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The inherent vulnerability of ecological communities to global warm-
ing, and therefore the magnitude of associated biodiversity change, is 
considered a function of exposure and sensitivity to warming, cou-
pled with species’ adaptive capacity1–3. Geographic models of future 
biodiversity change generally accommodate the magnitude, direction 
and distribution of temperature change4–8, but have limited ability to 
account for the sensitivity of communities to change. Our understand-
ing of sensitivity to warming has been largely based on results of com-
parative studies of species physiological tolerances and other life-history 
traits, often with extension from the laboratory to the field9–12.  
Extrapolation to whole ecological communities and large geographic 
scales, does, however, introduce substantial uncertainty, yet these are 
the scales critical for understanding natural ecosystem functioning13, 
on which the well-being of human society depends.

The few studies that have considered community-level sensitivity to 
warming3,7,14 have not accounted for geographic patterns in species dis-
tributions, inherently assuming that communities comprise balanced 
mixes of relatively warm-affinity and cool-affinity species, and with 
no spatial trends or regional consistency in any deviation from this. 
Regional variation in species composition may be influenced by numer-
ous historical, ecological and phylogenetic factors that could potentially 
result in thermal bias of communities in relation to local environmental 
temperatures, with important implications for community-level sensi-
tivity to warming. If, for instance, most species have a warmer affinity 
than the mean local temperature, then the local community may have 
little intrinsic sensitivity to negative change with warming. In this case, 
proxies previously used for inferring sensitivity, such as habitat type 
or integrity3, may provide limited predictive insight. Quantifying the 
direction and magnitude of community thermal bias is therefore an 
important step in improving our understanding of the sensitivity of 
ecological communities to structural reorganization with warming, and 
providing a more direct means to account for sensitivity in predictions 
of vulnerability.

Thermal biogeography
The community temperature index (CTI) is a measure (a community- 
weighted mean) of the average thermal affinity of ecological  

communities, and has recently been used to quantify warming in 
birds15,16, butterflies17 and fishes18, and global commercial fisheries 
catches19. Here we use the CTI of shallow-water marine fishes and 
invertebrates to test for thermal bias in the global distribution of 
marine communities in relation to local environmental temperatures.

We constructed geographic and thermal distributions for 2,695 reef 
fish and 1,225 mobile macroinvertebrate species using occurrence 
records from two of the world’s most comprehensive databases for  
shallow-water marine species (Global Biodiversity Information Facility, 
http://www.gbif.org, and Reef Life Survey20,21, http://www.reeflifesurvey. 
com), combined with remotely sensed long-term mean sea surface 
temperature (SST)22. We used the midpoint of the realized thermal 
distribution as a measure of the central thermal tendency for each 
species, or thermal affinity. On average, this aligns with the tempera-
ture at which species occur at their maximum abundance in the field 
(see Methods), and is therefore a good proxy for the temperature of a  
species’ maximum ecological success.

We then compiled the first global-scale data set of abun-
dance-weighted CTI values from systematic quantitative sampling, 
using abundance data for all fish and invertebrate species recorded 
on standardized visual censuses at 2,447 sites by the Reef Life Survey 
(RLS) program (see Methods; Extended Data Fig. 1). This approach 
thus incorporates patterns in species’ dominance related to thermal 
affinity.

A nonlinear global pattern is evident in CTI values, with relatively 
little change with increasing temperature in tropical and temperate 
regions, and a rapid increase in subtropical regions creating a distinct 
step (Fig. 1 and Extended Data Fig. 2a, b). This pattern is consistent 
between fishes and invertebrates (Pearson correlation = 0.98; n = 2,383; 
P < 0.01) and is the same when CTI is calculated without weighting by 
abundance (that is, using presence data; Extended Data Fig. 2c, d). A 
direct result of this nonlinearity in global CTI is that the majority of 
locations are characterized by marine communities with either higher 
or lower CTI than would be expected from local SST (Extended Data 
Fig. 3). Thermal bias is ubiquitous among these communities, which 
are typically numerically dominated by species with warmer or cooler 
affinity than the local environment.

A critical assumption underlying projections of biodiversity change associated with global warming is that ecological 
communities comprise balanced mixes of warm-affinity and cool-affinity species which, on average, approximate local 
environmental temperatures. Nevertheless, here we find that most shallow water marine species occupy broad thermal 
distributions that are aggregated in either temperate or tropical realms. These distributional trends result in ocean-
scale spatial thermal biases, where communities are dominated by species with warmer or cooler affinity than local 
environmental temperatures. We use community-level thermal deviations from local temperatures as a form of sensitivity 
to warming, and combine these with projected ocean warming data to predict warming-related loss of species from 
present-day communities over the next century. Large changes in local species composition appear likely, and proximity 
to thermal limits, as inferred from present-day species’ distributional ranges, outweighs spatial variation in warming 
rates in contributing to predicted rates of local species loss.
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The proximate cause of large-scale patterns of thermal bias is that 
marine species distributions do not follow the monotonic latitudinal 
and temperature gradients observed in species richness23,24. Instead, we 
find that the majority of species studied have ranges centred in either 
temperate or tropical zones (Extended Data Fig. 4), and consequently 
show a corresponding multimodal distribution of the thermal affinities 
(that is, thermal guilds; Fig. 2). This trend is consistent when consid-
ered for different ocean basins and biogeographic regions. Additional to 
the major temperate/tropical dichotomy, the invertebrate data suggest 
the presence of a third, subpolar thermal guild (Fig. 2b).

