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ABSTRACT

The prospects for U.S. seasonal drought prediction are assessed by diagnosing simulation and hindcast

skill of drought indicators during 1982–2008. The 6-month standardized precipitation index is used as the

primary drought indicator. The skill of unconditioned, persistence forecasts serves as the baseline against

which the performance of dynamical methods is evaluated. Predictions conditioned on the state of global

sea surface temperatures (SST) are assessed using atmospheric climate simulations conducted in which

observed SSTs are specified. Predictions conditioned on the initial states of atmosphere, land surfaces, and

oceans are next analyzed using coupled climate-model experiments. The persistence of the drought in-

dicator yields considerable seasonal skill, with a region’s annual cycle of precipitation driving a strong

seasonality in baseline skill. The unconditioned forecast skill for drought is greatest during a region’s cli-

matological dry season and is least during a wet season. Dynamical models forced by observed global SSTs

yield increased skill relative to this baseline, with improvements realized during the cold season over re-

gions where precipitation is sensitive to El Niño–Southern Oscillation. Fully coupled initialized model

hindcasts yield little additional skill relative to the uninitialized SST-forced simulations. In particular,

neither of these dynamical seasonal forecasts materially increases summer skill for the drought indicator

over the Great Plains, a consequence of small SST sensitivity of that region’s summer rainfall and the small

impact of antecedent soil moisture conditions, on average, upon the summer rainfall. The fully initialized

predictions for monthly forecasts appreciably improve on the seasonal skill, however, especially during

winter and spring over the northern Great Plains.

1. Introduction

Increasing demand for water resources is a ubiquitous

concern, but stress is exacerbated during periods of

drought such as witnessed recently in the U.S. Southwest

during that region’s prolonged dry spell (Pulwarty et al.

2005). The socioeconomic costs of drought in North

America can be enormous (e.g., the estimated costs of

the 1988 U.S. drought alone are more than U.S.$5

billion; Wilhite 1993), and it is becoming increasingly

clear that mitigating the hazards of drought impacts will

require both proactive planning and developing new

capacities for drought early warning (e.g., Wilhite et al.

2000; Wilhite and Pulwarty 2005).

Current national drought monitoring and forecasting

efforts take place through a multiagency partnership

that produces the U.S. (and North American) Drought

Monitor and the regular production of seasonal drought

outlooks (Svoboda et al. 2002; Hayes et al. 2005). While

these efforts are providing benefits to decision-making

communities vulnerable to drought, the National In-

tegrated Drought Information System implementation

plan (NOAA 2007) stresses the need to develop new,

objectively based approaches to drought prediction that

allow for robust verification, are transparent to users,

and have sufficient flexibility so as to generate prob-

abilistic drought-related information across different
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time scales (monthly, seasonal, etc.) to address spe-

cific decision-making needs.

This study examines prospects for objective drought

forecasting over the contiguous United States. It seeks

to build upon current drought prediction capabilities

embodied in the U.S. Drought Outlook. This product

is informed by expert assessment that benefits from

the existing knowledge base and typically relies on

empirical associations with drought, including the

consequence of persistent high pressure that can im-

pede moisture delivery via redirection of migratory

storms (e.g., Namias 1983; Lyon and Dole 1995), sus-

pected land surface feedbacks in which antecedent

soil conditions resulting from the cumulative effects of

drought are believed to affect event persistence (e.g.,

Oglesby and Erickson 1989; Koster et al. 2004, 2006),

and anomalous states of the tropical Pacific Ocean

sea surface temperatures (SSTs) that can remotely

affect atmospheric circulation patterns over North

America and induce long-term sustained droughts (e.g.,

Hoerling and Kumar 2003; Schubert et al. 2004, 2008;

Seager et al. 2005). Also, whereas the seasonal cycle of a

region’s rainfall is not a cause for drought per se, it is

nonetheless relevant to the probability for recovery from

the antecedent moisture deficits (Karl et al. 1987).

The National Oceanic and Atmospheric Administra-

tion’s (NOAA) current drought prediction method be-

gins with the construction of the latest Drought Monitor

(Svoboda et al. 2002), a map of the United States (since

2002, NOAA has also provided an experimental North

American Drought Monitor that includes Canada and

Mexico) that describes the initial state of drought. This

assessment uses various drought indicators, including

the Palmer drought severity index (PDSI; Palmer 1965),

the standardized precipitation index (SPI; McKee et al.

