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ABSTRACT

The focus of the analysis is to investigate the question to what extent the specification of sea surface

temperature (SST) in coupled model integration can impart realistic evolution of subsurface ocean tem-

perature in the equatorial tropical Pacific. In the context of El Ni~no–SouthernOscillation (ENSO) prediction,

the analysis is of importance from two aspects: such a system can be considered as a simple coupled ocean data

assimilation system that can provide ocean initial conditions; and what additional components of the ocean

observing system may be crucial for skillful ENSO prediction.

The results indicate that coupledmodel integration where SST is continuously nudged toward the observed

state can generate a realistic evolution of subsurface ocean temperature. The evolution of slow variability

related to ENSO, in particular, has a good resemblance against the observational counterpart. The realism of

subsurface ocean temperature variability is highest near the date line and least in the far eastern Pacific where

the thermocline is shallowest. The results are also discussed in the context of ocean observing system re-

quirements for ENSO prediction.

1. Introduction

Skill of long-range predictions (e.g., seasonal and de-

cadal) resides in initializing the ocean that provides the

long-term memory and skillful predictions for sea sur-

face temperature (SST; Jin et al. 2008; Xue et al. 2013;

Meehl et al. 2014). Skillful prediction of SST anomalies,

an example being SST variability related to El Ni~no–

Southern Oscillation (ENSO), by controlling various

aspects of global atmospheric and terrestrial climate var-

iability, also allows us to make skillful prediction of vari-

ables of societal relevance (e.g., surface temperature and

precipitation; Ropeleweski and Halpert 1986; Trenberth

et al. 1998; Peng et al. 2012).

For the initialization of ocean conditions, a hierarchy

of procedures with varying complexity have been used.

One of the simplest approaches has been the specifica-

tion of SSTs (or SST anomalies) as the only observed

information in coupled model integrations (Chen et al.

2004; Tang and Kleeman 2004; Keenlyside et al. 2005;

Luo et al. 2008; Keenlyside et al. 2008) to spin up the

ocean initial state. The rationale for these initialization

procedures is that over regions where ocean variability is

strongly constrained by coupled air–sea interaction,

specified SSTs force the surface wind variability, which

in turn, leads to subsurface ocean variability that resem-

bles the observed subsurface evolution. Oceanic vari-

ability in the equatorial tropical Pacific is such a region of

coupled air–sea interaction. Indeed strong coupling be-

tween ocean and atmosphere has been the basis of hybrid

coupled models for the tropical Pacific that not only

provided improved understanding of ENSO dynamics,

but also led to the development of earlier generations of
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ENSO prediction models (Latif and Villwock 1990;

Barnett et al. 1993; Balmaseda et al. 1994; Chen et al.

2004).

In this paper, based on coupled model simulations, we

quantify to what extent the specification of SSTs, par-

ticularly in the equatorial tropical Pacific can reproduce

the evolution of subsurface ocean temperature vari-

ability. The design of coupled model simulation is sim-

ilar to the traditional approach of specification of SSTs

and quantifying their influence on the atmospheric vari-

ability using the Atmospheric Model Intercomparison

Project (AMIP) simulations (Peng et al. 2000; Kumar

et al. 2001); however, in this casewe extend the analysis to

investigate how SST controls the subsurface temperature

variability based on an ensemble of coupled model sim-

ulations. We investigate the question that with the spec-

ification of SSTs, what features of observed subsurface

ocean temperature variability can be reproduced.

The analysis presented in this paper also has impli-

cations for the design of the ocean observing system in

the equatorial tropical Pacific to adequately resolve the

observed evolution of ocean variability. Over the re-

gions where the specification of SST and coupled air–sea

interactions can lead to adequate representation of

ocean subsurface variability, a sparse network of ocean

observing system may be adequate. On the other hand,

regions where the specification of SST is inadequate in

replicating subsurface ocean variability, independent

ocean observations will be critical. However, in the

context of prediction of ENSO variability, the question

of adequacy of the ocean observing system to resolve

equatorial Pacific Ocean variability may differ from the

question of which region observations are crucial for

initializing the ocean state for skillful prediction of

ENSO-related SSTs.

The design of coupled model simulations is described

in section 2 and results, including comparison with the

observed ocean variability, are presented in section 3. A

discussion on the implications for the ocean observing

system is given in section 4, and a summary is given in

section 5. With ENSO being one of the strongest modes

of coupled variability in global oceans, and the very basic

premise of successful seasonal prediction efforts (Peng

et al. 2012), the focus of analysis is for subsurface ocean

variability in the equatorial tropical Pacific.

2. Data and model simulations

The observational data used in this study include 10-m

zonal wind, SST, and subsurface ocean temperature.

The 10-m zonal wind data are from the National Centers

for Environmental Prediction (NCEP)–Department of

Energy (DOE) Reanalysis 2 (R2; Kanamitsu et al. 2002)

on a T62 Gaussian grid. The SST dataset is the National

Oceanic and Atmospheric Administration (NOAA)

Optimum Interpolation SST (OISST) version 2 (Reynolds

et al. 2002) on a 18 3 18 (latitude 3 longitude) grid. The

subsurface ocean temperatures are from both the NCEP

Global Ocean Data Assimilation System (GODAS;

Behringer and Xue 2004) on a 18 3 28 grid and the Eu-

ropean Centre for Medium-Range Weather Fore-

casts (ECMWF) Ocean Reanalysis System 4 (SYS4;

Balmaseda et al. 2013) on a 18 3 18 grid. The data cover

a 31-yr period from 1981 to 2011.

