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ABSTRACT

The 15-member ensemble hindcasts performed with the National Centers for Environmental Prediction

Climate Forecast System (CFS) for the period 1981–2005, as well as real-time forecasts for the period 2006–09,

are assessed for seasonal prediction skills over the tropics, from deterministic (anomaly correlation), cate-

gorical (Heidke skill score), and probabilistic (rank probability skill score) perspectives. Further, persistence,

signal-to-noise ratio, and root-mean-square error analyses are also performed. The CFS demonstrates high skill

in forecasting El Niño–Southern Oscillation (ENSO) related sea surface temperature (SST) anomalies during

developing and mature phases, including that of different types of El Niño. During ENSO, the space–time

evolution of anomalous SST, 850-hPa wind, and rainfall along the equatorial Pacific, as well as the mechanisms

involved in the teleconnection to the tropical Indian Ocean, are also well represented. During ENSO phase

transition and in the summer, the skill of forecasting Pacific SST anomalies is modest. An examination of

CFS ability in forecasting seasonal rainfall anomalies over the U.S. Affiliated Pacific Islands (USAPI) indicates

that forecasting the persistence of dryness from El Niño winter into the following spring/summer is skillful at

leads . 3 months. During strong El Niño years the persistence is predicted by all members with a 6-month lead

time. Also, the model is skillful in predicting regional rainfall responses during different types of El Niño. Since

both deterministic and probabilistic skill scores converge, the suggestion is that the forecast is useful. The

model’s skill in the real-time forecasts for the period 2006–09 is also discussed. The results suggest the feasibility

that a dynamical-system-based seasonal prediction of precipitation over the USAPI can be considered.

1. Introduction

a. Background

With a substantial portion of the world’s population

influenced by climate variability, such as drought, flood,

heat, and cold waves, any capability to anticipate these

fluctuations one or more seasons ahead would have

measurable benefits for decision making in many sectors

of society (Mason et al. 1999; Gong et al. 2003; Palmer

et al. 2004; Barnston et al. 2005). From the early 1980s to

late 1990s, improvements in coupled climate models

have led to the ability to predict tropical climate varia-

tions with some success (Kang and Shukla 2006; Kirtman

and Pirani 2009). Here, we examine the seasonal forecast

performance of the National Centers for Environmental

Prediction’s (NCEP) Coupled Forecast System (CFS)

over the tropics and also over the U.S. Affiliated Pacific

Islands (USAPI).

The hypothesis that boundary conditions such as sea

surface temperature (SST), snow cover, and soil wetness
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have significant influence on seasonal mean tropical cir-

culation and rainfall (Charney and Shukla 1981) has been

supported by various atmospheric general circulation

model (AGCM) sensitivity studies (e.g., Shukla and

Wallace 1983; Livezey et al. 1996; Kumar and Hoerling

1998). In particular, Shukla (1998) showed that the

tropical flow patterns and rainfall over the Pacific are

determined by the underlying SST, as was also suggested

by Soman and Slingo (1997). In summary, seasonal pre-

diction over the tropics, and to a certain degree over the

extratropics, are essentially linked to the accurate pre-

diction of tropical SST (Goddard et al. 2001). Due to their

impacts on global climate anomalies (Ropelewski and

Halpert 1987), predicting SST variations during the life

cycle of El Niño–Southern Oscillation (ENSO) has been

the focus of coupled model development. Many recent

studies have assessed ENSO simulations in coupled

general circulation models (CGCMs; Jin et al. 2008;

AchutaRao and Sperber 2006; Guilyardi et al. 2004,

and the references therein).

While efforts are under way to reduce model system-

atic errors, many CGCMs have shown skill in capturing

ENSO characteristics, paving ways for routine opera-

tional seasonal forecasts (Anderson et al. 2003; Van

Oldenborgh et al. 2005a; Saha et al. 2006). Recent studies

have evaluated the skill of models to forecast ENSO by

analyzing hindcasts produced by CGCMs. Jin et al. (2008)

noted that the skill of a single model or ensemble of

models depends on the season, phase, and amplitude of

ENSO. Luo et al. (2008, 2010) noted high skill in fore-

casting both ENSO and the Indian Ocean dipole zonal

mode (IODZM). Despite success, the predictive skills of

models are degraded during the ENSO onset and decay

periods (Barnston et al. 1999; Clarke and Van Gorder

2003). The latest version of the European Centre for

Medium-Range Weather Forecasts’s (ECMWF) seasonal

forecast system (S3) demonstrated improvements in the

overall skill of ENSO forecasts, which can be partly at-

tributable to improvements in observing systems in re-

cent decades (Stockdale et al. 2011).

With regard to the CFS, Saha et al. (2006) presented

the overall model characteristics and pointed out that

the forecast skill over the Niño-3.4 region (58S–58N,

1708–1208W) is comparable to statistical methods used

at NCEP up to a 6-month lead. Jin and Kinter (2009)

performed a comprehensive study exploring the error

growth that masks the predictability of ENSO. The au-

thors attributed the degradation of the skill (after the

impacts of initial uncertainties fade out) to the system-

atic errors in the control simulations. The skill in hind-

casting the peak phase of IODZM in boreal fall rests on

the uncertainties in forecasting the south Asian mon-

soon circulation (Wajsowicz 2005).

Theoretical and modeling studies have demonstrated

that ENSO owes its existence to unstable ocean–atmosphere

interactions in the tropical Pacific (Battisti 1988; Neelin

et al. 1998), and its statistical properties such as amplitude

and phase transition may be influenced by high-frequency

stochastic forcing (Kessler et al. 1995), and precipitation

variations over the tropical Indian Ocean–Indonesian

Seas region (Anderson and McCreary 1985; Wu and

Kirtman 2004; Annamalai et al. 2005b, 2010; Kug and

Kang 2006). While it is recognized that ENSO influences

global climate anomalies, sensitivity experiments with

AGCMs suggest that SST variations over the southwest

Indian Ocean (SWIO) also modulate the amplitude of

ENSO-induced circulation and precipitation anomalies

over the tropical west Pacific (Watanabe and Jin 2003;

Annamalai et al. 2005a), and over the Pacific–North

American (PNA) region (Annamalai et al. 2007). How-

ever, these regional SST anomalies are influenced by

ENSO itself through the atmospheric bridge (Klein et al.

1999) and through local ocean Rossby waves, which in

turn are forced by ENSO-related wind anomalies over

the equatorial Indian Ocean (Xie et al. 2002; Huang and

Kinter 2002). During strong IODZM events, due to ocean

Rossby waves, thermocline and SST variations over

SWIO are also modified (Rao et al. 2002). In summary,

the expectation is that the combined effects of the trop-

ical Pacific and Indian Oceans can further strengthen

global climate anomalies.

Recent research interests have also focused on two

types of El Niño events, namely, western Pacific and

cold-tongue events. While the mechanisms responsible

differ (Larkin and Harrison 2005a,b; Wang and Hendon

2007; Kug et al. 2009; Kao and Yu 2009), it is desirable to

check CFS’s skill in forecasting these two categories, or

different types, of El Niño.

For the target regions over the USAPI (Fig. 1), the

current operational seasonal precipitation prediction

system is based on empirical methods in which SSTs

provide the predictive information, and higher prediction

skill is noticed during ENSO winters (He and Barnston

1996). During non-ENSO and weak-to-moderate ENSO

events too, the USAPI experience significant seasonal

rainfall anomalies (section 3d). In these circumstances,

the precipitation forecast skill of the empirical model is

low, and the reasons may be manifold including (a) the

nonlinear relationship between ENSO SST and pre-

cipitation is not incorporated, (b) details in the space–

time evolution of SST during different types of ENSO

are not properly accounted for, and (c) SST anomalies

other than ENSO may be responsible for rainfall vari-

ations. A prediction system based on a fully coupled

dynamical model may overcome some of the above

limitations.
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b. Present study

Here, we evaluate seasonal skills using 15-member

ensemble retrospective forecasts (or hindcasts) performed

with the CFS for the period 1982–2005. Hindcasts can

identify systematic errors of the forecast system and

provide estimates of skill information to the user. The

CFS skill is also evaluated for the real-time forecast for

the period 2006–09 (Wang et al. 2010).