1993), the surface water supply index in semiarid regions

where storage is important, and others. The Drought

Outlook is a forecast product that propagates the ex-

isting monitored drought state into the next season using

monthly and seasonal predictions of precipitation and

surface air temperature combined with other relevant

knowledge base as mentioned. The Drought Outlook

thus identifies regions expected to experience improving/

deteriorating conditions and regions in which currently

existing drought is likely to persist. The forecast is couched

in subjective language that is not readily amenable to

verification, however. Given that much is at stake when

weighing hazard mitigation options associated with po-

tential drought impacts, it is important to explore objective

forecast methods that can be verified to build the level of

confidence that decision making requires.

Here we evaluate prospects for objective drought

forecasts by diagnosing climate-model simulations

and predictions of a selected drought indicator. Our

approach involves an objective analysis of the initial

state of moisture balances (akin to the Drought Monitor),

and combines that information with an objective pre-

diction of precipitation for the subsequent season that

is based on dynamical model output. As described in

section 2, different suites of model integrations are

employed to isolate particular factors that can contrib-

ute to drought forecast skill. Uninitialized atmospheric

model simulations forced by specified observed SSTs are

studied to determine the effect of oceans on drought.

These simulations also include land surface coupling and

thus have the ability to represent the surface feedbacks

that may influence intensity and persistence of drought

solely due to the remote ocean forcing, although they

are not initialized with observed soil moisture conditions.

Initialized coupled atmosphere–land–ocean model runs

of the NOAA Climate Forecast System (CFS) that are

based on an ensemble of historical hindcast experi-

ments are also examined. At the beginning of the

forecast these have information of the initial states of

land surface, soil moisture, and atmospheric circulation

in addition to ocean conditions. Drought forecast skills

are calculated for monthly and seasonal mean condi-

tions using the 6-month standardized precipitation index

(SPI6) as the predictand to indicate drought severity. The

SPI6 is utilized as one of the principal metrics for drought

severity in the current Drought Monitor and is a suitable

drought indicator for the seasonal time scales addressed

in this study.

Results for seasonal skill in predicting SPI6 are pre-

sented in section 3. An empirical baseline for seasonal

drought forecast skill that is derived from uncondi-

tioned, simple persistence of the drought indicator is

first derived. It is next demonstrated that the seasonal

skill in an uninitialized atmospheric model conditioned

solely upon the state of global SSTs exceeds this

baseline skill, principally during the cold season over

regions of the United States where precipitation is

sensitive to El Niño–Southern Oscillation (ENSO).

Seasonal drought forecast skill using predictions from

an initialized, fully coupled model is subsequently di-

agnosed. Although these results reproduce the pattern

of skill enhancement above the baseline found in the

Atmospheric Model Intercomparison Project (AMIP)

simulations, little additional skill for seasonal drought

forecasts is found. Initialized coupled predictions for

monthly drought conditions are also examined, and

these show considerable skill enhancement beyond

the dynamical methods for seasonal drought predic-

tion. The results are summarized in section 4, including

a discussion of their relevance to current Drought Out-

look activities.
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2. Data and methods

a. Observed precipitation and drought index

The Global Precipitation Climatology Centre analysis

(GPCC; Rudolf and Schneider 2005) of monthly pre-

cipitation gridded at 18 resolution covering the period

1982–2008 is used for calculating the drought index,

estimating the baseline skill of drought predictions, and

verifying the predictions from the dynamical models.

The drought indicator used herein is the SPI developed

by McKee et al. (1993)—a simple index that is a useful

proxy for describing surface moisture imbalances having

both short-term agricultural and long-term hydrological

applications. The focus of this study is on seasonal

drought predictability given that NOAA’s existing

Drought Outlook product applies to the forthcoming

seasonal mean condition. We therefore use the SPI for

6-month time scales as our descriptor and predictand

of drought severity and overall moisture balances. The

choice of such an index is somewhat arbitrary; our use of

SPI6 seeks a compromise between the various drought

indices (PDSI, SPI-3, SPI-12, etc.) that are blended in

operational practices to describe short- and long-term

drought in the routine production of the Drought Monitor.

The observed SPI6 is calculated from the monthly

precipitation record during 1982–2008, our period of

verification. Following the method of Edwards and

McKee (1997), the time series of 6-month accumulated

precipitation for this period is transformed into a normal

distribution so that the mean SPI6 for any grid point is

zero. Note that the SPI6 monitors both dry and wet

conditions and that the process of normalization allows

meaningful intercomparison of precipitation departures

across relatively wet and dry climate zones (Guttman

1999). Note also that a longer period for the calculation of

SPI is desirable (e.g., Guttman 1999); the use of a 27-yr

period herein is based on the fact that model predictions

span only this period.