The coupled model employed in this study is the early

version of the Climate Forecast System (CFS) that was

implemented for operational seasonal forecast at NCEP

in 2004 (Saha et al. 2006) and was replaced by a new

version in 2012 (Saha et al. 2014). In this version of the

CFS, the atmospheric, oceanic, and land components

of the coupled model are the NCEP Global Forecast

System (GFS) version 1 (Moorthi et al. 2001), the Geo-

physical Fluid Dynamics Laboratory (GFDL) Modular

OceanModel version 3 (MOM3;Pacanowski andGriffies

1998), and the Oregon State University (OSU) land

surface model (LSM; Pan and Mahrt 1987), respectively.

The atmospheric component (i.e., the GFS) has T62

horizontal resolution and 64 vertical levels. The GFDL

MOM3 covers global oceans from 748S to 648N, with

horizontal resolutions of 18 (longitude) by 1/38 (latitude)
between 108S and 108N, and increasing to 18 (latitude)
poleward of 308S and 308N. The MOM3 has 40 layers

from 5m below sea level to 4479m, with a 10-m reso-

lution in the upper 240m. The OSU LSM has two soil

layers: 0–10 and 10–190 cm. More detailed descriptions

of the CFS are given in Saha et al. (2006).

TheGODAS is based onGFDLMOM3oceanmodel as

described above and is forced by themomentum, heat, and

freshwater (evaporation minus precipitation) fluxes from

R2. These surface fluxes were further corrected by re-

storing the model temperature of the first layer (5m) to-

ward the OISST analysis. A three-dimensional variational

data assimilation (3DVAR) analysis scheme (Behringer

et al. 1998) is used to correct model fields with in situ ob-

servations. The observed temperature data from XBTs,

fixed mooring arrays including the Tropical Atmosphere

Ocean/Triangle Trans-Ocean Buoy Network array

(TAO/TRITON)andArgofloats are assimilated inGODAS.

To specify SST in the coupled model simulations,

model SSTs are relaxed to the observed daily SST. This

is done by replacing the model-predicted global SST

with new SST after a 1-day integration of the coupled

model. The new SST (SSTNEW) is a combination of the

coupled model predicted SST (SSTMOM3) and the ob-

served daily SST (SSTOBS) interpolated from theweekly

OISST based on the following equation:
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SSTNEW5 (12w)SSTMOM3 1wSSTOBS ,

where w is a weighting coefficient, which is set to 1/3.

The value of 1/3 for the weighting coefficient, equiva-

lent to nudging the model SST to the observed SST with

a restoring time scale of 3.3 days, effectively constrains

SSTNEW to the observations. We point out that the SST

nudging method used here differs from the SST anom-

aly nudging procedure (Oberhuber et al. 1998). Although

of interest is whether SST or SST anomaly nudging

performs better in replicating the observed ocean var-

iability, and which nudging methodology may produce

less initial shock during subsequent coupled forecasts,

our focus is solely on the analysis of ocean variability

resulting from the application of the SST nudging pro-

cedure alone.

The modified CFS with relaxation of the model-

predicted SST to the observed global SST was inte-

grated over the 31-yr period (1981–2011) with one ocean

initial condition but nine different atmospheric ini-

tial conditions. The ocean model was initialized with

1 January 1981 condition obtained from the GODAS.

The atmosphericmodel was initialized with 28December

1980–5 January 1981 conditions, each 1 day apart, ob-

tained from the NCEP/DOER2 (Kanamitsu et al. 2002).

This procedure results in an ensemble of nine simula-

tions in which the SST variability over global oceans

follows the observed SST evolution. Hereafter these

simulations are referred to as CFS simulations. This set

of the CFS simulations has been used to study the

predictability of seasonal-mean precipitation over the

tropical Indian Ocean (Chen et al. 2012) and is similar

FIG. 1. Variance of monthly mean 10-m zonal wind computed over 1981–2011 (unit: m2 s22).

Average of (a) nine individual CFS simulations and (b) for R2.
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to the set of simulations with relaxation of tropical

Pacific SST only to observations in the CFS (Wang et al.

2013).

3. Results

Postulating that the influence of specified SST is com-

municated to the subsurface ocean primarily via surface

wind variability generated by coupled air–sea interactions

in response to SSTs, we begin with a comparison of

monthly surface wind variability between model simu-

lations and observations. An assessment of variance of

monthly mean 10-m zonal wind between model simu-

lations and observations based on R2 (which was used

as the surface forcing in GODAS) computed over all

months is shown in Fig. 1. Overall the spatial structure

of variance compares well with the largest variability

occurring over midlatitude oceans associated with pre-

ferred geographical locations of storm tracks (Blackmon

1976). In tropical latitudes, for both model simulations

and observations, the largest variance is found over the

warm pool region over the equatorial tropical Pacific

extending over the eastern Indian Ocean, with a mini-

mum in the equatorial eastern Pacific and Atlantic.