Figure 1 shows climatological precipitation (shaded)

and variance (contours) for standard seasons from ob-

servations (Fig. 1, left) and at 0-month lead hindcast

from CFS (Fig. 1, right). Compared to observations, CFS

captures the seasonal dependency in the position and

intensity of the rainfall maximum and also the regional

variance maxima over the tropics with some systematic

errors. Motivated by this, and apart from examining SST

skill over the equatorial Pacific, we also evaluate CFS’

ability in forecasting (i) tropical and regional precipitation

anomalies, (ii) different types of El Niño and their as-

sociated regional responses, and (iii) teleconnection

between the tropical Pacific and Indian Oceans (TIO).

In terms of regional indices, skill is examined for pre-

cipitation (area outlined by solid lines in Fig. 1), and SST

influenced by thermocline variations over the TIO (area

outlined by dotted lines in Fig. 1). The model’s skill in

forecasting northern tropical Atlantic SST anomalies

is also examined. To infer the uncertainty measures

FIG. 1. Climatological precipitation (mm day21, shaded) and variance (mm2 day21, contours) for four standard

seasons from (a)–(d) observations and (e)–(h) the 0-month CFS forecast. The boxed areas in (e) represent the regions

where CFS’s ability to forecast seasonal SST or precipitation anomalies is assessed. The area-averaging regions used

are SWIO (158S–08, 558–758E), EEIO (108S–08, 908–1108E), the northern Atlantic (108–208N, 208–808W), the WNP

(58–158N, 1258–1558E); SP (108–308S, 1608–2008E), HI (158–308N, 1408–1708W), and EPAC (108S–58N, 1708–1108W).

Contours are drawn starting from 1 mm2 day21 with an interval of 2 units.
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associated with forecasts, the skills are assessed using

deterministic, categorical, and probabilistic methods.

In the remainder of this paper, section 2 provides

a brief description of CFS, the hindcasts analyzed, and

the verification tools. In section 3, deterministic skill and

the associated errors over the target regions are pre-

sented. Section 4 deals with assessments of different as-

pects of the forecasts. Section 5 is devoted to the analysis

of real-time forecasts, and section 6 provides the impli-

cations of the present results on seasonal predictions of

regional precipitation. Section 7 provides the summary.

2. Model hindcasts, forecasts, and verification
methods

a. CFS hindcasts and real-time forecasts

CFS is a fully coupled dynamical prediction system

and has been an important component of the monthly to

seasonal prediction system of the NCEP’s Climate Pre-

diction Center (CPC) since it became operational in 2004

(Saha et al. 2006). The atmospheric and oceanic compo-

nents are coupled without flux adjustment and the two

components exchange time-averaged quantities once a

day. Full atmosphere–ocean interaction is confined to

658S–508N. The readers are referred to Saha et al. (2006)

for more details on model configurations.

Here, we analyze the output from the CFS retro-

spective predictions (or alternatively referred to as

hindcasts) that cover all 12 calendar months from 1981

to 2005. These hindcast runs, each of which is a 9-month

integration, are ensembles of 15 members starting from

perturbed real-time oceanic and atmospheric initial

conditions (ICs) from the NCEP Global Ocean Data

Assimilation (D. Behringer 2005, personal communi-

cation) and the NCEP–Department of Energy Atmo-

spheric Model Intercomparison Project II Reanalysis

(Kanamitsu et al. 2002), respectively. For the hindcasts

starting from a specific month (e.g., May ICs), the ICs

for the 15 members in the ensemble include 9–13 May,

19–23 May, and 30 May–3 June. Note that, for a 9-month

integration, prediction at 6-month lead (L6) is the lon-

gest lead available for seasonal means while 8-month

lead (L8) is the longest for monthly means. Variables

examined include SST, precipitation, and wind at 850 hPa.

To infer the ocean Rossby waves in the TIO, we also

analyzed sea surface height (SSH). Hindcast anomalies

are computed by removing the model climatology for

each grid point, each initial month, and each lead time

from the original ensemble hindcasts. The hindcast data

used in our analysis are not the type available to the

external users via public download. Essentially after the

original set of hindcast was completed, and the data were

made publically available, hindcasts from 1981 to 1990

were repeated to correct an error in the ocean analysis

that provided the ocean initial conditions. The error

resulted in too warm SSTs during 1981–90, and requires

detrending of the original hindcast data. Regarding veri-

fication of the real-time forecasts for the period 2006–09,

we examined a 15-member ensemble corresponding to the

same ICs as in the hindcasts. The real-time forecast anom-

alies were calculated based on 1981–2004 climatology.

For the period 1981–2009, observed datasets used for

verification include the CPC Merged Analysis of Pre-

cipitation (CMAP; Xie and Arkin 1996), winds from the

NCEP–DOE reanalysis (Kanamitsu et al. 2002), and the

National Oceanic and Atmospheric Administration’s

(NOAA) optimally interpolated SST analysis (Reynolds

et al. 2002). SSH is taken from the Global Ocean Data

Assimilation System. For verification, observed data are

interpolated to CFS’s horizontal resolution (T62).

b. Verification methods

The entire range of available hindcasts (0–6-month

lead) for all four standard seasons is verified. The mul-

titude of verification measures includes deterministic,

categorical, and probabilistic skill scores. The anomaly

correlation coefficient (ACC), ensemble spread, and signal-

to-noise ratio (S/N) are estimated. Additionally, the skill

of the persistence forecast and root-mean-square error

(RMSE) are calculated. For the target regions (Fig. 1),

the distribution of ensemble members, the ensemble mean,

and the observed anomaly are plotted for every year.

These plots help in understanding the year-to-year vari-

ations in the spread and its association with the predicted

value, and whether there is asymmetry in the model’s

predictive skill (for positive versus negative values).

To verify multicategory forecasts, the Heidke skill

score (HSS) is employed. The probabilistic forecasts are

evaluated using the rank probability skill score (RPSS).

A brief description of them is provided here, while the

appendix provides more details of the methods:

1) ACC—For the ensemble mean as the deterministic

forecast from dynamical seasonal prediction methods,

the anomaly correlation between observed and fore-

cast time series as a measure of deterministic pre-

diction skill is computed. Here, ACC is estimated

between the ensemble means of the forecast and the

observations, as well as between individual members

and observations.

2) HSS—For categorical forecasts, HSS measures the

forecast success rate (hits versus misses) relative to a

random guess as the forecast (Wilks 1995). The

measure is based on a tercile classification (above

normal, normal, and below normal), and the score

(expressed as a percentage) indicates the accuracy of
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the forecast in predicting the correct category rela-

tive to that of a random guess as the forecast (i.e.,

climatological probability or equal chance for each

tercile). A score of 0 means that the forecast did no

better than the climatological probabilities as the

forecast. A score of 100 depicts a perfect forecast and

a score of 250 depicts the worst possible forecast.

3) RPSS—This metric is intended to assess the skill of

probabilistic forecasts (Goddard et al. 2003). Specif-

ically, RPSS is a measure of the square of the dif-

ference in the cumulative forecast and the observed

probability for each category, and penalizes for fore-

casting the wrong category. The RPSS is usually ex-

pressed as a percentage and a negative value implies

that the forecast is less skillful than climatology. For

typical climate forecasts with modest skill, for which

forecast probabilities typically fall within 20% of their

climatological values (33.3%), RPSS scores are often

in the range of 5%–20%.

4) S/N—Signal to noise ratio is estimated as the ratio of

the interannual standard deviation of a 15-member

ensemble mean to the spread, where spread is de-

fined as the interensemble standard deviation of the

15 members (Kumar and Hoerling 1995).