b. Climate-model simulations and hindcasts

Two configurations of climate-model integrations are

used to assess drought predictability: an ensemble of

uninitialized atmospheric general circulation model sim-

ulations and an ensemble of initialized coupled ocean–

atmosphere general circulation model hindcasts. For the

former, the atmospheric component [Global Forecast

System (GFS)] of the coupled model [Climate Forecast

System (CFS)] was used and was, in the so-called AMIP

mode, subjected to the specified monthly varying ob-

served global SSTs that span the period 1950–2008 (only

the data from the 1982–2008 period are used to make

a direct and meaningful comparison with the initialized

forecasts available for the same period). The ensemble

size of the AMIP runs used here is 10 members. Coupled-

model runs are diagnosed on the basis of a 16-member

ensemble of 0-month lead initialized hindcasts generated

by NOAA with the CFS that cover 1982–2008 (CFSv2;

see online at http://cfs.ncep.noaa.gov/). The CFS is a fully

coupled model that represents the interactions among the

earth’s oceans, land, and atmosphere and is initialized

from a global analysis for the respective component. We

use an ensemble set of hindcasts based on 16 different

initializations in a calendar month that precedes the target

season for which predictions are made. The 16 members

of the initialized CFS forecasts are chosen from the avail-

able 20-member ensembles, and the choice is made so that

none of the 16 members was initialized from any time

within the months of a target season. All model data were

regridded to match the spatial scale of the GPCC pre-

cipitation data.

c. Unconditional drought forecast and baseline skill
of drought indicator

As a first step toward quantifying the capability of

climate models, an objective baseline for skill in

drought forecasts is generated that is based solely upon

knowledge of a region’s climatological seasonal cycle of

precipitation. The baseline skill for predictions of me-

teorological drought employs the method of Lyon et al.

(2012). This method, utilizing the seasonal cycle of

precipitation, quantifies the unconditional, inherent

persistence of the drought indicator (SPI6). A Monte

Carlo resampling (which removes the serial correlation

of precipitation) of the historical observational data is

employed to generate a synthetic time series of monthly

precipitation. For a particular target season [e.g., March–

May (MAM)], the prior 3-month [e.g., December–

February or (DJF)] observed precipitation is combined

with the subsequent 3-month precipitation of the target

season to calculate the SPI6, where the monthly pre-

cipitation during the target season is randomized. A total

of 100 random samples are generated by selecting across

the 27 observations (i.e., between 1982 and 2008) for each

calendar month, analogous to Lyon et al. (2012). Skill in

such a baseline drought prediction is unconditioned by

the state of the atmosphere, oceans, or land surface and

is dictated only by a region’s local precipitation vari-

ability as function of the known annual cycle of wet and

dry seasons.

d. Dynamical-model forecast skill of drought
indicator

Dynamical seasonal forecasts of SPI6 are derived

by blending the prior 3-month (e.g., DJF) observed

precipitation with the subsequent 3-month (MAM)

model precipitation for consequent 3-month seasons
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from MAM 1982 to DJF 2008. The blending is particu-

larly necessary for drought prediction because prior

conditions of surface moisture balance are an important

antecedent factor to consider in drought predictions

(Wu and Kinter 2009). The blending procedure used

here is identical to that employed for calculating the

baseline skill. To meaningfully assess the dynamical-

model skill relative to the baseline of unconditioned

forecasts, however, it is necessary to calibrate the model

precipitation before merging with observations. The

procedure used herein is to add the percent increment

of modeled monthly precipitation anomalies to the ob-

served monthly climatological precipitation.

The percent value of model precipitation anomaly Pa
*

is first computed as

Pa
* 5 Pa/Pc,

where Pa is the model-predicted anomalous precip-

itation calculated relative to the model’s climatological

precipitation Pc as follows:

Pa 5 PT 2 Pc,

where PT is the total model-predicted precipitation.

The calibrated total model precipitation Pcal is then

computed according to

Pcal 5 Oc(1 1 Pa
*),

where Oc is the observed climatological precipitation

on the basis of the GPCC data. For a particular 18 grid

box, the ‘‘climatology’’ is calculated for each calendar

month for the 27-yr period 1982–2008 for both model and

observations, and the above procedure is applied to each

individual model run within the ensemble suite.

The calibration thus principally adjusts for the model

climatological mean precipitation bias by computing

anomalies relative to model climatology rather than to

the observed climatology. Further, it adjusts the model

anomalies according to the ratios of observed to model

climatological rainfall before constituting the full monthly

precipitation. No explicit calibration of model rainfall

variance is performed, although the latter step implicitly

adjusts for variability in so far as there is a strong corre-

lation between biases in model mean precipitation and its

variability. Other procedures were also examined, such as

adding Pa directly to the observed climatological pre-

cipitation or calibrating Pa by multiplying by the ratio of

model to observed rainfall variance, but these approaches

were found to generate nonphysical occurrences of neg-

ative total rainfall.

