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ABSTRACT

The inherent persistence characteristics of various drought indicators are quantified to extract predictive

information that can improve drought early warning. Predictive skill is evaluated as a function of the seasonal

cycle for regions within North America. The study serves to establish a set of baseline probabilities for drought

across multiple indicators amenable to direct comparison with drought indicator forecast probabilities obtained

when incorporating dynamical climate model forecasts. The emphasis is on the standardized precipitation index

(SPI), but the method can easily be applied to any other meteorological drought indicator, and some additional

examples are provided. Monte Carlo resampling of observational data generates two sets of synthetic time

series of monthly precipitation that include, and exclude, the annual cycle while removing serial correlation. For

the case of no seasonality, the autocorrelation (AC) of the SPI (and seasonal precipitation percentiles, moving

monthly averages of precipitation) decays linearly with increasing lag. It is shown that seasonality in the var-

iance of accumulated precipitation serves to enhance or diminish the persistence characteristics (AC) of the SPI

and related drought indicators, and the seasonal cycle can thereby provide an appreciable source of drought

predictability at regional scales. The AC is used to obtain a parametric probability density function of the future

state of the SPI that is based solely on its inherent persistence characteristics. In addition, a method is presented

for determining the optimal persistence of the SPI for the case of no serial correlation in precipitation (again,

the baseline case). The optimized, baseline probabilities are being incorporated into Internet-based tools for

the display of current and forecast drought conditions in near–real time.

1. Introduction

A unique definition of drought remains elusive be-

cause the impacts of drought are both location specific

and sector specific. However, an essential feature of

drought is prolonged, deficient precipitation relative to the

expected climate. This feature is the basis for precipitation-

based meteorological drought indices, which integrate

precipitation variability over some time period. Vary-

ing time periods are considered (3, 6, 12 months, etc.) in an

attempt to capture multiple aspects of land surface hy-

drology such as soil moisture at different depths, stream-

flow, and so on that are affected by precipitation variability

on different time scales (Heim 2002; Svoboda et al. 2002).

The cumulative, time-integrated nature of meteorolog-

ical drought events (hereinafter, simply ‘‘drought’’) re-

sults in considerable persistence from one month to the
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next, characteristics that are valuable for both drought

monitoring and early warning (Redmond 2002; Nicholls

et al. 2005; Sen and Boken 2005). The generally slow

evolution of drought events heightens the importance of

real-time monitoring for drought early warning and pre-

diction. A fundamental opportunity for improved drought

prediction is therefore to better quantify the probability

for drought conditions at a future time given that drought

conditions have occurred in the immediate past—that is,

to better understand drought persistence. For example,

various autoregressive models have been developed that

explicitly incorporate the autocorrelation (and other sta-

tistical properties) of a given drought index in their design

(e.g., Sen and Boken 2005; Mishra and Desai 2005;

Loaiciga and Leipnik 1996; Kendall and Dracup 1992).

Here we develop a method to quantify the baseline

predictive skill for multiple drought predictors. In the

absence of skillful precipitation forecasts or any knowl-

edge of regional drought persistence characteristics more

generally, improved drought prediction can nonetheless

be realized through this approach. Consider the example

of using a dynamical-model seasonal forecast to predict the

6-month standardized precipitation index (SPI6; McKee

et al. 1993). A seasonal (i.e., 3 month) forecast of SPI6

would thus involve a forecast of seasonal precipitation

that is combined with the prior 3 months of observed

precipitation. For example, a 0-lead forecast made at the

end of June of SPI6 (i.e., covering the period April–

September) will be based on the observed precipitation

for April–June and the forecast precipitation for July–

September. An accurately monitored prior state of

precipitation, together with a precise knowledge of

the seasonal cycle of climatological precipitation, will

thereby contribute to a skillful drought prediction, even

when information on seasonal anomalies in future

precipitation is absent. Of course, it is expected that

precipitation forecasts in some regions will benefit

from the prior observations through interactions among

the land surface, atmosphere, and ocean (Lyon and Dole

1995; Myoung and Nielsen-Gammon 2010; Koster et al.

2010; Quan et al. 2006).

To establish a baseline of predictability, here we address

the skill of drought index predictions solely on the basis of

the persistence characteristics of those indices together

with knowledge of a region’s climatological seasonal cycle

of precipitation variability. Again, the inherent time scales

of variation in drought indices are assumed to be rep-

resentative of temporal variations in different physical

characteristics of land hydrology and soils and thus are

expected to be both physically and practically meaningful.

Having quantified this persistence, one can then quantify

any additional skill provided by incorporating dynamical

model precipitation forecasts that are conditioned upon

particular initialized states of the atmosphere, oceans, and

land surface. Such an analysis is undertaken in a com-

panion paper (Quan et al. 2012).