3. Deterministic skill over the tropical Pacific
and Indian Oceans

A prerequisite for successful seasonal forecasts is an

ability to predict accurately the state of the ocean. In this

section, at all lead times, and for forecasts initialized in

all months, the model’s SST skill over the Niño-3.4,

Niño-4, and Niño-3 regions are first evaluated (section

3a), as is the precipitation skill over the equatorial

Pacific (section 3b). The teleconnection between the

tropical Pacific and Indian Ocean, together with the rep-

resentation of TIO local oceanic processes, are exam-

ined (section 3c). In section 3d, skill in forecasting

Atlantic SST is presented. Finally, the model’s skill in

forecasting rainfall anomalies over the USAPI is pre-

sented (section 3e).

a. SST over the equatorial Pacific

Figure 2 shows the ACC (Fig. 2a) and RMSE (Fig. 2c)

for Niño-3.4 SST anomalies. Results are shown for all

lead times (0–8 months), and for all ICs (January–

December). The corresponding measures estimated from

the persistence forecast are shown in Figs. 2b,d. The in-

verse association between ACC and RMSE holds, and

the ensemble mean offers a higher level of skill than

persistence. For instance, for leads up to 6–7 months and

hindcasts initialized during late spring through early fall

(May–October), the ensemble mean ACC is . 0.8 with

a relatively small RMSE (0.3–0.4) but for the persistence

forecast the ACC drops below 0.6 with a higher RMSE

(;0.7–0.8). This means that the skill in forecasting the

intensification and peak amplitude of ENSO is indeed

high. However, for forecasts initialized during winter

(November–January), the skill for the transition phase

of ENSO is modest at best. Specifically, both methods

share similar ACC and RMSE values in the first 3–5

months (Figs. 2a–d), but they drop off rapidly during

spring with a minimum in July. This decay in skill, often

referred to as the spring predictability barrier, is com-

mon to most models (Clarke and Van Gorder 1999; Wu

et al. 2008; Jin and Kinter 2009; Stockdale et al. 2011).

The results presented here based on ICs versus lead

months are consistent with those estimated from target

months versus lead months (Saha et al. 2006). The fore-

cast performance of CFS over the Niño-3.4 region is

comparable to that of the ECMWF S3 system (Stockdale

et al. 2011).

ENSO prediction is further assessed in four different

ways. First, the model’s relative skill in hindcasting in-

dividual El Niño and La Niña events (Fig. 3a) is evalu-

ated for the peak phase (December–February, DJF) at

0-month lead. This is necessitated because observations

during the period 1982–2005 indicate unique features

that models need to forecast. They include (i) two of the

strongest El Niño events of the twentieth century (1982

and 1997) and (ii) persistent La Niña conditions during

1998–2000 (thick red circles in Fig. 3a). It is encouraging

that all the ensemble members (green circles) capture

correctly the amplitude during 1982 and 1997, and the

model’s ability in hindcasting these two events is re-

markable even for leads up to 6 months (Fig. 4a). For the

prolonged La Niña episode, however, the predicted

amplitude is higher in conjunction with a larger ensemble

spread. It is also encouraging that the model is able to

correctly forecast near-normal conditions in many years.

Van Oldenborgh et al. (2005a) noted that the hindcasts

produced by the ECMWF seasonal forecast system (S1

and S2) were unable to capture the amplitude of the

1987 and 1997 warm events, but the extended cold event

(1998–2000) was forecast correctly. On the other hand,

at short leads the new system (S3) demonstrated high

skill in forecasting the amplitudes of these warm events

but the details were not correct for cold events; however,

for longer leads, forecasting the peak amplitude during

1982 met with moderate success (Stockdale et al. 2011).

Second, to understand the skill dependence as a func-

tion of seasons, Table 1a summarizes the statistics for

Niño-3.4 at various leads and for all the four seasons.

While ACC remains high for the fall, winter, and spring

seasons, the skill drops off markedly for summer at longer

lead times. Even for DJF while ACC remains around 0.9
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at all leads, S/N, a measure of the spread, drops off by

a factor of ;2.7 (from 6.1 to 2.3), largely due to wider

spread during cold events.

Third, in Fig. 5 we examine CFS’s ability in forecasting

the monthly Niño-3.4 SST anomalies during 1982 (open

circles) and 1997 (open squares) events for four different

ICs. These four ICs represent the predictions of the

onset, intensification, peak amplitude, and decline or the

transition phases of El Niño, respectively. For January

ICs, the CFS predicts the warming tendency for both

events but the amplitude is underestimated. In terms of

both amplitude and timing, the 1997 event is best fore-

cast with April ICs while the subsequent forecast with

July and October ICs overestimates the strength, and

even failed to predict the sudden phase transition to

La Niña (a drop of ;1.58C during May–June of 1998;

Fig. 5d). For the 1982 event, however, the hindcasts

with all ICs agree with the observations only for the first

2–4 months and thereafter the amplitude drifts by 18–28C.

Finally, we analyzed CFS’s skill in forecasting dif-

ferent types of El Niño (Figs. 3b, 5). Observations in-

dicate that the SST maximum for cold tongue events is

over the eastern Pacific or Niño-3 region (58S–58N, 908–

1508W), and that for warm pool events the maximum lies

over the west-central Pacific or Niño-4 region (58S–58N,

1608E–1508W). Therefore, the skill levels in hindcasting

SST anomalies over Niño-3 and Niño-4 regions are ex-

amined. Owing to the role of wave-induced thermocline

displacements influencing SST through vertical advec-

tion even at 6-month lead time, the ACC remains high

(0.9) for the Niño-3 region and other skill measures are

as good as that over the Niño-3.4 region and, hence, are

FIG. 2. (a) ACC of CFS ensemble mean forecasts of the monthly mean Niño-3.4 SST over the period 1981–2005 as

a function of IC month (x axis) and lead month (y axis). Niño-3.4 is defined as the spatial mean SST over 58S–58N,

1708–1208W. (b) As in (a), but for the persistence forecast. (c) As in (a), but for RMSE for the CFS ensemble forecast,

and (d) as in (c), but for persistence forecast. (e) As in (a), but for CFS mean forecasts of the monthly mean pre-

cipitation anomalies over the equatorial Pacific (108S–58N, 1708E–1108W). (f) As in (c), but for monthly mean

precipitation anomalies over the equatorial Pacific.
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not discussed further. At lag 0 over the Niño-4 region,

local warming during the boreal winters of 1990/91,

1994/95, 2002/03, and 2004/05 are forecasted with a small

spread (Fig. 3b). A particular aspect of the forecast is

that the prolonged El Niño episode of 1991–95 is ob-

served only over the Niño-4 region rather than over

Niño-3.4 (Fig. 3a). As with strong events, we examined

CFS’s ability to forecast the evolution of Niño-4 SST

anomalies during relatively weak events (1994/95 and

2002/03) for four different ICs (Fig. 6). For both events,

the forecasts initialized in October show good agree-

ment with the observations (in terms of amplitude and

timing), including the termination phase, but the fore-

cast performed with July ICs is rather poor. An exam-

ination for the entire period (Table 2) suggests that

predictions of SST anomalies over both the Niño-3 and

Niño-4 regions are comparable to those over Niño-3.4

for most leads.

In summary, CFS’s skill is higher for forecasting

stronger and persisting El Niño events that are primarily

due to thermocline displacements. When seasonally strat-

ified, predictions of winter and autumn seasonal SST

anomalies have higher skill. However, forecasting weaker

El Niño events is limited to 0–2-month leads.

b. Precipitation along the equatorial Pacific

The overall skill measures for precipitation forecasts

along the equatorial Pacific (108S–58N, 1708E–1108W)

are shown in Figs. 2e,f and Table 1. High values of ACC

(.0.7) with less RMSE are along the diagonal repre-

senting the fall and winter seasons. For short lead times

(0–2 months) only, predicting spring and summer rainfall

is skillful, and similar to SST, forecasting precipitation

anomalies during ENSO phase transition is difficult.

Van Oldenborgh et al. (2005b) examined the skill of two

versions of the ECMWF seasonal prediction system (S1

and S2) and noted that in both versions ACC is .0.7

when predicting equatorial Pacific rainfall anomalies for

all seasons except summer (see their Table 1). Despite

differences in the physical parameterizations employed,

the consistency between the CFS and ECMWF systems

suggests that skill in predicting large-scale precipitation

anomalies may be model independent.