The fraction of variability in surface zonal winds that

is related to specified SSTs can be estimated from the

analysis of variance of ensemble mean of model simu-

lations (Kumar and Hoerling 1995). Variability of sur-

face winds in ensemble mean is due to specified SSTs

that are common to all simulations. The signal-to-noise

ratio (SNR) in zonal wind due to SSTs is then defined as

the ratio of variance of ensemble mean to the total

variance and is shown in Fig. 2. Larger values for SNR

indicate that variability of 10-m zonal wind is con-

strained by interannual variations in SSTs; on the other

hand small values of SNR signify that the variability is

mostly due to internal variations related to atmospheric

noise (Kumar and Hoerling 1995).

The largest SNR values are located in tropical latitudes,

and in particular, near the date line in the equatorial

tropical Pacific. Although the interannual variability in

10-m zonal wind over midlatitude oceans is large (Fig. 1,

top panel), it is not related to specified SSTs, and there-

fore, in the coupled model simulations is mostly due to

atmospheric internal variability. A general feature of

SNR is that with the largest values in equatorial latitudes,

its amplitude decreases poleward, and further, this be-

havior is similar to that of SNR analysis for upper-level

heights or for precipitation (Peng et al. 2000).

The SNR analysis for model simulations cannot be

compared with an observational counterpart as only a

single observed realization exists. However, as the high-

est SNR is found over the regions associated with ENSO

SST variability, a comparison of linear response in sur-

face zonal winds toENSOSST variability betweenmodel

simulations and observations can bemade. This choice of

comparing linear regression based on ENSO SST is also

justified based on the fact that in equatorial latitudes

variance of monthly mean SST associated with ENSO

variability has the largest amplitude (Deser et al. 2010)

and represents the strongest SST forcing for atmospheric

variability on an interannual time scale.

A comparison of linear regression between the monthly

mean Ni~no-3.4 SST index and 10-m zonal wind is shown

in Fig. 3 and signifies linear response in surface zonal

wind to interannual SST variability related to ENSO.

Both for observations and model simulations, the largest

regression is found at the equator and near the date line,

and further, is located west of the largest SST anomalies;

a feature also documented in earlier studies (Kumar and

Hu 2012). The sign of zonal wind regression is for the

westerly wind anomaly to be associated with a positive

phase of Ni~no-3.4 SST index (i.e., El Ni~no events). To the

west of the westerly wind anomaly, and over the eastern

Indian Ocean, the zonal wind anomaly has an easterly

phase and is consistentwith surface divergence associated

with suppressed precipitation over Indonesia that is typ-

ically associated with El Ni~no events (Ropelewski and

Halpert 1987; Peng et al. 2000). In the meridional di-

rection, the zonal wind anomaly has a banded structure of

alternating negative and positive phases extending pole-

ward in both the hemispheres and is indicative of surface

manifestation of wave response to El Ni~no events ema-

nating and propagating from tropical to extratropical

latitudes (Horel and Wallace 1981; Hoerling and Kumar

1997). The amplitude and spatial structure of the linear

response in surface zonal wind between observations and

model simulations has a remarkable similarity. Particu-

larly in the equatorial tropical Pacific, specification of

SSTs, via air–sea interactions, is able to generate the

FIG. 2. Signal-to-noise ratio (SNR) for monthlymean 10-m zonal

wind based on CFS simulations. The signal is the variance of the

ensemble mean of nine simulations while noise is defined as the

total variance.
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observed structures in zonal wind in response to ENSO

variability.

The analysis is encouraging in that in our design of

model simulations, specification of SSTs via nudging is

able to generate a surface zonal wind response to

ElNi~no that is similar to that in observations. The results

discussed so far, however, only illustrate statistical re-

lationship between Ni~no-3.4 SST and zonal wind, and

do not investigate temporal coherency between evolu-

tion of observed and model simulated zonal wind. For

specification of SSTs to be able to simulate the observed

evolution of subsurface ocean structure mediated through

changes in surface winds, it is also important to compare

temporal evolution of model-simulated zonal winds

with observations. This is done based on the anomaly

correlation between the observed andmodel-simulated

zonal winds, and spatial structure of temporal corre-

lation, which is shown in Fig. 4 (top panel). We point

out that temporal correlation is computed based on

ensemble mean of model simulations to reduce the in-

fluence of noise and tomaximize the anomaly correlation

(Kumar and Hoerling 1995). The spatial structure of

anomaly correlation based on individual runs, and then

averaged over nine different simulations (not shown), is

very similar to that shown in Fig. 4, but as expected, has

smaller amplitude.

Consistent with the spatial structure of the SNR (Fig. 2)

and regression with Ni~no-3.4 SST index (Fig. 3), the

largest anomaly correlations are located over the tropical

oceans, and further, over the equatorial tropical Pacific

FIG. 3. Regression coefficient of SST vs Ni~no-3.4 SST index (contour, unit: KK21). The

contour interval is 0.25KK21 with red solid (blue dash) contours for positive (negative) values;

the zero contour is omitted. Regression coefficient of 10-m zonal wind vs Ni~no-3.4 SST index

(shaded, unit: m s21K21). (top) CFS and (bottom) R2.
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where the largest value exceeds 0.8. Over the extratropical

latitudes where SNR and regression analysis indicate far

less constraint on zonal wind due to ENSO SST variability

(or for that matter, due to any SSTs as the SNR analysis

does not key on ENSO SST alone), the atmospheric in-

ternal variability dominates and temporal coherency be-

tween observations and model simulations is small.

