. Thus, the predictability of QBWO may be dif-

ferent in different ENSO phases. From 1999 to 2010, there

were three El Niño summers (2002, 2004, and 2009), four

El Niño winters (2002/2003, 2004/2005, 2006/2007, and

2009/2010), three La Niña summers (1999, 2000, and

2010), and four La Niña winters (1999/2000, 2000/2001,

2005/2006, and 2007/2008) based on the SST anomalies in

the Niño 3.4 region. Shown in Fig. 18 are the prediction

skills of the eight QBWO modes in El Niño and La Niña

years, respectively. Although only limited samples can be

used for composite due to the short forecast data, it is very

interesting that most modes, except for the NP and NAF

modes, have better forecast skills in the El Niño years than

in the La Niña years in the CFSv2. We speculate that the

modulation of the global monsoons by ENSO might alter

the predictability of QBWO. Further analysis of observa-

tions and modeling studies are required to understand the

impact of ENSO on the predictability of QBWO.

On the other hand, different QBWO modes involve

different dynamic mechanisms, which may influence the

prediction by numerical models. The phenomena of

QBWO mainly occur in the tropical monsoon region and

the mid-latitude westerly zone (Wu and Li 1990). Surface

hydrological effects, condensation heating, and wave-flow

interaction (Webster 1983; Wu and Luo 1987; Wu and Li

1990) are considered important to the QBWO dynamics.

For tropical monsoon low-frequency variability, the sur-

face hydrological effects and the forcing from the mid-high

latitude disturbances are both important (Webster 1983;

Wu and Luo 1987; Wu and Li 1990). For the mid-latitude

low-frequency variability, the wave-flow interaction may

be important (Wu and Li 1990). According to Kikuchi and

Fig. 14 Linear regressions of the forecasted boreal summer 850-hPa

wind anomalies (m s-1; vectors) and OLR anomalies (W m-2;

shadings and contours) by the CFSv2 at lead times of 2, 4, 6, 8, and

10 days against the time series of EEOF-1 of the observed SP mode.

Only the wind vectors that significantly exceed the 95 % confidence

level are shown. Contour interval for OLR is 0.01 W m-2 and values

that significantly exceed the 95 % confidence level are shaded

Fig. 15 Longitude–lead time diagram of the regressions of boreal

summer OLR anomalies (W m-2) forecasted by the CFSv2 with lead

times from 1 to 30 days onto the time series of EEOF-1 of the

observed SP mode along 40�–20�S. Values significantly exceeding

the 95 % confidence level are shaded
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Wang (2009), the eight QBWO modes examined in this

paper include westward-propagating modes (e.g. AM and

CA modes) and eastward-propagating modes (e.g. SP, AU–

SP, and SAM modes). The westward-propagating modes

can be understood in terms of equatorial Rossby waves in

the presence of monsoon mean flow and convective cou-

pling, while the eastward-propagating modes are connected

with upstream extratropical Rossby wave trains (Kikuchi

and Wang 2009). Therefore, the extratropical wave-flow

interaction is perhaps important for those eastward-propa-

gating modes. The eastward-propagating modes (e.g. SP,

AU–SP, and SAM modes) also seem to be better predicted

than the westward-propagating modes (e.g. AM and CA

modes) in the CFSV2, which is perhaps partially due to the

fact that the tropical QBWO modes involve complicated

interaction of tropical and extra-tropical dynamics. Mean-

while, as indicated in Sect. 4, winter modes seem to have

better forecast skill than summer modes, which may also

be due to the stronger wave-flow interaction in mid-latitude

in winter than in summer. Further studies are needed to

understand the dynamical mechanism of different QBWO

modes.

Finally, it should be pointed out that, in the present

paper, we focused on the prediction skills of eight quasi-

biweekly modes identified by the first EEOF modes. Most

EEOF1 modes can explain variances no more than 10 % as

shown in Table 1. However, the EEOF modes are paired,

and the first two EEOF modes have similar structure but

with a difference in phase because QBW oscillations are

propagating modes. Consequently, for most QBW modes,

the total variances explained by the first two EEOF modes

exceed 10 % even approaching 20 % for paired modes.

Nevertheless, the QBW variations can only explain part of

the total variability of the atmosphere, and so increasing

the prediction skill of the QBWO does not necessary

improve the whole forecast. However, as one of important

intra-seasonal components, it is important for operational

models to forecast QBWO skillfully.

6 Summary

In this study, we have examined the prediction skill of the

atmospheric variability on quasi-biweekly time scales

(a) (b)

(c) (d)

Fig. 16 Lead–lag correlations between 10- and 20-day band-pass

filtered precipitation and SST from the CFSR for summer along 0�–

20�N (a) and 20�S–0 (b), and for winter along 0–20�N (c) and 20�S–0

(d). Correlations are contoured every 0.1 and values larger than 0.2

are shaded. Negative (positive) lead days represent that SST leads

(lags) precipitation. a Corr. Prcp and SST JJA (0�–20�N). b Corr.

