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Abstract:

This paper explores the space-time connections between springtime soil moisture and summer precipitation over the
continental United States by applying a singular value decomposition (SVD) method to a 50-year climate simulation. The
first two SVD modes were analyzed. The two leading SVD modes account for 43% of the squared covariance between
spring soil moisture and summer precipitation. Their corresponding components explain 14% of the soil moisture variance
and 19% of the precipitation variance, respectively, which is larger than that contributed by tropical Pacific sea-surface
temperatures (SSTs). The temporal correlations between the two expansion coefficients of each SVD mode are 0.83 and
0.88, respectively, indicating a significant association between spring soil moisture variation and summer precipitation
variability. Both positive and negative cross-correlations exist over different regions of the United States in the two modes.
Linear regression relates surface relative humidity and surface air temperature to the soil moisture SVD time series. The
patterns revealed by the SVD analysis show where the local soil moisture-precipitation coupling contributes to the model’s
simulation of precipitation. Copyright  2006 Royal Meteorological Society
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INTRODUCTION

The influence of soil moisture on near-surface atmo-
sphere and climate via land-atmosphere interaction has
been recognized as important for decades (e.g. Manabe,
1969; Walker and Rowntree, 1977; Rind, 1982; Mintz,
1984; Dickinson and Henderson-Sellers, 1988; Avissar
and Verstraete, 1990; Chahine, 1992; Betts et al., 1996;
Koster et al., 2003). Soil moisture variations affect sub-
sequent precipitation through the feedbacks between the
land and the atmosphere, and hence provide land sur-
face memory (e.g. Delworth and Manabe, 1988, 1989;
Dirmeyer and Shukla, 1993; Koster and Suarez, 1995;
Schär et al., 1999; Pal and Eltahir, 2001; Koster et al.,
2003). The typical timescale of soil moisture variability
is about 2–3 months in midlatitudes, as inferred from
both observations and model simulations (e.g. Delworth
and Manabe, 1988, 1989; Vinnikov et al., 1996; Liu and
Avissar, 1999; Entin et al., 2000; Wu et al., 2002), sug-
gesting that the impact of such land surface memory on
precipitation could last up to seasonal timescales.

Various previous studies have related spring soil mois-
ture to summer precipitation. For example, Namias
(1991) suggested that reduced soil moisture during late
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winter and/or spring over a mid-continental region (such
as the central United States) could help induce and
amplify a warm and dry summer over the same region,
in part by reduction of the local evaporation, as well
as by modifying the large-scale atmospheric circula-
tion. Schubert et al. (2004) examined the causes of the
US Great Plains droughts using ensembles of long-term
(1930–2000) simulations with an atmospheric general
circulation model forced with observed sea-surface tem-
peratures (SSTs). Their study indicated that only about
one-third of the total low-frequency rainfall variance in
the Great Plains is forced by SST anomalies, with the
remaining low-frequency variance of precipitation result-
ing from interactions with soil moisture.

The above studies have indicated that soil moisture
may enhance the precipitation variability via local land-
atmosphere feedbacks. The basic mechanisms that affect
precipitation variability are the land surface’s ability to
store moisture and then to deliver it to the atmosphere
(Milly and Dunne, 1994), the atmosphere’s ability to
recycle the evaporated moisture from the land into pre-
cipitation (Brubaker et al., 1993), and the dependency of
atmospheric thermodynamic profiles on surface fluxes.
The physical processes relating the formation of precipi-
tation to soil moisture dynamics and their feedbacks are
extremely complex. While the soil moisture feedback is
usually positive, negative feedback may exist in certain
regions or atmospheric regimes (e.g. Findell and Eltahir,
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2003; Ek and Holtslag, 2004). The present study fur-
ther addresses this issue of soil moisture – precipitation
correlation on interannual timescales.