For the sake of completeness, along with the anomaly

correlation for surface wind, in Fig. 4 (bottom panel) we

also show the anomaly correlation for the net heat flux at

the ocean surface. Net heat flux is another component

related to air–sea interaction that can influence sub-

surface ocean variability via changes in vertical stratifi-

cation. In contrast to that for the surface wind, the

largest anomaly correlation for net heat flux is shifted

eastward. An eastward shift is consistent with the

documented influence of ENSO on net flux variability

(e.g., see Fig. 8 in Kumar and Hu 2012) and is a conse-

quence of changes in the latent and shortwave flux as-

sociated with ENSO.

As a further test of the ability of specified SSTs to

simulate the observed surface zonal wind variability,

Hovm€oller diagrams of zonal wind at the equator are

shown in Fig. 5. The left two panels compare the en-

semble mean of model-simulated 10-m zonal wind with

its observed counterpart. There is a remarkable simi-

larity between the two over the equatorial Pacific. Be-

cause model results are based on ensemble means, their

temporal evolution is smoother than the observations;

however, all major features (including eastward propa-

gation from western Pacific toward date line) are well

replicated, and temporal correspondence also extends

over to the eastern Indian Ocean where regression in-

dicates a response over this region (Fig. 3).

FIG. 4. Anomaly correlation for (a) 10-m zonal wind and (b) net surface heat flux between the

ensemble mean of CFS simulations and R2 based on monthly mean data over 1981–2011.
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FIG. 5. 10-m zonal wind anomaly at the equator (unit: m s21): (a) ensemble mean of CFS simulations, (b) R2, (c) CFS reconstructed, and

(d) R2 reconstructed. Reconstruction is based on regression with the Ni~no-3.4 SST index shown in Fig. 3.
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The two right panels in Fig. 5 compare the recon-

structed zonal wind based on Ni~no-3.4 SST index re-

gressions in Fig. 3. It is remarkable to note that the

temporal evolution of all observed features is captured

by the model simulations both over the equatorial

tropical Pacific and over the eastern Indian Ocean. The

comparison of 10-m zonal wind between model simu-

lations and the observations, therefore, indicates that

specification of SSTs is successful in replicating the

observed wind variability associated with ENSO SST

variations. Given that one of the primary causes of

variability in the ocean is the adjustment to surface

winds, this provides hope that observed variability in

subsurface ocean temperatures may also be simulated

to some extent, and is next analyzed.

Over the equatorial latitudes and averaged between

58S and 58N the monthly mean variability in ocean tem-

perature for model simulations and observations based

on GODAS is shown in Fig. 6 (left panels). Also shown

with the green line is the 208C isotherm, which is a good

representation of the mean thermocline in the tropics.

In the western Pacific the mean depth of thermocline

is well simulated. In the eastern Pacific, however, the

model-simulatedmean thermocline is deeper than in the

GODAS and the specification of SST observations

alone is not sufficient to constrain the vertical struc-

ture of ocean temperature. A deeper thermocline in the

eastern Pacific results from a too diffusive vertical tem-

perature gradient in the model (Fig. 6, right panels).

Over the Indian Ocean the mean depth of the thermo-

cline is deeper than in the observed and is likely related

to model biases as surface wind variability is not well

constrained by specification of SSTs, and the ocean is

free to evolve toward the state preferred by the model

climatology. Over the Atlantic Ocean the east–west

structure of the mean thermocline is well simulated but

similar to that in eastern Pacific the model-simulated

mean thermocline is deeper than in the observed, and

once again is related to a too diffusive vertical temper-

ature gradient.

The overall zonal and vertical structure of monthly

mean ocean temperature variability is well replicated in

FIG. 6. (left) Variance (unit: K2) and (right) long-term mean (unit: K) of subsurface ocean temperature averaged

between 58S and 58N in (a),(c) CFS and (b),(d) GODAS. The green line is the 208C isotherm.
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model simulations—larger values over the eastern In-

dian Ocean, east–west gradient in the depth of largest

temperature variations over Pacific with larger vari-

ability in deeper (shallower) oceans in western (eastern)

Pacific, and a similar east–west gradient in temperature

variability over the Atlantic.

A notable discrepancy between model simulations

and observations is weaker amplitude of variability,

particularly in the eastern equatorial Pacific. This dis-

crepancy is not related to the errors in the GODAS as

a comparison with the ECMWF SYS4 ocean reanalysis

(Balmaseda et al. 2013) (not shown) also shows the same

feature. Possible reasons for the differences in the am-

plitude could be related to (i) a too diffuse thermocline

in the eastern Pacific in model simulations (Fig. 6, right

panels) that would also result in smaller variations in

temperature in the vertical, or (ii) lack of submonthly

surface wind variability in model simulations leading

to weaker variations along the thermocline. A validation

of the latter possibility is not pursued any further al-

though the overall monthly mean variability of zonal

winds in the model simulations indicates that variability

of monthly mean zonal wind is in fact larger than for

observations (Fig. 1).

Similar to that for 10-m zonal wind, the SNR for ocean

temperatures in model simulations is shown in Fig. 7

(top panel), and highlights the amplitude of variability

that is associated with specification of SSTs. Over the

Pacific Ocean, the largest SNR is located near the sur-

face and east of the date line, and decreases with depth.