The dynamical model skill is then computed by cor-

relating the 27-yr time series of observed and forecast

SPI6 for the four target seasons of DJF, MAM, June–

August (JJA), and September–November (SON) and

for each ensemble member of a particular model. The

results shown are of the average correlation among

the N-member ensemble, where N is 100 for the un-

conditional baseline forecast, 10 for GFS AMIP, and

16 for CFS.

3. Results

a. Unconditional seasonal drought forecast skill

The baseline skill for seasonal drought prediction

employed herein is based on calculating the persistence

of the SPI6 index modified by randomized prediction of

precipitation for the target season. Figure 1 presents the

spatial maps of the baseline forecast skill of SPI6 for four

seasons, the results of which are based on correlating the

1982–2008 time series of observed and forecast SPI6 for

each of the 100 synthetic time series and then averaging

the skill of the 100 members.

Two outstanding features characterize the baseline

correlation skill. First is its positive value during all

seasons and in all regions. This reflects the significant

persistence of prior accumulated precipitation depar-

tures from the antecedent 3-month periods into the

subsequent target seasons. Such widespread positive

persistence skill of SPI6 resonates with the popular

perception of drought and its impacts as being a phe-

nomenon that builds over a period of time and as being

a creeping phenomenon that often does not have a sharp

ending. The second outstanding characteristic is the

strong seasonality in baseline skill for many regions.

Over the Great Plains, for instance, skill is greatest

during winter, whereas the winter skill is comparatively

low along the West Coast and the Gulf of Mexico Coast

(Fig. 1, top left). This situation reverses for spring

drought prediction skill, which is at a minimum over the

Great Plains but is high along the West Coast and Gulf

Coast (Fig. 1, top right).

The seasonal variability in baseline skill is fundamen-

tally determined by the seasonal cycle of a region’s cli-

matological precipitation. Figure 2 displays the seasonal

cycle by expressing each season’s mean rainfall as a de-

parture relative to 25% of annual totals that would occur

in the absence of any seasonality. Thus, wet seasons

(shown in green) receive appreciably more than 25% of

annual totals, with the dark green regions indicating that

upward of 43% of annual precipitation falls during that

season. Dry seasons (shown in red) receive appreciably

less than 25% of annual totals, with red regions indi-

cating that only about 7% of annual precipitation falls
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during that season. A visual comparison of Figs. 1 and 2

reveals that for most regions the seasons of high baseline

forecast skill for SPI6 are when the target season cor-

responds to a climatological dry period. In this situation,

drought (or wet) conditions prevailing in the prior sea-

son because of accumulated rainfall deficits (surpluses)

are very likely to persist through the subsequent clima-

tological dry season. This is also the situation during

near-normal-precipitation seasons in a few areas, such as

spring over the Pacific Northwest, owing to the very high

abundance of rainfall in the prior season. In effect, there

is insufficient variance of precipitation during a season

that is drier than its prior season to appreciably alter

the sign of the prior season’s accumulated moisture

anomalies whose magnitude can be very large when

originating during a climatological wet period. The

outcome is a high skill for persistence. Likewise, the

baseline skill is low for target seasons that are the wet

periods of a region’s annual cycle, a consequence of the

high variance of wet-season precipitation that has the

potential to overwhelm moisture surpluses (or deficits)

accumulated in the prior season. Overall, the seasonal

variation in the baseline correlation skill ranges from

a maximum of 0.9 to a minimum of less than 0.4, with the

range being largest in the semiarid and arid regions west

of the Mississippi River where the annual cycle exhibits

distinct wet and dry seasons.

It is helpful to summarize particular shortcomings of

these unconditional baseline forecasts because these

provide foci for assessing dynamical-model performance.

Most notable is the low skill during wet seasons in the

baseline predictions—for instance, spring and summer

over the northern and central Great Plains, winter over

the West Coast, and summer over the southern plains

and Southwest. The physical reasons for these short-

comings were discussed above, and here we add the

practical consideration that the value of drought fore-

casts is likely to be greatest for a region’s upcoming rainy

season since its failure could either greatly exacerbate

the social impact of antecedent moisture deficits or

FIG. 1. The ‘‘baseline’’ skill of SPI6 in which random forecasts of target-season precipitation using observed

historical values are combined with prior observed seasonal precipitation. Shown are the 0-lead seasonal

forecasts for the target seasons of boreal (top left) winter (DJF), (top right) spring (MAM), (bottom left)

summer (JJA), and (bottom right) autumn (SON). The skills are the average of 100 members of blended SPI6

calculated on the basis of randomizing the time sequence of monthly mean precipitation from GPCC for the

period 1982–2008.
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initiate a new drought event. From a hazard mitigation

perspective, one might argue that the unconditional

baseline skill has the unfortunate attribute of exhibiting

high skill during dry seasons (when skill is less critical)

yet low skill during wet seasons (when skill is more

critical). This section thus explores especially the extent

to which precipitation during a region’s wet season can

be predicted skillfully using dynamical models.