This study selects the continental United States as an
ideal midlatitude example with typical soil memory of
roughly 2–3 months to clarify the relationship between
soil moisture and precipitation. The relative importance
of the land and ocean influences on precipitation changes
with the seasons. The influence of the land surface is
strongest when the continents are warmer than the sur-
rounding oceans and surface evaporation is large, and
varies greatly as a function of terrain and vegetative
cover. SST anomalies during the cold season, however,
can indirectly affect warm season rainfall by contribut-
ing to the initial springtime soil moisture conditions and
vegetative cover, which can subsequently influence the
climate during the warm season by influencing surface air
temperature and evaporation. To establish that soil mois-
ture affects precipitation is difficult with observational
or model data, because the other direction of causality
is much stronger – precipitation has a first-order impact
on soil moisture. This study examines the associations
between springtime soil moisture and summertime pre-
cipitation. Its primary focus is to identify the correlations
between spring soil moisture variations and summer pre-
cipitation anomalies for interannual timescales.

Section 2 describes the data and methods used for
the study, while Section 3 reviews the coupling of
Common Land Model (CLM) with National Center
for Atmospheric Research Community Climate Model
Version 3 (NCAR CCM3), which provides the long-term
soil moisture and precipitation data for the study, and the
evaluation of its performance. In Section 4, the results of
correlations between spring soil moisture and summer
precipitation in the US are presented and discussed.
Further discussion is made in Section 5 and conclusions
from the study are summarized in Section 6.

METHODOLOGY

Modeling

The third version of NCAR CCM (Kiehl et al.,
1998) coupled with multilayer land model CLM (Dai
et al., 2003) was used to simulate climatic variations in
the United States land-atmospheric system. The NCAR
CCM3 is a spectral atmospheric model with T42 trunca-
tion (approximately 2.8° × 2.8° horizontal resolutions),
18 vertical levels, and a 20-min time step. It employs
comprehensive parameterizations of deep convection,
shallow and nonprecipitating convection, shortwave and
longwave radiation, and atmospheric boundary layer tur-
bulence. The SSTs and sea ice are prescribed from
observed monthly mean fields over 1950–2000.

The land component of climate models has evolved
from the original single soil layer bucket schemes, based
upon the original work of Budyko (1956) and the early
work of Manabe (1969), to comprehensive multilayer dif-
fusion schemes with root and canopy included (Dickinson

et al., 1993; Sellers et al., 1996). The CLM is devel-
oped primarily on the basis of Biosphere-Atmosphere
Transfer Scheme (BATS) (Dickinson et al., 1993), NCAR
Land Surface Model (LSM) (Bonan, 1996), and the
snow model from IAP94 (Chinese Academy of Sci-
ences Institute of Atmospheric Physics Land Surface
Model 1994 version) (Dai and Zeng, 1997) to establish
a more physically-based soil–vegetation–atmosphere
transfer scheme for climate studies. Its major model
characteristics include 10 unevenly spaced layers to
adequately represent soil temperature and soil mois-
ture and a multilayer parameterization of snow pro-
cesses, an explicit treatment of the mass of liquid
water and ice water and their phase change within the
snow and soil system, a runoff parameterization fol-
lowing the topography-based runoff prediction model
(TOPMODEL) concept (detailed in Beven, 1997), a
canopy photosynthesis-conductance model that describes
the simultaneous transfer of CO2 and water vapor into
and out of vegetation, and a tiled treatment of sub-grid
fraction of land cover which includes a separate compu-
tation of energy and water balance. A CCM-like vertical
differencing is used, in which the mesh points are spec-
ified and interfaces are located halfway between two
neighboring layers. The thermal properties (temperature,
thermal conductivity, and volumetric heat capacity) and
the hydraulic properties (volumetric soil water content,
hydraulic conductivity, and metric potential) are defined
at the node of each layer. Another relevant feature is
the use of high-resolution vegetation data, including the
global 1-km fractional vegetation cover and the Interna-
tional Geosphere–Biosphere Program (IGBP) land cover
classification, both are pixel-dependent but seasonally
independent (Zeng et al., 2000). The CLM has been
extensively evaluated in off-line mode and by coupling
runs with atmospheric models. Its testing data include
those in the Project for Intercomparison of Land Sur-
face Parameterization Schemes (Henderson-Sellers et al.,
1992), a variety of multiyear point observational data
for different land cover types and different climatological
regimes over the world, regional data over the US Red-
Arkansas River basin, and global data from the Global
Soil Wetness Project (Dirmeyer et al., 1999). Dai et al.
(2003) show that the CLM realistically simulates the state
variables, such as soil moisture, soil temperature and
snow water equivalent, and the flux terms, such as net
radiation, latent heat flux, sensible heat fluxes and runoff.