An analysis of individual components of variance re-

lated to signal and noise shows that for each component

the largest variability is along the thermocline (Fig. 7,

middle and bottom panels). Since away from the ther-

mocline, in the upper ocean, for example, noise variance

is quite small, it leads to the spatial structure of the SNR

with smaller values along the thermocline and larger

values above and below. There are also very large values

for the SNR over some regions in the deeper oceans. A

more detailed analysis shows that these are related to

the initial drift in the ocean temperatures that is com-

mon to all model simulations that were initialized from

the GODAS ocean initial condition, but in the absence

of the ingest of ocean data, tend to drift toward model

mean state (not shown). Further, as will be discussed

next, another indication of this is that large SNRs in

deeper oceans, unlike their surface counterpart, are not

associated with ENSO variability.

The linear correlation and regression of subsurface

ocean temperature between model simulations and

GODAS with the Ni~no-3.4 SST index is compared in

Fig. 8. This analysis mimics that for 10-m zonal wind

(Fig. 3) and allows a comparison of linear response to

ENSO in subsurface ocean temperature. The largest

correlations with the Ni~no-3.4 SST index are over the

tropical Pacific and show an east–west dipole structure

that is reminiscent of the leading mode of subsurface

ocean temperature variability associated with ENSO

(Kumar and Hu 2014). In the eastern (western) Pacific

the largest correlations are at the surface (;100–150-m

depth) and have a similar structure. There are no dis-

cernible signals associated with ENSOover theAtlantic,

while over the Indian Ocean the largest correlation is

over the eastern part and is likely in response to surface

zonal wind variations over the same region (Fig. 3)

leading to thermocline variations in the eastern compo-

nent of the Indian Ocean dipole (IOD; Saji et al. 1999).

The regression pattern over the Pacific shows the

largest amplitude along the thermocline (Fig. 8, bottom

panel) and is consistent with the structure of signal

variance (Fig. 7, middle panel) that is also largest along

FIG. 7. Vertical–longitude cross sections of (a) signal-to-noise

ratio, (b) signal (external variance; unit: K2), and (c) noise (internal

variance) of the subsurface temperature averaged between 58S and

58N derived from the CFS simulations.
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the thermocline. Similar to differences in monthly mean

variance (Fig. 6), regression for the model simulation

with ENSO is weaker, and in the eastern Pacific the

maximum is located deeper in the ocean with more

diffusive vertical gradient consistent with errors in the

vertical structure of simulated ocean temperatures (Fig. 6,

right panels). The amplitude of the correlation or the re-

gression in deeper oceans (depth . 250m) becomes very

small, indicating that the large SNR in Fig. 7 (top panel) is

not associated with ENSO SST variability.

In Fig. 9 the meridional cross sections of SNR, cor-

relation, and regression with the Ni~no-3.4 SST index

averaged between (Fig. 9a) 1458–1758E, (Fig. 9b) the

date line and 1508W, and (Fig. 9c) 1058–1358Ware shown.

Averages over these longitudes are chosen based on the

ENSO influences on subsurface ocean temperatures

(Fig. 8, bottom panel) which are located in deeper oceans

for 1458–1758E, are smallest between the date line and

1508W, and are closer to surface for the eastern region of

1058–1358W. Similar to their structure in longitudinal

direction (Fig. 7), for all three locations the largest SNR

values are at the surface. As mentioned earlier, larger

values in deeper oceans for the SNR at all three locations

are due to the initial drift in themodel and are not related

to ENSO variability (Fig. 9, bottom panels).

Both for correlation and regression patterns there is

a good resemblance between model simulations and

GODAS. For zonal average over 1458–1758E (Fig. 9, left

column) response to ENSO SSTs is for negative ocean

temperature anomalies and reflects the vertically ele-

vated (depressed) thermocline duringEl Ni~no (LaNi~na)

events. For the region near the date line (Fig. 9, middle

column) positive correlations at the equator are flanked

by negative correlations around 308 latitude in both

hemispheres and collocated with a signature in surface

zonal wind (Fig. 3). For the easternmost region of 1058–
1358W, a positive thermal response reflected as a deeper

(shallower) thermocline during La Ni~na (El Ni~no) is

FIG. 8. Vertical–longitude cross sections of correlation (shadings) and regression coefficient

(contour, unit: KK21) of the subsurface temperature anomalies vs Ni~no-3.4 index in (a) the

CFS simulations and (c) GODAS averaged between 58S and 58N. The correlation in (a) is the

average of correlations with nine individual CFS runs.
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found. Further, consistent with the shallower mean

thermocline over the eastern Pacific, the thermal re-

sponse is also closer to surface. In the immediate vicinity

of equatorial latitudes, the ENSO response also extends

to deeper oceans and is due to ENSO’s influence on

equatorial ocean undercurrents.

The temporal coherence between the evolution of

model-simulated and observed monthly mean temper-

ature is shown in Fig. 10 (top panel). The largest cor-

relations exceeding 0.9 are found over the Pacific Ocean

near the date line and extend eastward. Larger values

around 0.8 are also located in western Pacific at 150-m

depth and correspond to the western pole of the dipole

variability in equatorial ocean temperature associated

with ENSO. Positive correlations are also found over

the Indian and Atlantic Oceans, consistent with the

depth ofmean thermocline, but do not penetrate as deep

in the ocean as over the Pacific.