b. Dynamical-model seasonal drought forecast
skill—AMIP

Figure 3 shows the skill for all four seasons de-

rived from the AMIP simulations, and the differences

(AMIP 2 baseline) in correlation skills are presented

in Fig. 4. The appreciable correlation skill of persis-

tence forecasts for SPI6 presents a high benchmark for

dynamical-model forecasts to outperform; nonetheless

there are widespread areas of statistically significant

skill improvements. The procedure for calculating the

significance of differences in correlation skill is given in

Appendix B. Enhanced skill (i.e., exceeding the baseline)

is generally found across the United States in winter,

notably over the West and South. Over California in

particular and also along the Gulf Coast, a statistically

significant enhancement of skill is found, the pattern

of which is consistent with the known wintertime impact

of ENSO on seasonal precipitation variability over the

southern United States (e.g., Ropelewski and Halpert

1987; Kiladis and Diaz 1989) and the skill of AMIP

models in predicting such SST impacts (Quan et al. 2006).

Figure A1 in appendix A shows the AMIP simulation skill

for seasonal precipitation during the 1982–2008 period,

from which one can discern that the pattern of improved

SPI6 skill during winter is consistent with the pattern of

the AMIP seasonal precipitation skill. Thus, one of the

critical gaps in the baseline skill is at least partially filled by

the use of SST-conditioned climate information.

During spring, skill is not appreciably greater than the

baseline skill. In particular, there is no statistically sig-

nificant improvement in drought forecast skill over the

Great Plains where the baseline skill is particularly low as

the wet season emerges over this region in springtime.

The only statistically significant enhancements occur over

the desert southwestern United States. This result is

broadly consistent with what one would expect on the

basis of knowledge of the AMIP skill in simulating spring

FIG. 2. The 1982–2008 climatology of seasonal precipitation. The values shown are the percentage of seasonal

total precipitation with regard to 25% of annual total precipitation amount. Wet seasons are shown in green, with

the dark-green regions indicating that upward of 43% of annual precipitation falls during that season. Dry seasons

are shown in red, with dark-red regions indicating that only about 7% of annual precipitation falls during that

season.
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rainfall anomalies over the southwestern United States

(see Fig. A1 in appendix A), a result of ENSO impacts.

For summer, the principal feature of the AMIP

drought forecast is the significant improvement over

the West Coast region (Figs. 3 and 4, bottom left). This

is the region’s climatological dry season, and the skill

of unconditioned persistence is already very high.

There is little or no significant increase in skill over the

Great Plains during summer when that region expe-

riences its climatological wet season.

For the autumn season there is some indication for

statistically significant skill enhancements over central

and Southern California and also over portions of the

western Gulf Coast. Baseline persistence-based drought

forecasts for this region have little skill during autumn,

especially over California, and there is considerable

AMIP skill in autumn-season rainfall (see Fig. A1 in

Appendix A). The latter skill is partly a feature of the

emergent impact of ENSO as that influence begins to

develop in the southern tier of the United States in the

early cold season.

c. Dynamical-model seasonal drought forecast
skill—CFS

Figure 5 shows the skill for all four seasons derived

from the CFS hindcasts, and the differences (CFS 2

baseline) in correlation skills are presented in Fig. 6. For

all seasons, the CFS hindcasts exhibit a pattern of skill

improvement relative to the unconditioned baseline

forecasts that is not materially different from the skill

improvement rendered by the uninitialized AMIP sim-

ulations (cf. Fig. 4). The capability of the initialized CFS

to capture the SST-conditioned skill enhancement that

was indicated by the AMIP results affirms the high skill

in predicting global SSTs, and especially those re-

lated to ENSO in CFS (S. Saha et al. 2011, unpublished

manuscript).