Encouraged by the skill in forecasting aspects of

El Niño–related SST anomalies in individual years, we

turn our attention to precipitation skill along the equa-

torial Pacific at 0-month lead for the DJF season (Fig.

3c). While the ensemble mean follows the observed, the

spread is larger, yielding an S/N of about 4.2, and this

skill is considerably less than that for Niño-3.4 SST

(Table 1a). Other limitations include excess rainfall

during the winter of 1997/98, and the failure to capture

the above normal rainfall during the winter of 1986/87.

In addition, during cold phases of 1983/84 and 1998/99

(Fig. 3a), the precipitation forecast is weaker than ob-

served (Fig. 3c) despite predicting stronger SST anomalies

compared to the observations. SST anomalies translating

into rainfall anomalies depend on the physical parame-

terizations employed, particularly convective schemes.

Further, the SST–rainfall relationship is also not local,

and rainfall anomalies can be influenced by circulation

anomalies forced by rainfall at other locations.

Finally, to depict coherency among variables responsible

for ocean–atmosphere interactions, lagged correlations

between the DJF Niño-3.4 SST and SST (contours),

rainfall (shaded), and 850-hPa wind (vector) anomalies

at 0-month lead and spanning the 24-month period

(entire life cycle of ENSO) are shown in Fig. 7b. Similar

results from the observations are also shown in Fig. 7a.

In CFS and at both leads, the onset, development, mature,

and decay stages of El Niño, as well as the development

of cold SST and negative precipitation anomalies over

the Maritime Continent (1208–1508E), together with low-

level divergence corresponding to an anomalous Walker

circulation, are in good agreement with observations.

Most of these salient features noted at 0-month lead are

readily apparent even at 6-month lead (Fig. 4b). To the

FIG. 3. (a)–(c) Temporal evolution of DJF SST anomalies (8C)

hindcast by CFS at 0-month lead time. Ensemble mean (blue), all

15 individual members (green), and observations (red) are shown

for two regions: (a) Niño-3.4 (58S–58N, 1908E–1208W) and (b)

Niño-4 (58S–58N, 1608E–1508W). (c) As in (a), but for equatorial

Pacific rainfall anomalies (mm day21) averaged over 108S–58N,

1708E–1108W.
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west of this center of divergence, easterly wind anoma-

lies cover the entire equatorial Indian Ocean, and their

influence on local ocean dynamics is explained next.

c. Teleconnection to the TIO

Figure 7d shows lagged correlations between DJF

Niño-3.4 time series and SSH (shaded) and SST (con-

tours) averaged over (88–128S) the TIO from the obser-

vations, and the corresponding results from the 0-lead

CFS forecast, are shown in Fig. 7e. Starting from May–

June of year 0, upwelling-favorable winds off the Java–

Sumatra coasts (Figs. 7a–c; 808–1008E) promote negative

SSH values (i.e., shallow thermocline anomalies; Fig. 7e)

and subsequent local SST cooling attains a maximum

in fall (Figs. 7a–c). The wind stress curl associated with

the easterly wind anomalies forces downwelling oceanic

Rossby waves, and the westward-tilted structures in the

SSH and SST anomalies with respect to time (Figs. 6d,e)

support that interpretation. These Rossby waves advect

warm water and act to deepen the thermocline as they

cross the ocean basin (Xie et al. 2002). The maximum

perturbations to SSH (i.e., deepened thermocline) and

SST are noted over SWIO during boreal spring of year

11. The warm SST anomalies persist for about 10–12

months primarily due to the presence of the shallow-mean

thermocline and passage of oceanic Rossby waves.

Other studies (e.g., Murtugudde and Busalacchi 1999;

Shinoda et al. 2004) suggest the importance of evapo-

rative cooling and solar radiation in contributing to

SST anomalies over SWIO. The good skill in low-level

wind (Fig. 4b) provides indirect evidence for evaporative

cooling. In summary, CFS captures the teleconnection

FIG. 4. (a) Temporal evolution of DJF average Niño-3.4 (58S–58N, 1908E–1208W) SST

anomalies (8C) hindcast by CFS at 6-month lead time for the ensemble mean (blue), all 15

individual members (green), and the observations (red). (b) Lagged correlations of SST

(contours), rainfall (shaded), and 850-hPa wind averaged in 38S–38N with winter (DJF) Niño-

3.4 SST index from the CFS ensemble mean 6-month lead forecast. Results are shown for a 2-yr

period representing the entire life cycle of ENSO.
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from the tropical Pacific to TIO, and also the essential

mechanisms responsible for the anomalous conditions in

the TIO.

Encouraged by the above results, we examined the

deterministic skill scores over both SWIO (158S–08,

558E–758E) and EEIO (108S–08, 908–1108E). Observa-

tions indicate the SST anomalies peak during spring of

year 11 over SWIO and during boreal fall over EEIO.

For SWIO, CFS hindcasts initialized during June–July

of year 0 onward depict higher ACC and lower RMSE

(Figs. 8a,b) than are found with the persistence method

(Figs. 8b–d). In contrast, over EEIO the ensemble mean

barely does better than persistence even at shorter leads

(Figs. 8e,f). To test the model’s ability in forecasting

one of the strongest IODZM events during 1997 and

the subsequent warming over SWIO in spring of 1998,

ensemble mean hindcasts at various leads are shown

(Fig. 9). For IODZM (Fig. 9b), the model is successful

only at 0-month lead and fails to forecast even the

cooling tendency at longer leads. In contrast, the pro-

gression and the amplitude of SWIO (Fig. 9a) warm-

ing are closer to the observations, even at 3–6-month

lead time. In addition, the basin-wide warming covering

the EEIO during the spring of year 11 is forecast at

longer leads.

Finally, Tables 1b,c summarize the CFS skill in fore-

casting SWIO and EEIO SST anomalies at various leads

and for all seasons. For winter and the following spring

over SWIO, the skill is relatively higher for longer leads

but the S/N never reaches 2.0. But over EEIO, except for

the 0-month lead, the spread among the ensemble

members (i.e., the noise) is comparable to the spread of

the ensemble mean (i.e., the signal). An examination of

all strong IODZM events during the period 1982–2005

indicates that while ACC is about 0.9 at 0-month lead,

spread masks the S/N (Table 1c). The limitations in the

SST forecast are reflected in the low skill for local pre-

cipitation anomalies (not shown). One factor is that

even during strong events, the observed SST anomalies

over SWIO and EEIO are around 0.88C (Fig. 9a) and

1.48C (Fig. 9b), respectively. Thus, despite a clear influence

of ocean dynamics, predicting these SST anomalies may

require, among other things, a better representation of the

monsoon, oceanic processes and higher resolution to rep-

resent upwelling off the Java–Sumatra islands.

d. SST over the tropical Atlantic region

SST anomalies over the tropical Atlantic during bo-

real summer favor the development and intensification

of hurricanes, and hence CFS’s ability in hindcasting

SST over the region (108–208N, 208–808W) is examined

(Figs. 8i–l). The ensemble mean forecast outperforms

persistence particularly for ICs ranging from May to

July. With low RMSEs, forecasting the SST during the

hurricane season is well represented in CFS, unlike the

moderate skill in ECMWF S3 (Stockdale et al. 2011).

However, unlike the skill over Niño-3.4 (Fig. 2a), over

the tropical Atlantic the ACC skill (.0.7) lasts only for

a few lead months (2–4 months).

e. Precipitation over the USAPI

Figure 10 shows the rainfall forecast over the western

Pacific islands (58–158N, 1258–1658E). The left (right)

panels are results for 0-month (6 month) lead time

for standard seasons of summer (Figs. 10a,b), fall (Figs.

10c,d), winter (Figs. 10e,f), and spring (Figs. 10g,h).

Note that the precipitation variance among the en-

semble members is high here in all seasons (Fig. 1).