In this paper we first quantify the persistence charac-

teristics of various drought indices that are solely attribut-

able to their design and are independent of any knowledge

of the climatological seasonal cycle of precipitation. We

focus primarily on the SPI, although some additional me-

teorological drought indicators are also considered. We

next examine how the seasonality of precipitation mod-

ifies drought persistence characteristics. The predictive

‘‘skill’’ associated with the inherent persistence of various

drought indicators is assessed as a function of location and

initial month for the domain of North America. Proba-

bility distributions of future values of a drought indicator,

on the basis of persistence alone, are calculated, and we

demonstrate that the inherent persistence characteristics

of drought indicators can be further optimized to enhance

predictive skill. In a companion paper (Quan et al. 2012)

we investigate the importance of external forcing (SST

and initial land surface condition) and initialization of

atmospheric conditions in predicting the seasonal evo-

lution of drought; that is, we quantify the extent to

which additional forecast information can improve

upon the inherent persistence of drought indicators.

The outline of the paper is as follows. In section 2 we

describe the datasets used and the basic methodological

approaches. The persistence characteristics, with and

without seasonality taken into account, are provided in

section 3. Use of persistence in providing the baseline

predictive skill of the SPI is described in section 4 along

with a discussion of how to modify the method to opti-

mize that skill. An overall summary and the main con-

clusions of the study are described in section 5.

2. Data and method

The observationally based precipitation datasets used

include the Global Precipitation Climatology Center

(GPCC; Rudolf and Schneider 2005; Schneider et al.

2011) monthly gridded analyses for the globe at 0.58

latitude 3 0.58 longitude spatial resolution (1901–2007),

the unified U.S.–Mexico gridded precipitation (1948–

2011) at 1.08 latitude 3 1.08 longitude spatial resolution

(Higgins et al. 2000; Chen et al. 2008), and the U.S. cli-

mate division data obtained from archives at the Na-

tional Climatic Data Center (1895–2009; Guttman and

Quayle 1996). The climate division Palmer Z index

(Palmer 1965) is also utilized. The SPI was computed

following the method described in Guttman (1999). In

essence, the SPI computation involves first computing

the cumulative probability of accumulated precipitation

(over 3-, 6-, 12-month periods, etc.) at a particular location
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and then transforming those cumulative probabilities to

those of a standard normal distribution, N(0, 1). Here we

examine accumulation periods of 3, 6, 9, and 12 months,

hereinafter referred to as SPI3, SPI6, and so on.

The persistence of the SPI (and a few other indices

shown in section 3) is quantified through the use of Monte

Carlo resampling. This resampling is done to generate two

types of synthetic precipitation time series: one for which

seasonality of monthly precipitation was removed and

the other for which it was retained. In both sets of synthetic

series the random sampling eliminates1 any month-to-

month autocorrelation (AC) in precipitation. We purposely

remove the monthly AC in the synthetic time series, be-

cause our goal is to quantify the persistence characteristics

of the drought indicators that result solely from their de-

sign, thus establishing a baseline for predictability. The

elimination of seasonality in the synthetic precipitation

time series is accomplished by concatenating 1200 ran-

domly selected monthly values of observed precipitation

taken from any month during the period 1900–2009 to

create a time series that is 100 yr in length. That is, in this

first approach the data selected for any given month are

not required to follow chronologically from the previously

selected month of the year. A randomly selected value for

March, for example, could be followed by a randomly

selected value for September, or any other month of the

year. An ensemble of 100 such synthetic time series was

generated in this fashion using the climate division data.

The second set of synthetic time series retained sea-

sonality by randomly sampling across the 110 observations

available for each calendar month while retaining calendar

order. For example, a synthetic time series starting in Jan-

uary would consist of a randomly selected, observed value

of January precipitation from the 110 Januarys between

1900 and 2009, then a randomly selected value for Febru-

ary, one for March, and so on. For the analysis over North

America, a similar Monte Carlo approach was taken by

randomly sampling monthly precipitation values taken

from the GPCC data. In that case, it was found that an

ensemble of thirty 100-yr synthetic time series was sufficient

to provide robust estimates of the median value of the AC.

3. Persistence characteristics of meteorological
drought indicators

a. Ignoring seasonality of precipitation

The first step was to compute the AC of various SPI

indicators at different lag times ranging from 1 to 12 months

using the 100 synthetic climate division precipitation time

series without seasonality. A correlogram representing

the median values of the AC for SPI3, SPI6, SPI9, and

SPI12 is shown in Fig. 1a evaluated over all 10 climate

divisions in the state of New York. The AC is seen to drop

off in a linear fashion with lag for each index, reaching

a value of roughly zero when the time lag exceeds the

accumulation period of the index. For example, the AC

of the SPI3 reaches zero at a lag of 3 months, that for SPI6

reaches zero at 6 months, and so on. A linear decay of the

AC for a time series of a moving average process has been

described previously in the time series analysis literature

FIG. 1. Correlograms showing the median value of the AC across

all 10 New York climate divisions for (a) four SPI indices in the

case of no seasonality in synthetic, monthly precipitation time se-

ries; (b) three additional precipitation-based indicators that are

based on the same precipitation data as in (a); and (c) four SPI

indices that are based on the observed monthly precipitation for

New York climate divisions during the period 1980–2010.