The coupling of CLM to NCAR CCM3 is detailed
in Zeng et al. (2002). They have evaluated a 15-year
simulation of land surface climate from CLM-CCM3
by comparison with LSM-CCM3 and observations. The
summer cold bias of surface air temperature in the LSM
was found to be significantly reduced by an increase of
sensible heat fluxes and decrease of latent heat fluxes. The
winter warm bias over seasonally snow-covered regions
was decreased. The CLM also significantly improves the
simulation of the annual cycle of runoff and snow mass
during the snow accumulation stage. The comparison of
volumetric soil water between CLM and LSM showed
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a similar spatial distribution of soil water, but with
CLM having slightly drier soils. The model simulates
the principal spatial and seasonal features of the observed
precipitation distribution to within 0.2 mm day−1 of that
observed (Willmott et al., 1998) for most of the months
over global land. In sum, the results reported by Zeng
et al. (2002) suggest that the simulation of land climate
in CCM3 has been substantially improved through use of
the CLM.

The model output to be used in this study consists of
monthly mean precipitation over the United States and
soil water content to a depth of 1 m from 1950 to 2000.
The water in the first meter of soil depth is expected
to couple to the atmosphere on a timescale of a month
or two. Near-surface water is exchanged more rapidly
and deeper water more slowly. The quality of the soil
moisture simulation data is described in Wu and Dick-
inson (2004) and will be briefly reviewed in Section 4.
Spring and summer seasonal means are obtained by aver-
aging the monthly means of March–April–May (MAM)
and June–July–August (JJA), respectively. An anomaly
is defined as the deviation of the seasonal mean from its
long-term average.

SVD analysis

SVD is a technique to objectively identify coupled
spatial patterns with the maximum temporal covariance
between two fields. It has been applied in atmospheric
research for decades (Wallace et al., 1992; Wang and
Ting, 2000; Trenberth et al., 2002; Liu, 2003) and
described in detail by Bretherton et al. (1992). Here we
review its basic elements to help clarify the analysis.

Denote two fields as u(t) = [u(xk, t)] and v(t) =
[v(yl, t)], where xk and yl are space locations; k =
1, 2, . . . , Nx , l = 1, 2, . . . , Ny , and Nx and Ny are the
number of space locations for u and v, respectively; and t

is time. SVD analysis separates each of the two fields into
a sum of spatial patterns multiplied by temporal series,

u(t) =
N∑

k=1

ak(t)pk (1)

v(t) =
N∑

k=1

bk(t)qk (2)

where pk and qk are spatial patterns (principal compo-
nents), ak(t) and bk(t) are temporal series (expansion
coefficients), and N is the smaller of Nx and Ny . An
SVD mode is composed of a spatial pattern and its cor-
responding temporal series. pk and qk are obtained as the
eigenvectors (singular vectors) of CuvC

T
uv and CT

uvCuv,
respectively, where Cuv is the cross covariance of u(t)

and v(t). The correlation between ak and bk has the fol-
lowing feature: if the nonnegative eigenvalues (singular
values) σk are put in decreasing order (i.e. σi ≥ σj for
i < j ), then the covariance between ai and bi is greater
than or equal to that of aj and bj . Thus, the largest covari-
ance occurs between the first pair of spatial patterns, the

second largest covariance between the second pair, and
so on. The first few pairs of modes, the SVD leading
modes, may describe much of the total covariance. The
contribution of the kth pattern to the total covariance of
the two fields is measured by squared covariance function
(SCF),

SCFk = σ 2
k

/ N∑
l=1

σ 2
l (3)

In this study, the SVD analysis is performed on the
basis of a covariance matrix between soil moisture and
precipitation anomalies. Prior to the SVD analysis, these
anomalies are area-weighted by a latitude parameter
cos(πϕ/180), where ϕ is the latitude in degrees.