Observations (red circles) indicate that during strong

El Niño years (e.g., 1982–83, 1991–92, and 1997–98),

dryness (or below normal rainfall) persists from winter

of year 0 to summer of year 11. Quite remarkably, the

TABLE 1. Values of ACC and S/N estimated for regional SST

time series for four standard seasons, and for 0–6-month-lead

forecasts.

(a) Niño-3.4 region

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.96 6.1 0.95 4.8 0.92 3.2 0.96 3.7

1 0.92 5.2 0.91 3.0 0.82 2.6 0.93 3.2

2 0.92 4.5 0.85 2.9 0.88 2.2 0.92 3.3

3 0.94 3.6 0.84 2.9 0.82 2.0 0.88 2.5

4 0.91 3.2 0.84 2.9 0.68 1.4 0.76 2.2

5 0.91 2.8 0.81 2.9 0.50 1.5 0.85 2.0

6 0.89 2.3 0.83 2.5 0.53 1.8 0.79 2.0

(b) SWIO region

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.85 1.7 0.92 1.8 0.64 1.7 0.73 1.9

1 0.84 1.7 0.87 1.6 0.57 1.2 0.60 1.3

2 0.85 1.5 0.84 1.4 0.52 1.1 0.47 1.3

3 0.82 1.4 0.85 1.5 0.50 0.9 0.42 1.1

4 0.81 1.3 0.83 1.4 0.58 1.2 0.27 1.1

5 0.75 1.1 0.85 1.5 0.57 1.0 0.13 1.1

6 0.71 1.1 0.83 1.4 0.67 1.0 0.10 0.8

(c) EEIO region

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.76 1.2 0.87 1.3 0.80 1.5 0.89 1.2

1 0.61 1.0 0.80 1.0 0.73 1.3 0.76 1.0

2 0.40 1.0 0.75 1.0 0.18 0.9 0.59 1.0

3 0.29 1.0 0.77 1.0 0.03 0.7 0.71 1.0

4 0.46 0.9 0.71 0.8 20.04 0.4 0.51 0.9

5 0.48 0.9 0.67 0.9 20.3 0.5 0.18 0.9

6 0.38 0.8 0.72 0.9 20.1 0.5 0.04 0.8
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CFS ensemble-mean forecast (blue circles) captures this

drying tendency from 6-month lead time except for sum-

mer of year 11. Barring the two strong El Niño events of

1982/83 and 1997/98, the spread among the ensemble

members is large but the sign of the anomalies is well

captured. For 6-month-lead forecasts of JJA rainfall, the

predicted sign is wrong in many years. While correlations

between rainfall anomalies over the western Pacific and

Niño-3.4 SST anomalies are negative for most of the

year, they are rather positive during July–August. Thus,

the difficulty in capturing this seasonally varying tele-

connection may well be a factor in the low skill scores

during summer. Table 3a lists the statistics at various

leads and for all seasons. The ACC and S/N are high for

winter and spring, but both drop off to low values for

summer and fall (Table 3a). A possible interpretation is

that large-amplitude swings in precipitation occur during

winter (Fig. 10e) and, hence, are more predictable.

Figure 11 shows the results for the South Pacific is-

lands (108–308S, 1608–2008E), and the skill statistics is

summarized in Table 3b. In this region too, largest anom-

alies in precipitation are observed during ENSO winters

(Figs. 11a,b) but the dryness starts during the summer of

year 0 and persists until the following spring. Inter-

estingly, CFS correctly captures both the phase and

amplitude of the dryness at longer lead times. However,

for any given season ACC and S/N do not exceed 0.7 and

2.0, respectively. Compared to other seasons, forecasting

rainfall anomalies during summer is less skillful (Table

3b) since the ENSO teleconnection is weaker.

Another region of interest is the Hawaiian Archipel-

ago (158–308N, 1708–1408W). The precipitation forecasts

are shown in Fig. 12 and the statistics are summarized in

Table 3c. For the islands situated over the Northern

Hemisphere, western Pacific, and Hawaii, the dryness

attains a maximum in winter of year 0 and continues into

the spring of year 11, and CFS has skill in forecasting

them. However, the spread among the members is in-

deed large even during the 1982–83 and 1997–98 El Niño

years (Fig. 12) resulting in a low S/N (Table 3c). Further,

the analysis of ensemble mean SD and spread (table not

shown) reveals that they are almost identical, implying

limitations in precipitation forecasts over the Hawaiian

region. An analysis of ACC and RMSE for the USAPI

regions for all leads and ICs (not shown) confirms the

above results. Briefly, for both the western Pacific and

South Pacific regions high (low) ACC (RMSE) values at

5–6-month lead lie along the diagonal that represents

the winter and spring rainfall. However, rainfall anomalies

over the Hawaiian Islands appear to be least predictable

at longer leads. From Figs. 10–12, it is encouraging to

note that observed anomalies (red dots) generally lie

within the envelope of possible model solutions (green

dots), and there are few instances of outliers. On the

other hand, in all three regions the interannual variability

in the envelope of the ensemble spread is large enough

FIG. 5. Monthly anomalous Niño-3.4 SST (8C) index for the 1982 and 1997 El Niño events for predictions starting

from (a) January, (b) April, (c) July, and (d) October ICs. Here, OBS indicates observation and ENS stands for

ensemble mean.
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(1.0–5.0 mm day21). In addition, the ratio between SD

and ensemble spread for the regional rainfall anomalies

is not high (not shown), suggesting model limitations.

One area of improvement is to perform forecasts with a

higher horizontal resolution to capture the orographically

induced rainfall. Another approach is to perform statis-

tical downscaling.

4. Assessment of different aspects of forecasts

In this section, ACC is compared and contrasted with

HSS and RPSS to assess different aspects associated with

forecasts that also rely on the spread information in-

herent in the ensembles. Our working hypothesis is that

forecast assessments based on ACC alone are not suffi-

cient enough within the context of decision making, and

alternate measures for assessing probabilistic forecasts

are also needed. The comparison is first made over the

global tropics (section 4a) and then over selected regions

(section 4b). One expects some correspondence between

various skill measures; for example, an ACC value of 0.5

for a deterministic forecast is comparable to about 30%–

35% of HSS for the categorical forecast, and 15%–20%

of RPSS (Kumar 2009) for the probabilistic forecast.

However, it may not be true if the spread among en-

semble members (upon which probabilistic forecasts

rely) has biases compared to the observations. For ex-

ample, ACC as a measure of skill for deterministic fore-

casts does not depend on the spread among ensemble

members and, therefore, may be not be sensitive to errors

in such; while an analysis-based probabilistic measure

(e.g., RPSS) will be sensitive to those errors.

a. Assessment of errors over the tropics

Figure 13 shows spatial maps of ACC, HSS, and RPSS

for SST and precipitation forecasts at 0-month lead for

FIG. 6. Monthly anomalous Niño-4 SST (8C) index for the 1994 and 2002 El Niño events for the predictions starting

from (a) January, (b) April, (c) July, and (d) October ICs. Here, OBS indicates observation and ENS stands for

ensemble mean.

TABLE 2. As in Table 1, but for SST anomalies.

(a) Niño-3 region

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.95 6.0 0.9 4.2 0.9 3.5 0.95 3.8

1 0.92 5.5 0.9 2.7 0.9 2.7 0.9 2.9

2 0.92 4.5 0.8 2.6 0.8 2.2 0.9 2.9

3 0.90 3.4 0.8 2.8 0.8 2.0 0.9 2.3

4 0.90 2.9 0.8 2.7 0.7 1.2 0.8 2.0

5 0.89 2.6 0.7 2.9 0.6 1.3 0.8 1.8

6 0.88 2.0 0.8 2.4 0.6 1.6 0.8 1.9

(b) Niño-4 region

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.96 5.1 0.9 4.7 0.9 3.6 0.95 3.6

1 0.92 4.2 0.9 3.1 0.9 2.6 0.9 3.4

2 0.91 3.5 0.9 2.9 0.9 2.3 0.9 3.4

3 0.87 2.9 0.9 3.0 0.9 2.1 0.8 2.9

4 0.83 2.9 0.9 2.8 0.8 1.6 0.7 2.2

5 0.80 2.9 0.9 2.7 0.6 1.7 0.8 2.1

6 0.78 2.3 0.9 2.4 0.7 2.1 0.8 2.1
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two seasons (spring and winter). For the sake of con-

ciseness, figures from other seasons and other leads are

not shown but the results are discussed briefly. Over the

equatorial Pacific, all three of the skill measures agree

quite well, enhancing our confidence in CFS forecasts.