1 The AC in any given synthetic time series may not be identi-

cally zero because of sampling. For this reason, 100 synthetic time

series were generated to be able to place confidence limits on the

results obtained.
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for the case of a stationary time series and serially un-

correlated data (e.g., Box and Jenkins 1976; Kedem

1993). To briefly review, consider an n-month moving

average of a time series of random, monthly precipitation

values Pi:

Si 5
1

n
[Pi 1 Pi21 1 Pi22 1 � � � 1 Pi2(n21)

], (1)

where Si is the average value of precipitation ending at

time i and n is the number of months in the moving

average. If Var(Pi) 5 s2, then an assumption that each

month’s precipitation is independent and has the same

variance gives that Var(Si) 5 s2/n, and the covariance

between any two adjacent values in the moving average

is Cov(Si, Si21) 5 s2(n 2 1)/n2 such that the 1-month lag

autocorrelation is given by rSi,Si21 5 (n 2 1)/n. The

right-hand side of this last expression is simply the

fraction of common variance in the moving average (in

the case of the SPI, the respective n-month accumula-

tions of precipitation) at 1-month lag. In a similar way,

the correlation at a lag of l months is rSi,Si2l 5 (n 2 l)/n,

for l # n. Thus, the AC at 1-month lag for SPI3 is 2/3

(0.67) and for SPI12 it is 11/12 (0.92); at 2-month lag these

respective values are 1/3 (0.33) and 10/12 (0.83), and so on.

Because seasonality has purposely been ignored in

these first examples, the above results do not depend

either on the mean or variance of the precipitation and

will thus hold for any region. Two time series with dif-

ferent means and variances, for example, can nonethe-

less be perfectly correlated. For each climate division

the synthetic precipitation time series without seasonality

is just a sequence of random numbers bounded by the

range of observed precipitation over the 110 yr in that

division. A random number generator would produce the

same results regardless of the underlying distribution of

the data (e.g., normal vs a gamma distribution). Further,

the above relationships (i.e., a linear decrease in AC

with lag) will hold for other indices that are based on

accumulated precipitation such as the percent of median

of n-month precipitation, percentiles of n-month pre-

cipitation, a 90-day moving average of precipitation, and

so on (see Fig. 1b). For regions in which the observed

climate shows little seasonality of precipitation (and

small autocorrelation in monthly precipitation), these

results will approximately hold in the observations. One

such example is shown in Fig. 1c, which displays the me-

dian AC across climate divisions in the state of New York

on the basis of observed precipitation for the period 1980–

2010. Note that all of the correlograms in Fig. 1 suggest

substantial predictive ‘‘skill’’ out to several months lead

time depending on the index considered (e.g., the SPI12

has an AC of ’ 0.75 at 3-month lead time).

The Palmer drought severity index (PDSI) is based on

a recursive formula that includes the so-called monthly

Z index (Palmer 1965):

PDSIi 5 0:897 3 PDSIi21 1 Zi/3, (2)

where PDSIi and Zi are the values of the PDSI and Z

index at month i, respectively, the Zi term being a func-

tion of both monthly temperature and precipitation. The

PDSI was an early attempt to create a meteorological

drought index on the basis of a surface water balance

method. A number of issues have been raised concerning

the representativeness of regional and seasonal varia-

tions in the PDSI with respect to observed conditions

(e.g., Alley 1984), but it is used here only as an example

of an index with high persistence characteristics. For the

case of no seasonality in precipitation and temperature

(and zero AC of the Z index), the last term on the right-

hand side of Eq. (2) essentially represents white noise.

As such, the AC of the PDSI is only dependent on the first

term. Hence, the AC of the PDSI for the case of no sea-

sonality will be expected to drop off roughly as (0.897)l,

where l is the time lag in months. For the U.S. climate

division data, the Z index was scrambled in a manner

similar to what was done for precipitation, leading to the

generation of 100 synthetic time series 100 yr in length for

both the case in which seasonality is omitted and in which it

is retained. An example showing the median AC of the

PDSI for the case of no seasonality is shown in Fig. 2,

again evaluated across the 10 climate divisions in the

FIG. 2. As in Fig. 1, but for the PDSI for the case of no seasonality

or serial correlation in monthly values of the Palmer Z index. The

dashed line indicates the expected AC given the PDSI index for-

mulation.
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state of New York. For such a case, the AC is indeed

observed to drop off in a manner that is consistent with

a priori expectations.

b. Including seasonality of precipitation

Obviously seasonality in precipitation is an important

characteristic of local climate at many locations. The

results from the previous section thus primarily serve as

a benchmark for comparison with subsequent examples

for the case in which seasonality is retained. An example

of the important role that seasonality of monthly pre-

cipitation plays in the persistence of various SPI indices

is shown in Fig. 3 for the case of the California climate

divisions (chosen because of the large annual cycle in

precipitation there). The 100 synthetic time series of

randomly sampled monthly precipitation with season-

ality retained were used to generate the correlograms

presented in Fig. 3 for the SPI3, SPI6, and SPI12 for start

times of March and October. These plots show the me-

dian value of the AC computed across all 100 synthetic

time series. In addition, the 95% confidence limits on the

AC (dotted lines in Fig. 3) were obtained by ranking the

AC values across the 100 time series for a given lag time.