Monte Carlo confidence interval estimation

The Monte Carlo estimation method is used to test
significance levels for this study. It is a type of resampling
process used to produce a probability estimate. The
original data samples consist of n independent units
(xj , j = 1, 2, . . . , n). The order of the data is randomly
rearranged multiple times, in principle, destroying the
correlation of u and v and thus providing a statistical
distribution of uncorrelated data for null hypothesis
testing. We (1) resample from the original data, xj , to
generate a sample, x∗

j ; (2) compute the statistic of interest
for the realized sample, such as correlation coefficient
in our study; (3) repeat the above two-steps a large
number of times M (say, M = 1000, 5000, or more);
(4) order the computed sample statistics in a distribution
f ∗

x , called the ‘Monte Carlo distribution’ of the statistic;
(5) on this estimated distribution f ∗

x , identify the density
values corresponding to the 95th and 5th percentiles,
respectively, to obtain the lower and higher limits of a
95% confidence (or 5% significance) interval. A Monte
Carlo confidence interval need not be symmetrical. More
details about Monte Carlo methods can be found in
Noreen (1989).

RESULTS AND DISCUSSION

Summer rainfall variability

Figure 1 shows the simulated summer rainfall clima-
tology and corresponding standard deviations, with Will-
mott–Matsuura observational results (Willmott and Mat-
suura, 2001) displayed in Figure 2 for comparison. The
summer rainfall rates range from less than 0.5 mm day−1

in the Western coastal regions to more than 4 mm day−1

in the Eastern coastal regions. The Gulf Coast has greater
than 5 mm day−1, and the Northern and Central Plains
about 3 mm day−1 precipitation on average. The distri-
bution of precipitation reflects the geographical depen-
dence of summer precipitation in the US on a seasonal
timescale, with the largest variability in the Southeast
and the Northern Central Plains. Over the Southeast and
Southern Great Plains, the standard deviation values are
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Figure 1. Simulated climatology of summer precipitation and corre-
sponding standard deviation. Units are mm day−1
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Figure 2. Summer precipitation from Willmott–Matsuura observations
and corresponding standard deviation. Units are mm day−1

as large as their corresponding climatologic magnitudes.
Compared with the same climatology and standard devia-
tion from 50-year observations of Willmott and Matsuura
(2001), the simulated precipitation has mostly captured
the observed spatial patterns both qualitatively and quan-
titatively across the country, but with a dry bias shown

in the Southern Great Plains extending as far east as
Louisiana. Such a bias has always existed in CCM simu-
lations and is generally attributed to the orographic effect
of the highly smoothed Rocky Mountains presented in the
model.

A recent study by Ruiz-Barradas and Nigam (2005)
on warm season rainfall variability over the US Great
Plains, using observations, reanalysis data, and model
simulations, finds that the Great Plains precipitation vari-
ability is represented rather differently between models
and the reanalysis data. Their intercomparison results
indicate that models (NCAR CAM and NASA NSIPP)
generate nearly all the Great Plains precipitation from
deep convective processes. They suggest that precipita-
tion over the Great Plains is more stratiform (large-scale
condensation) than given in the models, and that modeled
precipitation recycling may be unrealistically efficient.
Inadequately represented soil moisture memory in a cli-
mate model may contribute to the underestimation of
precipitation, especially in dry regions (Wu and Dick-
inson, 2005).

As mentioned in the introduction, it would not be easy
to establish the impacts of soil moisture on precipitation
interaction even if good observations were available,
because of the strong causality in the other direction. An
awareness of the potential mechanisms alone does not
necessarily lead to improved simulations and predictions
of variability. The relative importance of the mechanisms
in nature, and the extent to which the key factors are
represented in climate models will determine the quality
of the simulations and predictions.