The enhanced skill of CFS-initialized seasonal drought

predictions is principally during the cold season along

the southern tier of the United States. There is little

evidence for a statistically significant improvement,

relative to the unconditional baseline, during the warm

FIG. 3. Skill of the AMIP SPI6 in which AMIP simulations are used for 0-lead seasonal forecasts for the boreal (top

left) winter (DJF), (top right) spring (MAM), (bottom left) summer (JJA), and (bottom right) autumn (SON). The

skills are the average of a total of 10 members of blended SPI6 calculated on the basis of AMIP simulations using

GFS, the atmospheric component of CFS, for the period 1982–2008.
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season over the Great Plains when that area accumulates

the bulk of its annual rainfall. This reflects the apparent

lack of an SST-forced impact on warm-season rainfall,

at least within the CFS and GFS modeling systems

during 1982–2008. Likewise, the lack of significant skill

increases in warm-season drought forecasts over the

Great Plains in CFS relative to GFS suggests no de-

tectable impact of atmosphere and soil moisture ini-

tializations, at least on average.

We explore whether more-frequent initialization of

the dynamical model, applied on monthly time scales

throughout the target season rather than just once at the

beginning of the target season, improves drought fore-

cast skill. Although this is not a practice that can be

implemented for making a seasonal-lead prediction, the

issue here is to assess at what time scale an initialized

drought forecast system might materially improve upon

simpler empirical or uninitialized seasonal methods

and to gain insight about physical processes rendering

drought forecast skill. There are two primary factors

that could improve the seasonal mean skill in the aver-

age of a forecast constructed from a sequence of three

monthly initializations relative to a single (so-called

0 lead) initialized seasonal forecast: 1) information

carried by the atmospheric initialization on monthly

time scales and 2) information carried in the land surface

that is based on prior months’ integrated rainfall impact

on soil moisture. The results, shown in Figs. 7 and 8, are

again based on CFS hindcasts and are verified for the

same cardinal seasons. The display is thus identical to

that of the 0-lead seasonal CFS drought forecasts (cf.

Figs. 5 and 6), but the seasonal predictions are now de-

rived from the average of three consecutive initialized

monthly forecasts during each target season.

During winter and spring, there is some improvement

in the overall seasonal skill in the monthly initialized

forecasts relative to the 0-lead seasonal forecasts (cf.

Figs. 4 and 6 with Fig. 8), mainly over the northern

plains. This is consistent with the improved skill of

precipitation forecasts using monthly initialization (see

Fig. A2 of appendix A). The pattern of statistically sig-

nificant skill increases (relative to the baseline) in these

monthly initialized forecasts is not materially different

from that seen in the seasonal initialized forecasts or in

the AMIP simulations, however. This affirms once again

the dominant contribution of global SST forcing (mainly

ENSO) to the predictable component of monthly and

seasonal precipitation variability. By summer, there is

little indication for a change in the drought forecast skill

over the Great Plains in the monthly versus seasonal

initializations. There is also little material difference in

summer drought skill over the Great Plains between the

FIG. 4. Difference between the GFS AMIP SPI6 skill and the baseline SPI6 skill. Blue shading indicates values that

are less than the baseline skill, yellow indicates values that are higher than the baseline skill, and red indicates values

that are higher than the baseline skill at 90% significance level.
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uninitialized AMIP and these initialized hindcasts.

Thus, although the monthly initialization integrates the

monthly rainfall anomalies into a more-accurate time-

evolving soil moisture boundary condition, we do not

find strong evidence that this process enhances drought

forecast skill during the warm season over the Great

Plains. This is not to say that soil moisture–precipitation

coupling is absent in CFS; if such coupling exists, however,

it apparently fails to enhance precipitation skill at monthly

to seasonal time scales, a conclusion also reached in a

multi-institutional numerical-modeling experiment that

quantified subseasonal (out to 2 months) boreal summer

forecast skill for precipitation and air temperature using

realistic initialization of land surface states, especially soil

moisture (Koster et al. 2011).

4. Summary and discussion

Empirical and dynamical-model methods have been

used to quantify the skill of seasonal drought forecasts

for the period 1982–2008. Using the 6-month stan-

dardized precipitation index (SPI6) as our drought in-

dicator, a baseline forecast was derived that considered

only the inherent persistence of that indicator. This

simple tool alone was shown to possess considerable

seasonal drought forecast skill and provides poten-

tially useful regional information regarding drought

evolution. In particular, the baseline skill was shown

to exhibit strong regionality and seasonality, the fea-

tures of which were wholly driven by the complexity

of the annual cycle of precipitation across the United

States, consistent with results of Lyon et al. (2012).

Although serving as a high standard against which

to compare the skill of the drought indicator that is

based on dynamical-model forecasts, it was found that

a simple persistence forecast had particularly low

skill during a region’s wet season, a time in which

accurate drought forecasts would be most conse-

quential for hazard mitigation and related decision

making.