For reference, the straight, dashed lines in Fig. 3 show the

autocorrelation of the various indices for the case of no

seasonality (i.e., a linear decay in AC with increasing lag).

For the case of the March start time and in which sea-

sonality of precipitation is retained (Fig. 3, left column), the

median values of the AC for the SPI6 and SPI12 are seen

to remain higher than for the case with no seasonality for

FIG. 3. Correlograms showing the median value of the AC of different SPI indices across all climate divisions in

California as obtained from the synthetic time series that include seasonality in monthly precipitation for (left)

a March and (right) an October start time: (a),(d) SPI3, (b),(e) SPI6, and (c),(f) SPI12. The thin dotted lines in each of

the plots indicate the 5th and 95th percentile limits on the AC. The straight, dashed lines indicate the AC for the case

of no seasonality.
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several months. For SPI3 this tendency is less pronounced.

As shown in appendix A, the effect of seasonality on the

persistence characteristics of the SPI (or other indices that

are based on the temporal integration of precipitation)

is through the variability of the accumulated amount of

precipitation over a particular time period (6 months,

12 months, etc.). There is no dependence of the drought

index AC on the seasonality of the mean precipitation,

but rather only on its variance. For example, March is

near the end of the precipitation season in California. As

such, both the total amount of precipitation received in

subsequent months (April, May, June, etc.) and its

variability are small when compared with that typically

received in the earlier months of January–March. Thus,

when multimonth accumulated precipitation totals are

considered (e.g., as when computing SPI6), the post-

March period contributes little to the variability of the

total whereas the pre-March months contribute the most.

The majority of the variance in 6-month precipitation is

then associated with precipitation in the earlier period,

leading to a substantial AC in the SPI between March and

subsequent boreal spring and summer months. In obser-

vations, the variance in accumulated precipitation in-

creases roughly in proportion to the total precipitation

received. This can be seen graphically in Fig. 4, which

contrasts the seasonality of 6-month precipitation totals

and associated variability in California versus New York.

For New York, the 6-month accumulated precipitation

does not vary substantially from one overlapping 6-

month period to the next, with relatively small changes in

the standard deviation as well. By contrast, in California

the accumulated precipitation amount varies consider-

ably depending on what part of the calendar year is

considered, with the standard deviation seen to behave in

a similar fashion. For a March start time (Fig. 4a), the

precipitation totals and variability in California decrease

with increasing lag.

An October start time in California is near the start of

the main precipitation season. Multimonth precipitation

totals (and associated variability) will therefore typically

increase rapidly in the months following October rela-

tive to those months prior (Fig. 4b); thus, the ‘‘memory’’ of

the relative dry season is quickly lost and the AC drops off

quickly. Indeed, as seen in the plots in the right-hand

column of Fig. 3 the decay of the AC in this case is even

faster than for a linear decrease associated with no sea-

sonality in precipitation. Thus, if the AC of the SPI6 is used

as a measure of its predictability, then seasonality is seen

both to enhance and to reduce that predictability de-

pending on the seasonality of precipitation variance. Put

another way, if drought conditions exist at the start of the

climatological dry season at a particular location, they are

not going to be ameliorated during the dry season when

variability is relatively small (in climatological terms). On

the other hand, the beginning of the precipitation season

with its greater variability provides the next opportunity

to break a drought (as defined by multimonth precip-

itation totals).

The AC of the PDSI was also considered for the case

in which precipitation seasonality is retained. For this cal-

culation, the climate division Z-index values were ran-

domly sampled over the 110-yr observational period but,

as in the case for precipitation, were sampled for sequen-

tial calendar months so as to include seasonality. Results

for California are shown in Fig. 5, again for March and

October start times. For reference, the PDSI AC decay

rate for the case of no seasonality [given as (0.897)l] is

also displayed. The results are reminiscent of those ob-

tained for the SPI6 and SPI12, with higher AC values

than for the no-seasonality case for the March start time

and lower relative values for the October start time. The

inherent time scale of variation of the PDSI in California

FIG. 4. The fraction of (a) October–March and (b) May–October

precipitation (solid lines) and standard deviation (dashed lines) for

subsequent, overlapping 6-month periods. The black (gray) lines

represent values averaged across all climate divisions in CA (NY).

The thin horizontal lines in both plots are the fractional values for

the case of no seasonality in either variable (i.e., unity). The

numbers along the abscissa represent lag times relative to March in

(a) and October in (b).
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thus corresponds roughly to that associated with the SPI

evaluated over a time period between 6 and 12 months.