The exceptions include (i) negative RPSS values for

precipitation over the far-eastern equatorial Pacific re-

gion during winter and (ii) the HSS and RPSS patterns

being rather noisy, when compared to ACC patterns for

rainfall in spring. Over SWIO, while ACC indicates high

skill for both SST and rainfall, the coherency in HSS and

RPSS is better captured for SST rather than for rainfall.

Over the USAPI, all three measures show a good degree

of consistency with local maxima in their vicinities, but

the consistency for higher skill scores is noticed over the

western Pacific islands alone.

b. Regional indices

As before, we assess the scores for four SST indices

(Fig. 14). The left panels in Fig. 14 are scatter diagrams

between ACC and HSS, while the right panels are

scatterplots between ACC and RPSS. From these plots,

one can infer the merits and drawbacks associated with

various aspects of the forecast information.

FIG. 7. (a) Lagged correlations of SST (contours), rainfall (shaded), and 850-hPa-wind av-

eraged over 38S–38N with a winter (DJF) Niño-3.4 SST index from the observations. (b) As in

(a), but from the CFS ensemble mean 0-month lead forecast. Results are shown for a 2-yr

period representing the entire life cycle of ENSO. (c) Lagged correlations of SST (contours)

and SSH (shaded) averaged over 88–128S with the winter Niño-3.4 SST index from observa-

tions. (d) As in (c), but from the CFS ensemble mean 0-month lead forecast. Positive (negative)

SST values are shown as solid (dashed) contours with an interval 0.1.
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CFS demonstrates the highest confidence in predict-

ing winter SST anomalies (Figs. 14a,b, open squares)

over the Niño-3.4 region at all lead months with ACC

upward of 0.85. High skill in deterministic forecasts as

measured by ACC is also captured for categorical and

probabilistic forecasts with high HSS (.50%) and RPSS

(.40%). This is consistent with the results discussed

earlier (Fig. 2). The confidence in predicting the fall

season is also high but limited to 0–4-month leads. Pre-

dicting spring and summer anomalies results in limited

confidence at 0–1-month leads, and for other leads, even

if ACC lies around 0.8, RPSS drops off to very low

FIG. 8. (a) As in Fig. 2a, but for the SWIO SST index. (b) As in Fig. 2b, but for the SWIO SST index. (c),(d) As in

Figs. 2c,d, but for the SWIO SST index. (e),(f) As in (a),(b), but for EEIO SST index. (g),(h) As in (c),(d), but for the

EEIO SST index. (i),(j) As in (a),(b), but for the Atlantic SST index. (k),(l) As in (c),(d), but for Atlantic SST index.

Please see Fig. 1 for regions used for averaging.
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values, sometimes even negative, indicating possible is-

sues related to the spread among the ensemble members

that influence the probabilistic forecasts. Therefore, fore-

casting the summer teleconnection features (e.g., ENSO–

monsoon association) will be limited in CFS.

For the SST indices over the TIO, the confidence in

predicting the winter and spring variations over SWIO

(Figs. 14c,d) are high at leads up to 5 months. Watanabe

and Jin (2003) and Annamalai et al. (2005a, 2007) noted

that it is the winter and spring SST anomalies over

SWIO that influence the regional and global climate

anomalies. In the observations, summer and fall SST

variations over SWIO are indeed small (Annamalai et al.

2003), and hence the models have limited predictability.

In agreement with Wajsowicz (2005), our confidence in

predicting IODZM SST anomalies during fall is the

lowest (Figs. 14e,f).

We now examine the scatter diagrams for Atlantic

SST anomalies between HSS and ACC (Fig. 14g) and

between RPSS and ACC (Fig. 14h). Compared to other

seasons, CFS demonstrates skill in predicting boreal fall

SST anomalies (cross) with ACC (.0.85), HSS (.40),

and RPSS (.10), even though it is limited to 2-month

lead. Except for 0-month leads, predicting SST anoma-

lies in winter, spring, and summer has limited skill. The

interpretation is that even if ACC lies around 0.5–0.7,

RPSS drops off to lower values and occasionally nega-

tive values (particularly during the summer season).

The scatterplots over the USAPI are shown in Fig. 15.

Over the western Pacific region, forecasting rainfall vari-

ations during winter is trustworthy for at least 0–3-month

lead, followed by predictions for the spring season at

leads of 0–1 month. For summer rainfall variations, while

ACC is greater than 0.6 and HSS is around 15%–25%,

negative RPSS indicates that the forecast is not better

than climatology. The model’s forecast for fall rainfall

anomalies is least skillful. A point to note here is that for

the same value of ACC (;0.6) for a 0–1-month lead

forecast, RPSS is positive for spring but negative for

summer, indicating the seasonal dependency in the fore-

cast errors. For the South Pacific region, predicting rain-

fall variations during winter and spring appears realistic

for leads of 0–4 months. Here also forecasting summer

precipitation anomalies is not reliable. For the Hawaiian

region, at shorter leads (0–1 month) and for all seasons

except fall, convergence of all three scores suggests that

different rainfall forecast information is useful. In sum-

mary, for regional precipitation forecasts over USAPI,

ACC values greater than 0.7 and correspondingly high

HSS and RPSS values occur particularly for the winter

and spring seasons.

5. Real-time forecast assessment during 2006–09

Here, we present forecast skill for tropical SST (sec-

tion 5a) and then rainfall over the USAPI (section 5b).

Because of the limited forecast period, instead of sea-

sonal anomalies, skill at the 0-, 3-, and 6-month lead

forecasts for 3-month running mean anomalies are es-

timated.

a. Tropical SST indices

Predictions of the 3-month average SST anomalies are

shown over the Niño-3.4 (Fig. 16a), Niño-4 (Fig. 16b),

SWIO (Fig. 16c), and EEIO (Fig. 16d) regions at two

leads (0 and 3 months). Over the Niño-3.4 and Niño-4

regions, the moderate warm events of 2006 and 2009 are

well predicted at 0-month lead, but at other leads, the

predicted amplitude and phase are off target. For ex-

ample, the observed peak warm SST anomalies during

fall–early winter of 2006, particularly the early with-

drawal of El Niño (phase transition), were not correctly

predicted at 3-month lead. A similar problem is also

noticed during the 2007/08 La Niña phase transition.

While hindcasts of different types of El Niño demon-

strated high skill at various lead times (Fig. 3), the real-

time forecast skill of these events is modest. The skill

measures of ACC and S/N shown in Table 3a for the

Niño-3.4 region suggest a sharp degradation at 3-month

lead and onward. This discrepancy is possibly due to

low-amplitude short-duration ENSO events during this

period (Wang et al. 2010).

An examination of the real-time prediction of SWIO

SST anomalies (Fig. 16c) indicates that systematic errors

noted in ENSO prediction (Fig. 16a) are also present

here. As noted in hindcasts (Figs. 7, 8), the prediction of

FIG. 9. The 3-month-average CFS ensemble mean SST (8C)

forecast at 0- (dashed), 3- (dotted), and 6- (dash–dot) month leads

over (a) SWIO and (b) EEIO. The starting period is summer (JJA)

of 1997, the next period is July–September (JAS) of 1997, and so

on. The corresponding observed SST is also shown (solid line).
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FIG. 10. Seasonal rainfall (mm day21) forecast at (left) 0- and (right) 6-month lead times over the tropical west North Pacific region for the

period 1981–2005. Observations (red), ensemble mean (blue), and all of the 15 individual members (green) are shown.