FIG. 5. Skill of the CFS 3-month forecast SPI6 in which the 0-lead seasonal forecasts from CFS are used for

0-lead seasonal forecasts for the boreal (top left) winter (DJF), (top right) spring (MAM), (bottom left) summer

(JJA), and (bottom right) autumn (SON). The skills are the average of a total of 16 members of blended SPI6

calculated on the basis of the CFS seasonal forecasts initiated from different initial conditions for the period

1982–2008.
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Predictions that are based on dynamical models were

diagnosed using two configurations that allowed an in-

ference of factors that contribute to seasonal drought

forecast skill. Global-model simulations conditioned on

the state of specified observed sea surface temperatures

were assessed using the atmospheric component (GFS) of

the NOAA Climate Forecast System (CFS). Dynamical

predictions that were further conditioned on the initial

states of atmosphere, land surfaces, and oceans were

diagnosed using the fully coupled global-model hind-

casts for 1982–2008 generated by NOAA’s CFS. It was

found that dynamical models forced with observed

global SSTs yielded increased skill relative to this un-

conditional baseline, although improvements were

principally realized for the cold seasons over the West

Coast and Gulf Coast regions. The improved skill rela-

tive to the baseline was attributable to the known im-

pacts of El Niño–Southern Oscillation on those regions’

cold-season precipitation. Fully coupled initialized

model hindcasts were found to yield little additional skill

relative to the AMIP simulations.

The vast majority of dynamical-model improvement

in seasonal drought forecast skill relative to the un-

conditional baseline was due to the ENSO signal, con-

sistent with prior model studies of the SST sources for

U.S. seasonal precipitation skill (e.g., Quan et al. 2006;

Barnston et al. 2010; Kumar et al. 2011). This skill source

for drought was equally well harvested in the AMIP

simulations and the seasonal initialized CFS forecasts.

Indicated hereby is that the skill of drought predictions

during the wet seasons spanning roughly late autumn,

winter, and early spring over the far southwestern United

States and the Gulf Coast region is significantly improved

when conditioned on the state of global SSTs. By com-

parison, dynamical methods did not significantly enhance

skill, relative to the unconditioned baseline perfor-

mance, over the Great Plains during that region’s wet

season spanning spring through summer. The modest

drought forecast skill associated with simple persistence

over this area was not appreciably improved by con-

ditioned dynamical-model information. There appear to be

two principal factors that limit the value of dynamical-

model information for this Great Plains region. First is that

warm-season rainfall was not found to be as sensitive to

global SST variability as was the cold-season precip-

itation over the southern United States. Second, the

comparison of uninitialized and initialized seasonal fore-

casts implies that soil moisture conditions did not mate-

rially improve precipitation forecast skill over the Great

Plains during the warm season, on average.

This semiarid Great Plains region, where seasonal

droughts are often severe and have deleterious impacts

on U.S. agricultural production, rangeland management,

and livestock health, is particularly vulnerable to failed

FIG. 6. As in Fig. 4, but between the CFS 3-month forecast SPI6 skill and the baseline SPI6 skill.
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rains during spring and summer. This is the region’s pri-

mary temporal window during the annual cycle for ac-

quiring necessary moisture. Further, contrary to the far

West where water supply is drawn from remote moun-

tain runoff and thereby makes local drought conditions

less critical, the Great Plains is particularly reliant on

local precipitation. Despite some small (but statistically

insignificant) skill improvement during the warm sea-

sons over the central and northern Great Plains relative

to the baseline, the principal conclusion we draw from

the AMIP and 0-lead initialized CFS seasonal forecasts

is that neither remote SST impacts nor local soil mois-

ture interactions are particularly efficacious in enhanc-

ing skill relative to simple persistence forecasts. Thus,

the overall skill of such initialized seasonal forecasts for

the Great Plains was not materially better than that

rendered by simple persistence.

The prospects for seasonal drought prediction in the

Great Plains during the warm season are thus likely

to hinge strongly upon the ability to accurately monitor

the antecedent precipitation conditions, in so far as sim-

ple persistence of such conditions offers moderate skill.

We further explored the issue of short-term (monthly)

drought predictability over the Great Plains. For this

purpose, we studied the results from the CFS model

hindcasts on the basis of a sequence of monthly ini-

tialized experiments. These exhibited a significant in-

crease in drought forecast skill during spring over the

Great Plains relative to the 0-lead seasonal skill, al-

though they showed little improvement during sum-

mer. The lack of an improvement during summer, using

methods that more frequently initialize soil moisture

conditions, indicates a limited impact of soil moisture

anomalies on monthly (and seasonal) precipitation

variability in the CFS model. Whether this lack of benefit

of soil moisture feedbacks on drought predictions is a true

indication of the limited memory of land surface condi-

tions, and to what degree it is an indication of CFS model

biases that could act to inhibit drought forecast skill, is

a key question for future research, although we note that

a similar result was also reported recently in other mod-

eling systems (Koster et al. 2011).