SVD patterns

To examine the links between spring soil moisture vari-
ations and summer precipitation variability in the United
States, an SVD analysis is performed using the covari-
ance matrix of the two fields. The first two SVD modes
are selected for analysis based on their statistical char-
acteristics. Their statistics are listed in Table I, including
the percentage of squared covariance explained by each
mode, the temporal correlation between pairs of expan-
sion coefficients, and the variance in individual fields
that are explained by each mode. The squared covari-
ance for any one SVD mode measures its contribution to
the total covariance of the two fields. The 1st SVD mode
explains 27% of the squared covariance between spring
soil moisture and summer precipitation, with its individ-
ual patterns explaining 9% of the total spring soil mois-
ture variance and 10% of the total summer precipitation
variance, respectively. The 2nd mode explains 16% of
the squared covariance between the two fields. Together,
these two leading modes account for 43% of the squared
covariance between spring soil moisture and summer
precipitation, and the corresponding components explain
14% of the spring soil moisture variance and 19% of the
summer precipitation variance, respectively. By contrast,
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Table I. Statistics of the first two leading SVD modes of spring
soil moisture and summer precipitation

Mode Squared
covariance

(%)

Temporal
correlation

Soil
moisture
variance

(%)

Precipitation
variance

(%)

1 27 0.83 9 10
2 16 0.88 5 9
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Figure 3. Normalized expansion coefficient time series of the first
two SVD modes for spring soil moisture (dark bar) and summer

precipitation (light bar) during the simulation period of 1950–2000

Ting and Wang (1997) and Wang and Ting (2000) found
that Pacific SSTs associated with El Nino–Southern
Oscillation (ENSO) can only explain 7% of summer
precipitation variance and 11% of winter precipitation
variance. The correlation coefficients between spring soil
moisture and summer precipitation for the two pairs
of expansion coefficient time series are 0.83 and 0.88,
respectively, indicating a strong temporal relationship
between the corresponding SVD patterns of the two
fields.

The time series of the expansion coefficients for the
two SVD modes are shown in Figure 3. The spring soil
moisture and the summer precipitation time series exhibit
coherent fluctuations in most of the years. In partic-
ular, both time series display large fluctuations during
1957–1981 in mode 1, and the two largest fluctuations

in 1988 and 1991 in mode 2, respectively. Figure 3 also
shows an asymmetric behavior between positive and neg-
ative extremes, e.g. multiple large negatives in mode 1,
and two large positives in mode 2. Such behavior has
been seen in observed time series of precipitation and
soil moisture (refer to Figure 1 in Wu et al., 2002).

Figure 4 displays the SVD correlation patterns of soil
moisture (a) and precipitation (b). Physically, the contour
values represent correlations between soil moisture fields
and corresponding SVD expansion time series of precipi-
tation, and between precipitation fields and corresponding
SVD expansion time series of soil moisture. The soil
moisture pattern of mode 1 (Figure 4(a)) exhibits large
negative values in the West and positive values in the
Southeast, while the precipitation pattern (Figure 4(b))
displays large negative loadings in the West and the
Southeast and the slight positive values in the Northern
Great Plains. In mode 2, large positive values are shown
in the Southern Great Plains and the Southwest for soil
moisture pattern (Figure 4(c)), and large negative load-
ings in the Great Plains and the West for precipitation
pattern (Figure 4(d)). Maximum soil moisture anomalies
in both modes in the southern United States occur over
regions of negative precipitation anomaly. This negative
correlation is especially pronounced where the two lead-
ing SVD modes for soil moisture are in phase, around the
point of 92 °W and 34 °N. Over this region, both modes
have correlation values above the 5% significance level,
as estimated by the Monte Carlo tests.

We have examined how such correlations change with
time by performing the same calculations but with one-
month to three-month lagged data. For example, we
examined how soil moisture in May correlates with pre-
cipitation in June, July, and August, respectively. The
monthly SVD patterns are not as prominent as the sea-
sonal SVD patterns, consistent with the conclusion of
Liu (2003) that the seasonal prediction skill is higher
compared to the monthly prediction skill. In addition,
the average of top 1-m soil moisture as used here does
not show the rapid decay of memory that dominates the
shallow layers. In the above SVD analysis, the precipi-
tation series lags the soil moisture series by one season.
How similar would patterns be from a contemporary SVD
analysis? Still using summer precipitation as an example,
we examined its SVD patterns associated with the soil
moisture in summer (JJA) rather than for spring MAM.
The results are shown in Figure 5 and the corresponding
statistics are listed in Table II. In-phase relations that are
similar to those seen in Figure 4 dominate in both lead-
ing modes, while out-of-phase features still exist over
the Great Plains in mode 1 and the Southwest in mode 2,
similar to those described by Findell and Eltahir (2003),
but these are not statistically significant. The concurrent
correlation between soil moisture and precipitation is rel-
atively strong (Table II), presumably mainly due to the
direct impact of precipitation on soil moisture.