From an applications perspective it is highly desirable to

match the characteristic time scale of the SPI (or any

drought index) to that of a particular variable of interest

(shallow vs deep soil moisture, streamflow, etc.).

c. Spatial variations in persistence characteristics

The geographical and seasonal variations in the per-

sistence characteristics of the SPI3, SPI6, and SPI12 in-

dices for North America for the case in which precipitation

seasonality is retained were also evaluated, with repre-

sentative results shown in Figs. 6–8 for four start times

(March, June, September, and December). The results

are based on synthetic time series that include seasonality

generated from the GPCC data from the period 1908–

2007. Persistence in Figs. 6–8 is defined as the number of

consecutive months that the autocorrelation exceeds

0.6. This AC threshold was subjectively chosen since 1) it

represents a value with high statistical significance (signif-

icance factor p , 0.01) and 2) from a practical viewpoint

a correlation of 0.6 indicates that more than one-third of

the variance is explained (in a linear regression sense). On

this latter point, for 100 yr of data a correlation coefficient

of r 5 0.2 is found to be statistically significant at p , 0.05

(on the basis of a two-tailed t test), but such a correlation

would only be associated with an explained variance of

4%, rendering the results much less actionable (i.e., 96%

of the variance is attributable to unpredictable sources).

For reference, Fig. 9 shows the seasonal fraction of annual

precipitation for each start time to provide a measure of

the seasonality in precipitation. If there is no seasonality

in precipitation, the fraction of annual precipitation dur-

ing any 3-month season will be 25%. Shading in Fig. 9 thus

delineates values higher and lower than this percentage as

a function of the 3-month season considered.

For locations where there is little annual cycle to pre-

cipitation (such as the eastern United States), the per-

sistence characteristics in Figs. 6–8 are seen to be similar

regardless of the start time, as expected. Also expected

is that persistence is generally greater for larger accu-

mulation periods of the SPI, with no location in North

America showing persistence exceeding 1 month (by the

definition used here) for the SPI3, for example. In re-

gions with a pronounced annual cycle in precipitation

variance, there are pronounced variations in the per-

sistence characteristics as a function of start time. For

example, when comparing the geographical variations in

persistence with the seasonal cycle shown in Fig. 9, it is

not surprising that the greatest persistence occurs near

the beginning of comparative dry seasons across all three

SPI indicators. For instance, much of the west coast of

the United States and Canada shows strong persistence

from March initial conditions. In the U.S. Southwest and

northwestern Mexico, the influence of the North American

monsoon is evident. The U.S. and Canadian plains show

substantial persistence from a September initial condition

relative to other seasons. Also note that the persistence may

be substantial at many locations. The SPI6, for example,

may have AC exceeding 0.6 for as many as 4 months; for

SPI12, it can reach 9 months in some locations. As dis-

cussed previously, for a start time near the beginning of the

climatological precipitation season, persistence is lower.

The west coast of the United States for a September start

time is a salient example.

In actual observations persistence can, of course, vary

from the baseline values because of feedbacks between

the land surface and atmosphere, persistence from SST

forcing (e.g., ENSO), and so on. To let one gain a sense of

how large the difference can be, Fig. 10 shows the number

of consecutive months that the AC of the SPI6 exceeds

0.6 for four different start times on the basis of actual

observations (from the GPCC dataset). This figure can be

directly compared with the baseline case shown in Fig. 7.

By this measure, we see that the actual persistence ex-

ceeds the baseline values at several locations but that the

difference is typically on the order of 1 month.

FIG. 5. As in Fig. 3, but for the median value of AC of the

PDSI across all climate divisions in California for (a) March and

(b) October start times.
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It is clear that the often substantial persistence of

drought indicators has important predictive information

once the initial drought state has been determined. De-

veloping such baseline drought probabilities in a pre-

diction setting is described in the next section, focusing

solely on variations of the SPI. A similar approach could

just as well be used to construct similar baseline proba-

bilities for any other meteorological drought index, in-

cluding those that include the effects of both precipitation

and evaporative fluxes (such as the PDSI).

4. Baseline probabilities for meteorological
drought prediction

a. Computing baseline probability distributions

The results from the previous section show that the in-

herent persistence of drought indicator values can provide

useful predictive information—in some cases, out to sev-

eral months. This predictive skill was assessed by con-

sidering the AC value of the SPI at various lag times.

The focus of this section is to show how such persistence

characteristics can be further utilized to determine the

full probability density function (pdf) of the SPI at vari-

ous lead times given any initial drought index condition

(i.e., initial SPI value). These pdfs provide baseline prob-

abilities because, again, we are only considering the in-

herent persistence characteristics of drought indicators.

The pdf of future values of the SPI (or other drought

indices) that are based on persistence can be determined

in various ways. For example, given the initial value of the

SPI, an empirical approach can be used to generate a

plume of future SPI values by using historical observa-

tions of monthly precipitation for subsequent months.

This is essentially the method used in ensemble stream-

flow (or ‘‘seasonal’’) prediction (Day 1985). Building a

reliable pdf, however, requires a substantial number of

observations, although additional techniques could be ap-

plied to ‘‘smooth’’ the results from this nonparametric

approach, such as implementing a kernel density estimator.