Future research should also consider the broader

climate context for drought that not only considers

the moisture imbalances induced by precipitation con-

ditions alone but also considers the effects related to

FIG. 7. Skill of the CFS 1-month forecast SPI6, which is calculated in the same way as for the CFS 3-month forecast

SPI6 except that the 0-lead seasonal forecasts are replaced with 0-lead monthly forecasts.
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temperature conditions. The latter influence surface

water balance through the sensitivity of evapotrans-

piration, and it is widely recognized that increased

temperature during periods of reduced precipitation

can materially increase overall drought severity (e.g.,

Palmer 1965). Indeed, Breshears et al. (2005) argued

that the more-severe impacts of the western North

American drought of the last decade when compared

with the 1950s drought was at least in part a conse-

quence of the recent period being appreciably warmer.

Land surface feedbacks may be especially important

when high temperatures magnify the severity of drought

impacts. Vicente-Serrano et al. (2010) recently devel-

oped a drought index that is analogous to the SPI but

that also attempts to monitor the effect of temperature

on water balances. It would be useful to diagnose their

so-called standardized precipitation evapotranspiration

index (SPEI) for the period studied herein and to further

evaluate the skill of dynamical models. It is plausible that

model skill attributes for drought using a more general

water-balance measure of drought may be somewhat

different than those diagnosed herein using precipitation

(SPI) alone. Indeed, since the source for U.S. seasonal

surface temperature skill is not due to ENSO alone (e.g.,

Quan et al. 2006), and given that Koster et al. (2011)

report that their models show modest but significant skill

in predicting surface air temperatures as a consequence

of land surface initialization, there is merit in examining

the predictability of other physically relevant drought

indicators.
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APPENDIX A

Correlation Skill of Seasonal Mean Precipitation

The figures in this appendix show the spatial pattern

of the correlation skill of seasonal mean precipitation

in the uninitialized GFS (AMIP simulations, shown in

Fig. A1) and the initialized CFS (hindcasts, shown in

Fig. A2) for 1982–2008.

APPENDIX B

Significance of Difference between Two Pearson
Correlation Coefficients

To determine the statistical significance of differences

between two Pearson correlation coefficients (i.e., the

FIG. 8. As in Fig. 4, but between the CFS 1-month forecast SPI6 skill and the baseline SPI6 skill.
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correlation skill in this paper), the one-tailed confidence

interval da of a correlation coefficient value r can be

estimated as follows:

d
a

5
1

2
(r1

a 2 r2
a ), r2

a , r , r1
a , (B1)

where

r6
a 5 tanh(z 6 z

a
/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 3
p

), (B2)

z 5
1

2
log

1 1 r

1 2 r
, (B3)

N is the number of samples, and tanh(x) 5 (ex 2 e2x)/

(ex 1 e2x). The so-called Fisher’s z is asymptotically

normally distributed with a mean of 0 and a standard

deviation of (N 2 3)21/2, and za is a constant deter-

mined by the significance level a (Anderson 1958).

For the significance level of a 5 90%, za 5 1.28. The

estimated confidence interval as function of r on the

basis of Eqs. (B1)–(B3) is shown as the solid line in

Fig. B1.

For a given value of the Pearson correlation co-

efficient r0, its confidence interval may also be esti-

mated directly from the distribution of possible values

r around r0. The dashed curve in Fig. B1 shows an es-

timate of the confidence interval that is based on the

distribution function given by Hotelling (1953):

p(r, r0) 5
N 2 2ffiffiffiffiffiffi

2p
p G(N 2 1)

G(N 2
1

2
)

(1 2 r2
0)[(N21)/2](1 2 r2)[(N24)/2](1 2 r0r)2N2(1/2)F

1

2
,

1

2
; N 2

1

2
;

1 1 r0r

2

� �
, (B4)

FIG. A1. Correlation skill of the 10-member ensemble average of 3-month mean precipitation anomalies from the

GFS AMIP simulations.
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where

F(a, b; c; x) 5 �
‘

j50

G(a 1 j)

G(a)

G(b 1 j)

G(b)

G(c)

G(c 1 j)

xj

j!
. (B5)

In the practice of this study, the significance of a differ-

ence between two correlation skills r1 and r2 is de-

termined by checking whether the difference Dr 5 r2 2 r1

satisfies the condition Dr . (d1 1 d2)/2, where d1 and d2

define the confidence interval of r1 and r2 as presented in

Fig. B1.
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