Wallace et al. (1992) identified that in the absence of
any relationship between the two fields, the empirical
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Table II. Statistics of the first two leading SVD modes of
concurrent summer soil moisture and precipitation

Mode Squared
covariance

(%)

Temporal
correlation

Soil
moisture
variance

(%)

Precipitation
variance

(%)

1 33 0.96 14 11
2 18 0.93 10 9

orthogonal functions (EOFs) of the field with fewer spa-
tial degrees of freedom (i.e. the field whose variance tends
to be more strongly concentrated in the leading EOFs
of its temporal variance matrix) would tend to dominate
the SVD solutions. To examine this possibility, an EOF
analysis is performed on the summertime precipitation
anomalies. Figure 6 displays the two leading modes with
16 and 9% variance explained, respectively. The over-
all spatial EOF patterns for the two leading modes are
consistent with those identified in Ting and Wang (1997)
for summertime US precipitation variability related to the
Pacific SST. According to their results, the first mode is
related to the tropical El Niño-La Niña SST variation
and the second mode is linked to the North Pacific SST
and atmospheric internal variability. The SVD patterns in
Figures 4 and 5 appear to be relatively uncorrelated with
the EOFs of Figure 6 with loadings in other regions such
as the southern plains and the northwest. Thus, the SVDs
appear to be distinct from the leading EOF patterns.

Corresponding atmospheric patterns

Soil moisture influences the near-surface atmospheric
temperature and moisture content by affecting the sur-
face fluxes of latent and sensible heat. The corresponding
atmospheric patterns with respect to the soil moisture
SVD modes are examined in order to verify consis-
tency of the physical processes responsible for linking
the spring soil moisture and summer precipitation and
for assessing the impact of soil moisture–atmosphere
feedbacks on atmospheric variability. Linear regression
is used for this objective. Relative humidity is lowered
and air temperature elevated in the absence of mois-
ture fluxes because of dry soils. However, precipitation
amounts can be elevated by a warmer atmosphere. Thus,
correlations of temperature and precipitation can be of
either sign (e.g. Trenberth and Shea, 2005). We carry out
linear regressions of surface relative humidity and tem-
perature anomalies on the soil moisture time series of
the two SVD modes. The surface relative humidity and
temperature time series are constructed similar to that
of precipitation. A monthly relative humidity is calcu-
lated at each model grid point from the monthly mean
atmospheric mixing ratio divided by the saturation mix-
ing ratio corresponding to the monthly mean temperature
and summer relative humidity constructed by averaging
June, July and August values.

Figures 7 and 8 show summer surface relative humid-
ity and air temperature patterns, respectively, scaled for
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and negative contours are dashed. Areas of positive (negative) values
above the 5% Monte Carlo statistical significance level are shaded dark

(light)

one standard deviation positive anomaly of each SVD
mode of the leading SVD modes of spring soil mois-
ture time series. The significant correlations of summer
relative humidity are in phase with those of the SVD
precipitation (Figure 4), except for the absence of a rel-
ative humidity anomaly in the Northwest. Temperature
anomalies are out-of-phase with those of relative humid-
ity in Central and Eastern US, but that of mode 1 is
in phase with precipitation in the Northwest. This in-
phase relationship is consistent with Figure 5, indicating
a lack of correlation between temperature and soil mois-
ture in this region. Evidently, in this region, temperatures
are determined by atmospheric processes rather than soil
moisture. The strong negative correlation between spring
soil moisture and summer precipitation in the Southern
Great Plains does not map significantly onto any of the
other summer climatologies.