Prcp and SST JJA (20�S–0). c Corr. Prcp and SST DJF (0�–20�N).

d Corr. Prcp and SST DJF (20�S–0)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 17 Lead-lag correlations between 10- and 20-day band-pass

filtered precipitation and SST averaged over the regions associated

with the eight QBWO modes (see Table 1) forecasted by the CFSv2

with lead times from 1 to 45 days. Negative (positive) lead days

represent that SST leads (lags) precipitation. a Corr. Prcp and SST

JJA (AM mode), b corr. Prcp and SST JJA (CA mode), c corr. Prcp

and SST DJF (AU–SP mode), d corr. Prcp and SST DJF (SAF mode),

e corr. Prcp and SST DJF (SAM mode), f corr. Prcp and SST JJA (SP

mode), g corr. Prcp and SST DJF (NAF mode), h corr. Prcp and SST

DJF (NP mode)

Prediction of global patterns 1647

123



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 18 Correlation skills for the time series of EEOF-1 of the eight

QBWO modes predicted by the CFSv2 with lead times from 1 to

45 days for El Nino years (red line), La Nina years (blue line) and

12-years mean (dashed line). The horizontal lines represent correlation

skill of 0.4 (95 % confidence level). a Forecast skill (AM mode),

b forecast skill (CA mode), c forecast skill (AU–SP mode), d forecast

skill (SAF mode), e forecast skill (SP mode), f forecast skill (SAM

mode), g forecast skill (NAF mode), h forecast skill (NP mode)
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using the retrospective forecasts by the NCEP CFSv2.

Particularly we focused on the eight dominant QBWO

modes identified by the EEOF analysis. Among them, there

are three boreal summer modes (AM, CA, and SP modes)

and five austral summer modes (AU–SP, SAF, SAM, NP,

and NAF modes). In all QBWO regions, 10–20-day’s

variances decrease with the increase of the forecast lead

time, and in general, reduce to only the half of their initial

values at the lead times of 11–14 days. The CFSv2 has

better prediction skills for the QBW variability in winter

hemisphere than in summer hemisphere. The prediction

skill is lowest in strong active monsoon regions (e.g. Asian

monsoon and North American monsoon).

Following Kikuchi and Wang (2009), eight dominant

QBWO modes are extracted by the EEOF analysis. The

first principal component of the EEOF analysis for the

eight QBWO modes is taken as the QBWO index and its

prediction by the CFSv2 is further quantitatively assessed.

In general, skillful forecasts can be obtained at the lead

times of 10–15 days for most QBWO modes. Those modes

in winter hemisphere (e.g. SP, NP, and NAF modes) seem

to have the better forecast skills than those in summer

hemisphere (e.g. AM, CA, and SAF modes) associated

with stronger monsoon activity. Among the eight QBWO

modes, the NP and SP modes have the best forecast skills

with a useful forecast up to 15 days and the AM and CA

modes, occurring in the two most important summer

monsoon region, have the lowest forest skills with skillful

forecasts only up to 10 and 11 days, respectively. The AM

mode has the largest RMSE during the whole forecast

period among the eight QBWO modes while the SP mode

has the smallest RMSE. The structures and propagation of

the AM, CA and SP mode predicted by the CFSv2 are

further analyzed and compared with the observations to

explain the significant difference in prediction skill. For the

AM and CA modes, as compared to the observations, the

forecasted QBWO phase shows an obvious eastward bias

with the increase of the lead time, particularly for the AM

mode with a speed of 2.5 longitudes/day, which indicates a

slower propagating speed than the observations because

both the AM and CA mode are westward propagating

modes. There is no obvious phase bias for the SP mode

when the lead time is shorter than 15 days, which indicates

that the propagating speed of the SP mode in the CFSv2 is

more realistic than that of the AM mode, which contributes

to the better prediction skill for the SP mode.

For better understanding the difference in prediction

skill among different QBWO modes, we discussed the

possible influences of air–sea interaction on 10–20-day and

intreannual time scales on the prediction. The observa-

tional analysis shows that the local air–sea interaction on

the 10–20-day time scales is stronger in the summer

hemisphere, which indicates that for those QBWO modes

in summer hemisphere, particularly in monsoon regions,

the air–sea interaction on the 10–20-day time scales per-

haps plays a more important role. In the CFSv2 prediction,

there also exists strong air–sea interaction on the 10–20-

day time scales in the five summer hemisphere modes

(AM, CA, Au–SP, SAF, and SAM modes), while absent in

the winter hemisphere modes. However, the local air–sea

coupling weakens rapidly with the increase of forecast lead

time in the CFSv2 associated with the SAM mode. For the

QBWO modes in the winter hemisphere (SP, NAF, and NP

modes), the air–sea interaction may not be crucial. Con-

sequently, these QBWO modes can possible be better

forecasted by the model than those summer modes. The

prediction skills of the eight QBWO modes are also com-

pared between El Niño years and La Niña years. It is

interesting to note that most QBWO modes, except for the

NP and NAF modes, have better forecast skills in El Niño

years than in La Niña years in CFSv2. Further studies are

needed to understand the impact of ENSO on the predict-

ability of QBWO. Different dynamical mechanisms for the

QBWO modes may be partially responsible for the dif-

ferences in prediction skill among different QBWO modes.
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