For the GODAS, subsurface temperature observa-

tions are assimilated and the ocean current adjusts to

them. Further, as a continual adjustment of thermal

structure toward the observed data that can also lead to

discontinuities in ocean current, onewould expect amuch

weaker correlation for the zonal current between model

simulations andGODAS. This is indeed the case (Fig. 10,

bottom panel), however, it is encouraging that correla-

tions, even though weaker, are positive.

The analysis of variability in subsurface ocean tem-

perature in model simulations indicates that specifica-

tion of SST alone is capable of generating the observed

subsurface ocean variability in equatorial latitudes.

This is particularly true over the tropical Pacific. The

connection between SST and subsurface ocean tem-

peratures comes from the coupled air–sea interactions

whereby (i) specified SSTs lead to modulation of low-

level surface winds, and (ii) changes in surface wind

lead to ocean adjustments and subsurface signature in

temperature. That the proposed mechanism has validity

comes from the result that it is over the equatorial trop-

ical Pacific where air–sea coupled interactions are stron-

gest; variations in the subsurface temperature variability

are in phase with their observational counterpart. The

FIG. 9. Vertical–latitude cross sections of (a),(d),(g) signal-to-noise ratio in the subsurface monthly mean temperature; and correlation

(shadings) and regression coefficient (contour, unit: KK21) of the subsurface temperature anomalies vs Ni~no-3.4 index in (b),(e),(h) the

CFS simulations and (c),(f),(i) GODAS averaged between (left) 1458 and 1758E, (middle) 1808 and 1508W, and (right) 1058 and 1358W.

The correlation for the CFS in (b),(e),(h) is the average of correlations of nine individual CFS runs.
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same mechanism has been the rationale for hybrid cou-

pled models (Barnett et al. 1993), and the success of

ENSO prediction efforts where the ocean initialization is

achieved by relaxing SSTs in a freely evolving coupled

model to the observed state (Chen et al. 2004; Luo et al.

2008; Keenlyside et al. 2008).

4. Discussion from the perspective of ocean
observing system and data assimilation

In this section we provide some additional analysis

and discussion from the perspective of the ocean ob-

serving system and data assimilation. In addition to re-

laxation to observed SSTs and specification of surface

heat flux and momentum forcings (Behringer and Xue

2004) from R2, the ocean analysis in the GODAS is

a consequence of the ingest of observations in deeper

oceans (e.g., TAO moorings; Argo). A comparison of

subsurface ocean temperature variability in model sim-

ulations with GODAS can also be interpreted as the

influence of additional information due to ingest of the

observational data. If the GODAS ocean analysis is

considered to be the truth, and model simulations as one

of the simplest assimilation (in which no subsurface

ocean data are assimilated and no surface forcing from

atmospheric reanalysis is included) in an hierarchical

complexity of assimilations, then discrepancies between

the two could be interpreted as the contribution of

subsurface ocean and atmosphere observations (through

surface forcing) to the analyzed ocean state; and areas

with low correlation in Fig. 10 would be indicative of

regions where specification of SSTs as the only observa-

tion is not enough to constrain the ocean variability to the

observed state (i.e., the GODAS).

An added level of complexity in this analysis, how-

ever, is the low-frequency variations in the character-

istics of ENSO, particularly a shift in the characteristics

of El Ni~no events (the warm phase of ENSO) from

eastern Pacific events to central Pacific events after

2000 (McPhaden 2012; Luo et al. 2012; Hu et al. 2013).

Such a shift, by changing surface wind variability and

related ocean adjustment, may also lead to changes in

the relationship in subsurface ocean temperatures be-

tween model simulations and the GODAS, and may

overshadow fingerprints due to the evolving ocean ob-

serving system.

In this interpretation of SST-forcedmodel simulations,

correlation shown in Fig. 10 implies that specification

(or assimilation) of SST is adequate for simulating the

observed ocean temperature variability in the upper

ocean near the date line. In the eastern Pacific where

correlations are low, however, the observed SST vari-

ability is inadequate to constrain the ocean variability.

Similarly in the deeper ocean below 200m, constraint

provided by SST is inadequate to simulate observed var-

iability, although it should be noted that the amplitude of

monthly mean temperature is also much weaker (Fig. 6).

The equatorial ocean observing system has been

evolving with time (Saha et al. 2010), and it is of interest

to analyze if this has any influence on the relationship

between model simulations and the GODAS ocean

analysis. In this part we only focus on the analysis in the

tropical Pacific and show the results at discrete longi-

tudes at the equator that sample regions of high and low

correlations in Fig. 10. The analysis is based on the

correlation between model-simulated and observed

ocean temperature done over 5-yr moving window, and

results are shown in Fig. 11. We note that although the

interpretation of results in terms of the influence of the

ocean observing system is not as straightforward as we

had originally hoped for, results nonetheless have some

interesting aspects.

In Fig. 11, correlations over four locations at the

equator starting from the date line moving eastward

are shown. Correlation over the entire period in Fig. 10

indicates that it is maximum at 1508W and decreases

with longitudes farther east. At all four locations the

FIG. 10. Anomaly correlation for (a) subsurface ocean temper-

ature and (b) zonal current between the ensemble mean of CFS

simulations and R2 based on monthly mean data over 1981–2011.