FEBRUARY 2012 S O O R A J E T A L . 17



the peak phase of IODZM during fall of 2006 is poor

(Fig. 16d). Also, the model incorrectly predicts a very

strong IODZM during the summer of 2008. The skill

measures for SWIO and EEIO SST indices (Table 3a)

indicate that the real-time prediction of the latter is very

limited. For the forecast period 2005–08, Wang et al.

(2010) examined the spatial distribution of ACC for SST

and found that at 0-month lead values are high over the

tropical Pacific, SWIO, and northern Atlantic.

b. Precipitation indices

The skill of real-time precipitation forecasts over the

equatorial central Pacific (Fig. 16e) and over the three

regions of the USAPI (Figs. 16f–h), together with the

skill measures (Table 3b), are examined. As for the

hindcasts (Figs. 2, 3), there is generally a one-to-one

correspondence in skill between SST and rainfall over

the equatorial Pacific. Since there is a seasonal dependence

in hindcast skill of regional rainfall (Table 2), a direct com-

parison with a 3-month average for real-time prediction

is not possible. Nevertheless, over the USAPI, the

model’s real-time forecast of precipitation over the

Hawaiian Islands is better than for the other two regions.

Over the South Pacific region, while CFS fails to predict

negative (positive) rainfall anomalies during early months

of 2006 (2007), the prediction of the anomalous condi-

tions for 2008–09 is correct. However, prediction of rain-

fall variations over the tropical western Pacific (Fig. 16f;

Table 4) is not encouraging compared to the high skill

of the hindcasts noted earlier (Table 3a).

Compared to the high skill noted in the hindcasts

(section 3), the modest skill in real-time forecasts needs

attention. As a quantitative measure, for each of the SST

and rainfall indices in Fig. 16 their respective standard

deviation and ensemble spread are provided. Keeping in

mind the short verification period, the ensemble spread

is comparable to the standard deviation for all of the

indices. In other words, the variance explained over the

target regions is not strong enough.

6. Implications for dynamical seasonal prediction
of precipitation

Both observational (Ropelewski and Halpert 1987,

1989) and modeling (e.g., Shukla 1998; Su and Neelin

2002) studies provide a guide to the expected climatic

impacts of ENSO over the tropics. The fact that an ac-

curate prediction of the tropical Pacific SST is a neces-

sary condition for the successful prediction of rainfall

TABLE 3. As in Table 1, but for regional precipitation time series

over the Pacific Islands.

(a) Western Pacific region (58–158N, 1258–1658E)

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.87 2.3 0.66 1.7 0.66 1.2 0.31 0.8

1 0.77 1.9 0.63 1.2 0.69 1.1 20.07 0.8

2 0.73 1.5 0.57 1.4 0.61 0.9 20.06 0.6

3 0.84 1.7 0.54 1.5 0.69 0.8 20.44 0.5

4 0.75 1.5 0.47 1.3 0.65 0.5 0.28 0.5

5 0.72 1.3 0.50 1.5 0.56 0.5 20.07 0.4

6 0.58 1.3 0.53 1.5 0.22 0.5 20.09 0.4

(b) South Pacific region (108–308S, 1608E–1608W)

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.69 2.0 0.72 1.7 0.56 1.8 0.72 1.7

1 0.69 1.9 0.75 1.4 0.46 1.4 0.62 1.7

2 0.63 1.6 0.72 1.5 0.32 1.2 0.62 1.4

3 0.56 1.4 0.65 1.5 0.32 1.2 0.52 1.3

4 0.51 1.2 0.67 1.2 0.44 1.0 0.39 1.1

5 0.41 1.0 0.74 1.6 0.22 1.0 0.49 1.0

6 0.35 1.0 0.71 1.4 0.37 1.2 0.48 1.0

(c) HI region (158–308N, 1708–1408W)

Lead

(months)

DJF MAM JJA SON

ACC S/N ACC S/N ACC S/N ACC S/N

0 0.62 1.1 0.69 1.5 0.57 1.4 0.49 0.9

1 0.69 1.0 0.44 1.3 0.69 1.1 0.44 1.0

2 0.60 0.9 0.52 1.3 0.62 1.1 0.32 0.9

3 0.57 0.9 0.49 1.1 0.64 1.1 0.22 0.8

4 0.34 0.7 0.46 1.2 0.46 0.8 0.39 0.7

5 0.27 0.6 0.34 1.3 0.55 0.9 0.12 0.6

6 0.14 0.6 0.49 1.0 0.61 0.9 0.34 0.7

TABLE 4. As in Table 1, but for 3-month averages and for real-time

forecasts for the period 2006–09.

(a) SST time series

Lead (months)

Niño-3.4 SWIO EEIO

ACC S/N ACC S/N ACC S/N

0 0.95 4.3 0.8 1.5 0.7 1.6

1 0.9 3.3 0.77 1.4 0.5 1.1

2 0.8 2.8 0.7 1.3 0.3 0.9

3 0.7 2.2 0.6 1.2 0.2 0.8

4 0.6 1.9 0.56 1.0 0.3 0.7

5 0.5 1.6 0.5 0.9 0.2 0.6

6 0.4 1.4 0.45 0.8 0.1 0.5

(b) Precipitation over the Pacific Islands

Lead (months)

Western Pacific South Pacific HI

ACC S/N ACC S/N ACC S/N

0 0.3 0.9 0.6 1.5 0.7 1.0

1 0.1 1.1 0.5 1.3 0.7 0.9

2 0.2 0.9 0.4 1.2 0.6 0.8

3 0.2 0.8 0.3 1.1 0.6 0.8

4 0.2 0.8 0.1 1.0 0.6 0.8

5 0.2 0.7 0.1 0.8 0.5 0.7

6 0.4 0.5 0.1 0.8 0.4 0.7
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FIG. 11. As in Fig. 10, but for precipitation (mm day21) over the South Pacific region.
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FIG. 12. As in Fig. 10, but for precipitation (mm day21) the HI region.
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along the equatorial Pacific is supported by the present

analysis. Based on the lagged association between TIO

and tropical Pacific SST anomalies, past seasonal pre-

diction studies have used statistical methods to predict

TIO SST anomalies (e.g., Mason et al. 1999). However,

recent studies also suggest that these ENSO-induced re-

gional SST anomalies may possibly alter the strength of the

circulation and rainfall anomalies elsewhere (Annamalai

et al. 2005b, 2007, 2010). The ability of CFS to represent

the coupled processes in the TIO, particularly over SWIO

during ENSO years, deserves further attention.

The predictive skill of regional precipitation, how-

ever, is usually lower compared to SST (Tables 2, 3)

and circulation (Kumar and Hoerling 1998) because of

the ‘‘noisy,’’ small-scale character, and complex physics

of precipitation. Even averaged over a season, substantial

irregularities in the spatial pattern are likely, particu-

larly over the tropics where convective rainfall is most

common (Gong et al. 2003). Even so, observational and

modeling studies suggest that the large-scale circulation

pattern responsible for the precipitation anomaly may

be predictable several months in advance, particularly

during ENSO events. An examination of the spatial

pattern of DJF SST and rainfall anomalies during all

El Niño events indicates that CFS is capable of fore-

casting the ‘‘details,’’ in particular the observed negative

FIG. 13. (left) ACC of CFS ensemble mean forecasts (a),(b) SST and (c),(d) precipitation at 0-month lead for the spring and winter

seasons. (middle) HSS (%) for CFS forecasts of (e),(f) SST and (g),(h) precipitation at 0-month lead for the spring and winter seasons.

(right) As in the middle panels, but for RPSS (%) for (i),(j) SST and (k),(l) precipitation. In (a)–(d) the contours denote statistically

significant (95%) correlations.
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rainfall anomalies over all three USAPI regions during

1982/93 and 1997/87, as well above normal rainfall over

Hawaii during the 1990–91 and 2004–05 events (figure

not shown).