An alternative, parametric approach is to use the mean

value of the SPI plume described above (obtained from the

climatological mean precipitation value) and to compute

the lag AC of the SPI. The AC can then be used to de-

termine the full pdf of SPI values at different lead times

FIG. 6. Geographical distribution of the number of consecutive months in which the median AC of the SPI3

exceeds 0.6 for start times of (a) March, (b) June, (c) September, and (d) December. All plots are based on a set of

thirty 100-yr synthetic time series of monthly values of gridded precipitation derived from the GPCC dataset in which

seasonality is retained.
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analytically. By design, the SPI follows a normal distri-

bution with unit variance. Following the example of sea-

sonal climate forecasts (Tippett et al. 2007), the standard

deviation of the forecast value of the SPI pdf can then be

estimated as

sfcst(l) 5 (1 2 r2
l )1/2, (3)

where rl is the AC for the lth lead time. Because in the

current case any predictive skill of the SPI results solely

from knowledge of its initial condition, the signal will be

completely lost for lead times beyond the accumulation

period of the index (as shown previously). There may,

however, still be useful information contained in the

knowledge of the initial SPI condition out to several

months of lead time depending on the index used and

start time considered. An example is shown in Fig. 11 for

the lower Hudson Valley New York climate division

(division 5) on the basis of an initial SPI9 value of 20.88

observed in March of 1999. The pdfs of SPI9 at 1-month

lags from the March start time are plotted in Fig. 11,

which indicates that the dispersion at short lead times is

less than that at longer leads given the greater memory

of the initial condition [higher AC of the SPI in Eq. (3)]

in the former case. At increasing lead times, the pdf of

the SPI9 tends toward its climatological distribution,

which after 9 months is simply N(0, 1). At 4-month lead

(July of 1999), the observed value of the SPI9 at this

location was 21.06. Note that, relative to the climato-

logical mean, the unconditional persistence ‘‘forecast’’

for July of 1999 indicates an enhanced probability of

SPI9 values being ,21.0.

b. Computing the ‘‘optimal’’ persistence
of drought indicators

The last example shows how the baseline probabilities

of the SPI, obtained only from the persistence charac-

teristics of the index, its initial value, and climatological

precipitation, exhibit some predictive skill. While valu-

able, the level of skill in this general treatment can be

improved with some modification to the method. Be-

cause we are only considering skill associated with per-

sistence (and the case of no serial correlation in monthly

precipitation), the predictive signal is fully contained in

the initial drought state. In the case of the SPI (and re-

lated indices), however, the signal resides solely in the

monthly precipitation values that are common to the

index at the initial and subsequent times. Using the AC

FIG. 7. As in Fig. 6, but for the SPI6.
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of the SPI is thus less than optimal for determining the

maximum predictive skill.

Consider the schematic in Fig. 12a, which shows the

monthly precipitation values used in computing the SPI6

at a given time t and 3 months later (t 1 3). The three

months of common information contain the signal, and the

other months represent noise added to that signal. Thus,

when correlating SPI6(t) with SPI6(t 1 3), there are three

months of noise in the initial condition [the first three

months of precipitation used in computing the SPI6(t)]

that are going to dilute the common signal and reduce the

correlation. The three months of noise contained in SPI6

(t 1 3) cannot be avoided (again, we are considering the

case of no serial correlation in monthly precipitation). As

shown in appendix B, the correlation may be increased

when using only the months of common information in

the initial condition in the calculation. In the current ex-

ample (see Fig. 12b), the SPI3(t) is a better predictor of

SPI6(t 1 3) than is SPI6(t). For SPI6(t 1 4), the best pre-

dictor will be SPI2(t), and so on. In mathematical terms, for

the case of no seasonality in monthly precipitation it was

shown previously that the AC of the SPIn goes as (n 2 l)/n,

where l is the lag in months and n is the number of months

of accumulated precipitation in the SPI. From appendix B,

the optimal correlation instead goes as

f1 1 [l/(n 2 l)]g21/2
’ [n 2 (l/2)]/n, (4)

where l is again the lag and n is the months of precipitation

of the SPIn being predicted. The difference between

methods is shown in Fig. 13a for the case of no season-

ality and in Figs. 13b and 13c for the California climate

divisions where seasonality is included. As shown in the

figure, the differences in correlation between the two

methods can be substantial and, depending on the sea-

sonality of precipitation variability, the improvement in

skill can actually increase with increasing lag when using

the optimal persistence method. It is clear that when

drought index predictions are based solely on persis-

tence characteristics the optimal persistence method is

the preferred approach.

c. Displaying probabilistic drought indicator
information

Once the full pdf of the SPI has been determined, the

information it contains can be displayed in a variety of

ways. One example is to evaluate the probability that the

index will fall below (or above) some selected threshold.

This probability is determined from the cumulative dis-

tribution function for a normal distribution:

FIG. 8. As in Fig. 6, but for the SPI12.
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Pr(X # x) 5
1

2

"
1 1 erf

x 2 mfcstffiffiffi
2
p

sfcst

 !#
, (5)

where Pr(X # x) is the probability of the SPI being be-

low the value x and mfcst and sfcst are again the mean and

standard deviation of the forecast of the SPI at a given

lead time. For drought concerns, the probability that the

index is less than a specific trigger threshold (Steinemann

and Cavalcanti 2006) may be of particular interest, for

example. Conversely, it may be of interest to know what

the expected value of the index will be at a given prob-

ability level and lead time.