The correlations are averaged between 58S and 58N.
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correlations over the 5-yr sliding window are strongest

centered about 1998 associated with the strongest

ElNi~no during the analysis period.Aswill be shown later,

this is due to the stronger surface wind response to SST

anomalies. Some other interesting features in Fig. 11 in-

clude the following: at the date line, higher correlations

are found over a deeper layer in the upper ocean con-

tinuing beyond 1998; visually there does not seem to be

a systematic difference in correlations at 1508W before

and after 1998; for locations farther east (1208 and 908W)

there is a clear reduction in correlation with depth.

There have been considerable changes in the ocean

observing system over the analysis period (Saha et al.

2010)—placement of TAO moorings starting 1990 and

the commencement of Argo floats after 2000. If the

ocean model used in the GODAS and model simula-

tions is the same (as is the case for our analysis) in-

tuitively one would expect that during the period of

sparse data, temperature variability in SST-forced model

simulations will be closer to that of GODAS since both

are less constrained by observational data. As more

and more subsurface data get assimilated, the GODAS

correlation will get smaller. Changes in correlations,

however, do not entirely conform to this expectation:

an increase in correlation at the date line after 2000 is

contrary to this expectation; results are inconclusive at

1508W; and maybe, are in line with expectation at 1208
and 908W, where after the introduction of Argo, cor-

relations are smaller.

A complicating factor in relating changes in correla-

tion and its connection with the evolving observing

system is the influence of low-frequency variability in

ENSO. This is indicated by the fact that the largest

correlations occur around 1998 influenced by ENSO,

and similarly, a low-frequency changes in ENSO can

easily overshadow the signature associated with changes

in the ocean observing system. Indeed it has been

documented that the character of ENSO variability in

the tropical Pacific may have seen a shift after 2000,

a period that also coincides with an increase in obser-

vations from Argo. At the ocean surface the shift is

manifested as preponderance of central Pacific ENSO

events (Yeh et al. 2009), which also have smaller am-

plitude. This westward shift and weaker amplitude in

ENSO events may also be responsible for specification

of SSTs in providing a weak constraint on the subsurface

FIG. 11. Temporal anomaly correlation for ocean temperature between the CFS nine-member ensemble mean

and GODAS for 5-yr moving windows at the equator but different longitudes: (a) 1808, (b) 1508W, (c) 1208W, and

(d) 908W.
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ocean temperature evolution leading to lower correla-

tion at 1208 and 908W after 2000. A westward shift in

SST could also explain increased correlation at the date

line as this may now fall east of the surface zonal wind

response to central Pacific ENSO events.

A change in the characteristics of ENSO variability

after 2000 is aptly captured by variability in thermo-

cline. Figure 12 illustrates the longitudinal variations in

thermocline similar to that for surface wind in Fig. 5.

Before 2000, both model simulations and the GODAS

strongest variations in thermocline are located in the

eastern Pacific and have good temporal coherence. After

2000, however, larger amplitude variations in thermo-

cline shift toward the central Pacific, and further, the

characteristics of the thermocline variability in the east-

ern Pacific shift toward higher-frequency variations. This

FIG. 12. Thermocline anomaly at the equator (unit: m) for (a) ensemble mean of CFS simulations and (b) GODAS.

The depth of the thermocline is derived based on the depth of the 208C isotherm.
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change in the characteristics of ENSO after 2000 may be

responsible for the breakdown in the correlation of sub-

surface ocean temperature after 2000 (Fig. 11) for the

eastern part of the Pacific basin.

To further highlight the possible influence of low-

frequency variability in ENSO, we show the temporal

evolution of 10-m zonal wind, and ocean temperatures

at 1508W(Fig. 13) and 908W(Fig. 14). Consistent with the

correlation in Figs. 10 and 11, the observed variations in

subsurface ocean temperature at 1508W are well repro-

duced in model simulations, and it is indeed remarkable

that specification of SST alone can generate such a level

of realism. The evolution also indicates a clear change in

characteristics of ENSO across 2000: stronger and longer-

lasting ENSO events before 2000; lower-frequency vari-

ations in surface zonal wind before 2000 that are well

reproduced; after 2000 zonal wind to have a tendency to

be in the easterly phase, a fact noted in earlier studies

(Xiang et al. 2013; Luo et al. 2012). The time series also

illustrates that the amplitude of the influence of ENSO

variability alone in model simulations forced with SST

is comparable to that in observations (see also Fig. 5),

and can easily overwhelm a possible signature due to

changes in the observing system. We should point out

that model results are based on ensemble means, and

therefore, have smoother variations.

At 908W (Fig. 14) variations in zonal wind are much

smaller in amplitude, and for observations, there is clear

shift around 1998 toward an easterly phase and negative

temperature anomalies. A similar change in the mean

state in the equatorial Pacific was also noted by Hu et al.

(2013). At this particular location in the far eastern

Pacific, the observed ocean temperature variability has

a clear signature of ENSO events before 2000. After

2000, variability shifts to a higher frequency and is no

longer reproduced inmodel simulations leading to lower

correlations (Fig. 11). In summary, in the analysis of

correlations over 5-yr window, variability in ENSO by

far dominates the potential fingerprint due to a change

in the ocean observing system.