FURTHER DISCUSSION

The strong spatial-temporal correlations between spring
soil moisture and summer precipitation suggest that
spring soil moisture may have a connection to sum-
mer precipitation when the interannual variations of cli-
mate patterns are superimposed on the seasonal cycle
(Figure 9). The in-phase SVD patterns of the two fields
are quite plausibly due to the direct hydrological rela-
tionship between soil moisture and precipitation. Here we
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Figure 7. Patterns of the summer anomalous relative humidity regressed
on the two leading SVD modes of spring soil moisture time series
normalized to one positive standard deviation. Contours are smoothed
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focus the discussion on the negative cross-correlations in
order to better understand the above results and to guide
future investigations.

The out-of-phase SVD patterns of the two fields sug-
gest that both the variations of springtime soil moisture
and summertime precipitation over the US may be caused
by the same forcing, but in opposite ways. For example,
Hoerling and Kumar (2003) showed that cold SSTs in the
eastern tropical Pacific (150 °W–90 °W, 5 °N–5 °S, also
the Niño 3 Region defined in Trenberth, 1997) and warm
SSTs in the western tropical Pacific and Indian oceans
(90 °E–150 °E, 15 °N–15 °S) contribute synergistically to
widespread midlatitude drying. Over some regions, SST
anomalies could cause systematic patterns of more pre-
cipitation in summer but less soil moisture (precipitation)
in spring.

To further examine how the sign of soil mois-
ture–precipitation correlations might change with dif-
ferent time-lags and -leads, four grid-points around the
point of 92 °W and 34 °N are selected as an index that
describes the temporal variability of a spatially coherent
region. Figure 10 shows the spring soil moisture corre-
lated with lagged seasonal precipitation from spring to
the following winter. In this case, contemporary correla-
tions of soil moisture and precipitation (i.e. spring soil
moisture vs. spring precipitation) are significantly posi-
tive. The spring soil moisture correlates negatively with
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Figure 10. Correlations between spring soil moisture and lagged
precipitation in the Southeast negative-feedback region, calculated by
the area averaged time series. Crosses denote the 5% Monte Carlo

statistical significance level

later season precipitation in JJA, JAS, although the lat-
ter is not above the 5% significance level; in addition, at
longer lags, the spring soil moisture correlates negatively
with later season precipitation in OND and NDJ. Appar-
ently, the sign of soil moisture–precipitation correlations
changes with different time-lags. As mentioned in Ruiz-
Barradas and Nigam (2005), climate models such as those
analyzed here may exaggerate local hydrological cycling.
The model’s lack of variability (compare Figures 1(b)
with 2(b)), especially over the Southern Plains, sug-
gests that the model’s response to remote variations (e.g.
ENSO, North American Monsoon) may be weak.

Although we are not aware of any previously reported
lag relationship similar to those discussed above, many
studies have discussed negative correlations between soil
moisture and precipitation. Various studies (Findell and
Eltahir, 2003; Ek and Holtslag, 2004) have shown how
an out-of-phase contemporaneous correlation is possible.
In a numerical study, Miller et al. (2005) find that cool-
ing from evaporation can stabilize the atmosphere such
that the evaporation does not contribute to precipitation.
An inverse relationship between soil moisture and precip-
itation in the Southwest has been recognized directly or
indirectly by previous studies (Lo and Clark, 2002; Kana-
mitsu and Mo, 2003; Mo and Juang, 2003; Zhu et al.,
2005). As early as over a decade ago, Meehl (1994) noted
that the soil moisture-precipitation feedback could be
either positive or negative for the south Asian monsoon.

Statistical modeling, referred to as ‘Principal Oscilla-
tion Patterns’ (von Storch and Zwiers, 1999), describes
systems of two coupled variables in which the values
of one correlate with the time tendency of the other
on some timescales leading to negative lag correlations.
Apparently, the climate model generates such an inverse
relationship as documented by the SVD analysis.

CONCLUSIONS

The spatial-temporal associations between springtime soil
moisture and summertime precipitation over the United
States have been studied for a climate model simula-
tion. Both in-phase and out-of-phase cross-correlations

between spring soil moisture and summer precipitation
are found over different regions in different leading SVD
modes. The sign of the correlation changes with dif-
ferent time-lags. The patterns of summer precipitation
connected with spring soil moisture are associated with
consistent summer patterns of temperature and relative
humidity.
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