Another application is to examine the marginal dis-

tribution of the index, which indicates the value of the

index expected to be exceeded only n% of the time.

Again, this will clearly depend on the initial condition

of the index and a specified lead time. In mathematical

terms, the marginal value of the SPIn having probability

P may be computed by rewriting Eq. (5) as

x 5 mfcst 1
ffiffiffi
2
p

sfcsterf21(2P 2 1), (6)

where mfcst for a lead time l from an initial time t is given

by r(t 1 l)SPIn(t) and sfcst is the standard deviation of

the forecast SPI at lead time l. Here, P is the marginal

distribution probability level and erf21 is the inverse

of the error function [the latter being defined in terms of

the integral of the Gaussian probability density function

for N(0, 1)].

Given the initial condition of a drought indicator and

the derived, unconditional pdfs of their subsequent evo-

lution, the results can be displayed in a number of ways.

Some examples are shown in Fig. 14. Figure 14a shows

the initial condition of the SPI12 in April of 2011. The

probability that the July 2011 SPI12 will be ,21.0 is

shown in Fig. 14b, with the best-estimate value of the

SPI12 at the end of July of 2011 (based only on its un-

conditional persistence) shown in Fig. 14c. The observed

SPI12 for July of 2011 is shown in Fig. 14d.

The approach outlined here, in which the persistence

characteristics of a drought indicator are used to make

probabilistic assessments of future values of the indi-

cator, represents a generalization of the basic method

reported by Karl et al. (1987). The latter study only

considered the climatological probability of receiving the

amount of precipitation necessary to ameliorate drought

conditions, as based on the PDSI. Here, Internet-based

tools are being developed that will compute the prob-

ability of exceeding any desired threshold of multiple

drought indicators at multiple lead times, as just one

example.

FIG. 9. Seasonal fraction of annual precipitation (expressed as a percent) for (a) January–March, (b) April–June,

(c) July–September, and (d) October–December from the GPCC data for 1971–2000.
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5. Summary and conclusions

The inherent persistence of drought makes possible

potentially useful predictive information out to several

months of lead time. Here, a method is developed to

quantify the persistence characteristics of various drought

indicators 1) to extract predictive information of the evo-

lution of these indictors and 2) to establish a set of base-

line probabilities for drought across multiple indicators

that can be compared with forecast probabilities obtained

from dynamical climate model predictions. The primary

focus here is on the SPI, but the method could easily be

applied to any other meteorological drought indicator.

A Monte Carlo approach was used to examine per-

sistence characteristics. In this approach, ensembles of

synthetic time series are generated by concatenating

randomly sampled, observed values. Two sets of synthetic

time series were generated, one in which precipitation

seasonality was removed and the other in which it was

retained. For the case of no seasonality and for indices

such as the SPI, seasonal precipitation percentiles, and

moving averages of monthly precipitation, the AC of the

indicators is seen to decay linearly with increasing lag.

The SPI12, for example, has an AC of 0.67 (8/12) at

4-month lag and 0.33 (4/12) at 8-month lag. In locations

with a small annual cycle in precipitation variability, such

as the northeastern United States, a linear decay in AC is

seen in actual observations as well. Given the recursive

design of the PDSI, in the case of no seasonality in its

associated monthly Z index, the AC decreases exponen-

tially with lag.

FIG. 10. As in Fig. 7, but for the SPI6 on the basis of observed precipitation.

FIG. 11. The pdfs of the SPI9 at 1-month lags (gray lines) from

a start time of March 1999 for a climate division in the Hudson Valley

of New York. The red line indicates the pdf at 4 months of lead time

(July 1999), and the blue line shows the pdf for 9 months of lead time

(December 1999). The initial condition (I.C.) for March 1999 is in-

dicated at the bottom of the plot, as is the observed value for July 1999.
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We have shown that seasonality in precipitation var-

iance can appreciably enhance (or diminish) the pre-

dictive skill derived from drought indicator persistence,

with substantial variations depending on location and

season considered. In locations with a strong annual cy-

cle, persistence of the SPI is enhanced (reduced) when

the initial drought condition considered occurs at the

end (beginning) of the precipitation season. Thus, the

annual cycle in precipitation variance can both increase

and decrease the inherent predictability of the SPI de-

pending on the season and location considered. In ad-

dition, it has been shown that, regardless of regional

seasonality, the inherent persistence of drought indicators

is maximized when utilizing only the common months

of information when computing lagged correlations. This

is referred to as the ‘‘optimal persistence’’ in this baseline

context.