To date, the operational seasonal forecasting of pre-

cipitation over the USAPI stations relies on an empirical

method in which precipitation measured at individual

stations itself is treated as a predictor (He and Barnston

1996). The results of He and Barnston (1996) based on

the period 1955–94 suggest that at 1-month lead, ACCs

for predicting winter rainfall anomalies are ;0.4, 0.6,

and 0.4 over the South Pacific, western Pacific, and

Hawaiian regions, respectively (their Fig. 4). The dy-

namical forecast system based on CFS, on the other

hand, demonstrates much higher skill at longer lead

times over the USAPI (Table 3) when area-averaged

fields are examined. Dynamical models represent the

major components of the climate system (ocean, land,

and atmosphere) and can incorporate linear and non-

linear interaction processes among the components, and

are expected to provide better seasonal forecasts than

statistical models. A word of caution is that output from

FIG. 14. Scatter diagram between (left) ACC and HSS and (right) ACC and RPSS for four standard seasons

derived from CFS forecasts at 0–6-month leads: (a),(b) for Niño-3.4 SST, (c),(d) SWIO SST, (e),(f) EEIO SST

indices, and (g),(h) Atlantic SST indices.
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CFS represents averages over a relatively coarse grid,

and therefore statistics of precipitation in regions of steep

orography can differ substantially from that of station

data. Nevertheless, owing to the success of CFS in fore-

casting the timing and amplitude of ENSO-related SST

and precipitation anomalies along the equatorial Pacific

(Figs. 2, 7), and the associated teleconnection over

the TIO (Figs. 7, 8), we speculate that CFS has useful

skill in forecasting regional rainfall anomalies over

the USAPI. However, identifying the individual phys-

ical processes responsible is beyond the scope of the

present study. Lyon and Mason (2009) noted that the

correct prediction of winter rainfall anomalies during

1998 over southern Africa by some coupled models is

probably not for the correct reasons. Our future study

will examine the reasons for CFS performance over the

USAPI.

7. Summary

In this study, the ability of CFS to forecast seasonal

variations in SST and rainfall over the tropics is exam-

ined, first from the historical hindcasts for the period

1981–2005, and then for the real-time forecasts during

2006–09. A multitude of skill assessments, both deter-

ministic and probabilistic, are employed in the analysis.

This comprehensive analysis provides a useful guide to

determining the skill and the associated errors of dy-

namical seasonal predictions of regional precipitation

over the tropics, including over the USAPI. Probabilistic

FIG. 15. As in Fig. 14, but for regional precipitation indices over (a),(b) the western North Pacific; (c),(d) the South

Pacific; and (e),(f) HI.
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forecasts provide the means for predicting climate-related

risk, and single deterministic forecasts, by contrast, are

incapable of this (Palmer et al. 2004).

The model demonstrates high skill in forecasting the

ENSO-related SST anomalies during the developing

and mature phases, including that of different types

of El Niño, even at 5–6-month lead (Figs. 2, 3, 13, 14a;

Table 1a). It is sufficient to mention that CFS is capable

of providing the necessary conditions for a successful

prediction of seasonal climate anomalies. At 0–6-month

lead, CFS captures the space–time evolution in SST,

850-hPa wind, and rainfall anomalies along the equato-

rial Pacific. Remarkably, the mechanisms involved in the

teleconnection from the tropical Pacific to the tropical

Indian Ocean are well represented. Subsequently, CFS

skill in predicting SWIO SST anomalies at longer leads

is possible. The successful predictions of ENSO-related

precipitation anomalies along the equatorial Pacific,

and over the TIO, mean that the circulation and re-

gional rainfall anomalies over the USAPI are better

predicted.

A detailed examination of CFS ability in forecasting

the regional rainfall anomalies over the USAPI in-

dicates that the persistence dryness from El Niño winter

into the following spring/summer is skillful and useful

too. Quite remarkable is that the dryness can be pre-

dicted at leads longer than 3 months, and the fact that

both deterministic and probabilistic skill scores converge

FIG. 16. (left) The 3-month average CFS ensemble mean real-time prediction of SST (8C) forecast at 0- (dotted)

and 3-(dashed) month leads over the (a) Niño-3.4, (b) Niño-4, (c) SWIO, and (d) EEIO regions. The starting period is

JFM of 2006, the next period is FMA of 2006, and so on. The corresponding observed SST is also shown (solid line).

(right) As in the left panels, but for the precipitation (mm day21) over (e) the central Pacific (58S–58N, 1508–1908E),

(f) the western North Pacific, (g) the South Pacific, and (h) Hawaii. The standard deviation and spread for the real-

time prediction system are given in parentheses.
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means that the forecast is useful (Table 3; Figs. 10–12,

15). Over the USAPI, the drought-like conditions

during the strong El Niño winters of 1982/83 and

1997/98 were predicted by all of the ensemble mem-

bers at 6-month lead itself (Figs. 10–12). Forecasting

summer SST and precipitation anomalies along the equa-

tor is least skillful, as indicated by the higher spread

among the ensemble members (low S/N) or negative

RPSS values. Diagnostics of the real-time forecast for

the period 2006–09 are generally in agreement with

the hindcasts.

The results presented here suggest the feasibility that

a dynamical system based seasonal prediction of pre-

cipitation over the USAPI can be considered. It is nec-

essary to continually assess the sources and the level of

prediction skill, as newer sets of hindcasts based on im-

proved models and initial conditions obtained from more

advanced data assimilation systems become available.

For instance, one clear limitation in the hindcasts ana-

lyzed here is that for short-lead forecasts the initial

conditions are from the old reanalysis system, a situation

that would be rectified with the new CFS forecast model.

In addition, in the updated CFS version the atmospheric

model has a higher horizontal resolution (T126 com-

pared to T62 in the current version), and may provide

the better resolution necessary for precipitation pre-

diction. In a future study, the physical processes that

may be responsible for the performance of the model in

predicting regional rainfall anomalies will be examined.

To attain station-level predictions of rainfall anomalies

over the USAPI, a downscaling system needs to be

constructed.
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APPENDIX

HSS and RPSS Methods

a. HSS

For dichotomous forecasts, the HSS for time series of

length n is defined as (Kumar 2009)

HSS 5

Fc 2
N

3

� �

N 2
N

3

� � , (A1)

where Fc is the correct number of forecasts (i.e., the

number of cases when the observed category is also the

forecast category) and N is the total number of instances

the forecast was made. For the hindcasts analyzed here,

we have 15 ensemble realizations. Using a counting pro-

cedure, we determine the number of ensemble realizations

falling in each tercile category. The criteria for defining

the tercile boundary is given by 0.43 3 standard de-

viation of the variable. If n1 is the number of realizations

for the forecasts to be in the below normal category, and

n2 and n3 are numbers of realizations for the near-normal

and above normal categories, respectively, then by defi-

nition, N 5 n1 1 n2 1 n3 5 15, and the forecast category is

the category for which N is the highest. We then compute

HSS using Eq. (A1) based on the number of times the

forecast category was correct.

b. RPSS

Rank probability skill (RPS) is computed as the sum

of the squared differences between the cumulative dis-

tributions of the forecasts and observations. Similar to

HSS, here too we obtained the number of ensemble

realization (n1, n2, and n3) for each tercile category, and

the forecast probability for each category is defined as

(i.e., n1/15, n2/15, and n3/15). RPSS basically measures

the square error between the cumulative forecast prob-

abilities for each category and the observed category

relative to climatological forecast (Goddard et al. 2003

and references therein).

The RPS is defined as

RPS 5 �
m5N

m51
( fm 2 om)

2, (A2)

where N 5 3 for tercile forecasts. Here, fm represents the

cumulative probabilities of the forecast up to category

m, and om is the cumulative observed probability up to

category m. The value of om is 100% for the observed

category (e.g., normal) and zero for subsequent cate-

gories (above and below normal).

The RPSS (as mentioned above) measures the skill

with respect to the climatology forecast (that assigns

equal probabilities, 33.3% for each of the tercile cate-

gories) and is defined as

RPSS 5 1 2
RPSfcst

RPSclim

, (A3)
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where RPSfcst is the RPS for the actual forecast and

RPSclim is the RPS of the climatological forecast.
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