FIG. 13. (a) Time series of surface zonal wind stress anomaly (unit: 1023Nm22, red: CFS,

blue: GODAS), and depth–time diagrams of subsurface ocean temperature anomalies at

(1508W, equator) from (b) the ensemble mean of the CFS simulations and (c) GODAS.
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5. Summary and discussion

The focus of the analysis was to explore the question

to what extent specification of SSTs in equatorial lati-

tudes, particularly in the Pacific, can replicate the ob-

served subsurface ocean temperature variability. The

physical argument for such a possibility to exist is that

SSTs, via coupled air–sea interaction, may lead to rea-

sonable variations in surface winds and subsequent ad-

justment in the subsurface ocean state.

The results indicate that indeed the specification of

SSTs, via coupled air–sea interaction, is able to generate

subsurface ocean temperature variability. This is par-

ticularly true in the equatorial Pacific for ocean vari-

ability, and for variability associated with ENSO. To

impress this fact further, Fig. 15 shows two leading

modes of heat content variability in the upper 300m of

the oceans (referred to as HC300), and the corre-

sponding time series are shown in Fig. 16. For model

simulations EOFs are computed for each run separately

and then averaged.

The first two leading modes of HC300 are associated

with ENSO variability in the tropical Pacific with the

first mode representing the east–west tilt in thermocline

while the second mode is associated with the changes in

the warm water volume (WWV) linked to recharge–

discharge of equatorial heat content as dynamical re-

sponse to changes in equatorial thermocline. The

observed spatial structure of twomodes of HC300 is well

captured in model simulations. The time series (Fig. 16)

comparison also shows that model simulations can well

replicate the observed evolution. Discrepancy at the start

of the time series in 1981 is because of initial spinup to-

ward the model climatology when no subsurface ocean

data are assimilated. This large spinup time, that even for

the upper ocean exceeds a couple of years, should be

considered in climate reanalysis systems that are run in

multiple streams with an overlap to minimize disconti-

nuities in the ocean analysis across different streams (Xue

et al. 2012). In Fig. 16 for the time series of EOFs, one can

also discern a phase delay of 1–2 months in the HC300

variability for the model simulations indicating the

FIG. 14. (a) Time series of surface zonal wind stress anomaly (unit: 1023Nm22, red: CFS,

blue: GODAS), and depth–time diagrams of subsurface ocean temperature anomalies at

(908W, equator) from (b) the ensemble mean of the CFS simulations and (c) GODAS.
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possible influence of high-frequency atmospheric var-

iability that cannot be captured in SST assimilation

experiments alone. In summary, specification of SSTs

alone in model simulations is able to capture the sub-

surface variability in ocean temperatures associated

with ENSO, and may explain the success of ENSO

prediction systems initialized with nudging the coupled

model to observed SSTs.

In the context of the ocean observing system, and

assuming GODAS ocean analysis to be the truth, the

results have implications for the need for the ocean

observing system to constrain analyzed ocean states. For

example, in the tropical Pacific, the requirement for the

ocean observing system may be much stronger in the

eastern Pacific than in the central Pacific. This require-

ment, however, when evaluated in the context of skillful

ENSO prediction may have a different perspective. For

ENSO prediction thermocline variations in the central

Pacific are of foremost importance and contain the

ENSOmemory. Therefore, even if the observing system

in the eastern Pacific may add to the accuracy of ocean

conditions, it may not add to the skill of ENSO predic-

tion. Demonstrating some of these caveats will require

a controlled set of forecast experiments (Keenlyside

et al. 2005; Zhu et al. 2012), where ocean initial condi-

tions are obtained either from the SST-based ocean as-

similation state or from the GODAS, and the skill of

ENSO prediction is evaluated.

Regarding the ENSO prediction problem and the

requirements for the observing system, the analysis also

raises some intriguing questions. The model simulations

with the specification of SSTs clearly indicate that

ENSO-related variability in subsurface ocean tempera-

ture can be well replicated. The reason for this is strong

air–sea coupling, which is also the basis for prediction

skill of ENSO.Although not analyzed, it is likely that for

the SST-forced assimilation even if the statistics of high-

frequency events may be predictable (Luo et al. 2005), it

is unlikely that the timing of such event can be predicted

with long leads, and therefore, the SST assimilation run

FIG. 15. Spatial patterns of the first two EOFs of the 300-m heat content in (a),(c) CFS and

(b),(d) GODAS. The EOF analysis is performed in the domain of (108S–108N, 1208E–808W).

Maps are shown in correlations between 300-m heat content and the corresponding PC time

series. For CFS, the correlations are first calculated for the nine individual members, and then

averaged over the nine members. The percent of the total variance explained by each EOF is

listed at the top of each panel.
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cannot resolve ocean response to high-frequency ocean

variability related to the atmospheric internal variability—

the Madden–Julian oscillation (MJO), westerly wind

bursts, etc. These events, which are rarely predictable

beyond couple of weeks, can have strong implications

for the timing of initiation and termination of ENSO

events and its amplitude (e.g., McPhaden 1999). These

phenomena related to atmospheric internal variability,

therefore, impart an unpredictable component to the

long lead prediction of ENSO (Wang et al. 2011), and

impose limits on the longer lead predictability of the

timing and amplitude of ENSO.
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