Baseline probabilities of drought index values were

computed using a parametric approach that incorporates

the AC of the index to generate the full pdf of future

index values. This was done for multiple time periods

and lead times for the SPI. Once the full pdf has been

obtained, the information it contains can provide a va-

riety of practical information. Examples include mapping

the best-estimate value of a drought index at various lead

times, plotting the probability of exceeding a selected

value of the index at that lead time, or plotting the value

of the index associated with the marginal distribution at

a given probability. Internet-based tools are currently

being developed that will display this information in

near–real time to generate baseline forecasts. The as-

sociated baseline probabilities will serve as benchmark

values for comparison with predictions of various drought

indicators that incorporate seasonal precipitation fore-

casts from dynamical climate models. Those comparisons

are provided in a companion paper (Quan et al. 2012).

FIG. 12. (a) Schematic view of monthly precipitation values for

two overlapping 6-month periods (ending at time t and at time t 1 3

months) used for computing the SPI6. The shaded (white) boxes

indicate common monthly values of precipitation (‘‘noise’’).

(b) Using only the common months in the initial condition reduces

such noise in the common signal. Thus, SPI3(t) captures more of

the common signal of the initial condition than does SPI6(t).

FIG. 13. (a) Lagged correlations of the SPI6 for the case of no

seasonality in precipitation using the standard approach (gray line)

vs the optimal persistence method (solid black line). The thin dashed

line shows the difference between correlation values. (b) As in (a),

but for the case including seasonality with results averaged across

all California climate divisions for a March start time. The thick

dashed line indicates a linear decay (i.e., the case of no seasonality).

(c) As in (b), but for an October start time.
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APPENDIX A

The Effect of Seasonality on Persistence

Define Si as the n-month accumulated precipitation

ending with month i. Then,

Si 5 Pi 1 Pi21 1 � � � 1 Pi2n11,

and its value l months in the future is

Si1l 5 Pi1l 1 Pi1l21 1 � � � 1 Pi1l2n11.

What is the correlation between Si and Si1l? We as-

sume that the monthly precipitation values Pi are

uncorrelated. Therefore, any correlation between Si

and Si1l is due entirely to the monthly precipitation

values that appear in both sums. For l , n, Si and Si1l

have n 2 l common terms, which are convenient to

denote by

Cil 5 Pi 1 Pi21 1 � � � 1 Pi2n1l11.

Denoting the terms that are not in common, that is,

‘‘disjoint’’ terms, by

Dil 5 Pi2n1l 1 � � � 1 Pi2n11 and

D9il 5 Pi1l 1 � � � 1 Pi11,

we can write

Si 5 Cil 1 Dil and Si1l 5 Cil 1 D9il.

The correlation between Si and Si1l is

cor(Si, Si1l) 5
cov(Si, Si1l)

s(Si)s(Si1l)
. (A1)

FIG. 14. (a) The observed value of the SPI12 for April 2011. (b) The probability of the SPI12 being ,21.0 in July

2011. (c) The best estimate of the SPI12 for July 2011. (d) The observed SPI12 for July 2011. All plots are based on the

U.S.–Mexico unified precipitation dataset.
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Using the standard linearity property of covariance, we

can write

cov(Si, Si11) 5 cov(Cil, Cil) 1 cov(Cil, D9il)

1 cov(Cil, Dil) 1 cov(Dil, D9il)

5 s2(Cil),

where cov(C
il
, D

il
) 5 cov(C

il
, D9

il
) 5 cov(D

il
, D9

il
) 5 0 follows

from the independence of the monthly precipitation values. An-

other consequence of the independence of the monthly

precipitation values is that s2(Si) 5 s2(Cil) 1 s2(Dil) and,

likewise, s2(Si11) 5 s2(Cil) 1 s2(D9il). Substitution of

these results into Eq. (1) gives

cor(Si, Si1l) 5

("
1 1

s2(Dil)

s2(Cil)

#"
1 1

s2(D9il)

s2(Cil)

)21/2

.

3
5

The form of the above expression shows that the ef-

fect of seasonality is that as the variance of the disjoint

term increases (decreases) relative to the variance of

the common terms, the correlation decreases (increases).

In the case of no seasonality, the variances of Cil, Dil, and

D9il are proportional to the number of terms they contain,

and

s2(Dil)

s2(Cil)
5

s2(D9il)

s2(Cil)
5

l

n 2 l
;

it then follows that

cor(Si, Si1l) 5

"
1 1

l

n 2 l

� �2
#21/2

5
n 2 l

n
.

APPENDIX B

The Optimal Persistence of Drought Indicators

Note that the best predictor of Si1l given Si is not Si.

The reason for this is that Si contains a contribution from

Dil, which we have assumed is uncorrelated with Si1l

(see Fig. 12 in the main text). Instead, the best predictor

is the conditional mean:

Mean(Si1l j Si) 5 Cil 1 mean(D9il).

The correlation of the conditional mean with Si1l is

cor(Cil, Si1l) 5

"
1 1

s2(D9il)

s2(Cil)

#21/2

,

which is strictly greater than cor(Si , Si1l) for s2(Dil) . 0.

The dependence of cor(Cil, Si1l) on seasonality is

simple—it decreases as the future variance s2(D9
il
)

increases relative to the observed variance s2(Cil). In

the case of no seasonality,

cor(Cil, Si1l) 5 f1 1 [l/(n 2 l)]g21/2
’ [n 2 (l/2)]/n.
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