Thermal guilds align with the theory that temperature can be con-
sidered as an ecological resource in freshwater fishes25, and can be 
distinguished within other independent data sets of marine species 
(see Supplementary Information). The findings of globally coherent 
thermal guilds is not the result of spatial sampling structure of the 
data, such as a consequence of relatively few surveys in the subtropics;  
a latitudinal transect along the well-surveyed north–south trending 
eastern Australian seaboard clearly distinguishes tropical from temper-
ate faunas along the full cline (Extended Data Fig. 5). There are several 
potential, non-mutually exclusive mechanisms that may explain these 
findings: (1) fewer shallow-water species may have ranges centred in 
subtropical ocean climates as a result of less continental shelf area at 
subtropical latitudes globally26; (2) historical biogeographic processes 
could be implied for the Australian fauna, through mixing of trop-
ical Pacific/southeast Asian and temperate Australian faunas as the 
Australian continental plate drifted north, with species conserving 
thermal preferences (that is, phylogenetic inertia27); (3) tropical cen-
tres of speciation and subsequent colonization of temperate regions 
through ‘bridge species’ may have occurred (the ‘out of the tropics’ 
hypothesis26), and is supported by the distributions of thermal affinities 
of species in large families of fishes that span temperate and tropical 
zones (Extended Data Fig. 6); (4) there could be adaptive advantages 
associated with specialization for either warm or cool temperature 
ranges, with trade-offs in metabolic processes reducing widespread 
adaptation to intermediate temperatures.

Regardless of the ultimate drivers, the existence of consistent thermal 
guilds and associated global-scale patterns of thermal bias has impli-
cations for whether the net community response to warming is more 
likely to be positive or negative (in terms of abundance changes). It also 
raises the possibility that communities in some locations may be more 
vulnerable to losing species than in other locations, simply on the basis 
of the direction and magnitude of the bias in the thermal distributions 
of the species present.

Vulnerability of marine communities to warming
Most previous biodiversity vulnerability analyses have focused on 
species, and their ability to change their geographic distribution or 
adapt to avoid global extinction10,28. Here we quantitatively assess the  

vulnerability of whole communities—groups of species that are cur-
rently recorded as co-occurring and interacting at an ecologically rel-
evant scale. A local ecological community is considered vulnerable if it 
is likely to lose many of its constituent species. This may not translate 
to reductions in overall species richness (although see below), but does 
reflect a relative vulnerability to change in community structure and 
ecosystem functioning, and contrasts with desirable management goals 
of resilience or stability in the face of warming29.

Over decadal scales, positive thermal bias of the magnitude observed 
for some locations in this study (for example, where the mean thermal 
affinity of the community is 3 °C greater than local mean SST) is much 
greater than predicted ocean warming rates of <0.4 °C per decade, and 
may translate to low probabilities of species loss as a result of warming, 
or relatively low community sensitivity to negative change. Most species 
in such locations are also found in other warmer locations, and so are 
unlikely to be negatively affected by warming. However, the likelihood 
of local loss of species on the basis of increasing temperature will be 
more dependent on how close each of the species is and becomes, at 
that location, to the maximum of its thermal distribution, rather than 
from the midpoint (as used to define thermal bias in our thermal bio-
geographic analysis). To account for this, we recalculated CTI using 
the 95th percentile of species’ thermal distributions as a measure of 
contemporary realized upper thermal limits (CTImax). Realized upper 
limits will be lower than fundamental limits based on physiological tol-
erances, but arguably better reflect real-world limits, where species not 
only need to survive physiologically, but also persist in a competitive 
and predatory environment.

For calculation of CTImax to estimate species loss with warming, we 
used presence rather than abundance data and combined RLS sur-
vey data for fishes and invertebrates, thereby covering the majority of 
macroscopic mobile fauna (>2.5 cm) on rocky and coral reefs at sites 
investigated. We re-calculated thermal bias (TBiasmax) as the difference 
between CTImax and mean summer temperatures (mean SST from the  
8 warmest weeks annually from 2008–2014 (ref. 30)). This can be con-
sidered a form of ‘distribution safety margin’27, and shows a similar 
global pattern to that shown in our thermal biogeographic analysis 
(Extended Data Fig. 7), with CTImax and CTI very closely related 
(Pearson correlation = 0.96; n = 2,089; P < 0.01).

CTImax also shows a stepped relationship with summer SST 
(Extended Data Fig. 8), reflecting some consistencies among species’ 
realized upper thermal limits within tropical and temperate regions at 
the global scale. For example, CTImax remains between 22 °C and 24 °C 
across most sites with summer temperatures ranging from 14 °C to 
24 °C, implying that the average species is living closer to their warmest 
distributional margin at locations with summer temperatures around 
approximately 24 °C than at locations which experience summer 
temperatures around approximately 14 °C. TBiasmax is consequently 
more positive for the latter, although sites dominated by species in the 
tropical thermal guild (as identified in Figs 1 and 2) that experience  
summer temperatures around approximately 24 °C (that is, on the 
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Figure 1 | Global community temperature index values for reef fishes 
and invertebrates against mean annual sea surface temperature.  
a, b, Tropical and temperate communities are separated by subtropical 
transitions in which communities largely comprise a mixture of temperate 
and tropical species. A line with a slope of one is plotted for reference. 
n = 2,175 and n = 1,901 sites for fishes and invertebrates, respectively, after 
exclusion of sites with confidence scores <2.5 (see Methods).
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Figure 2 | Frequency distributions of fish and invertebrate species 
according to their thermal distribution midpoint show modes of 
temperature affinity or tropical (red), temperate (blue) and subpolar 
(white) thermal guilds. a, b, Species for which confidence in thermal 
midpoints was low are excluded (see Methods).
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upper line in Extended Data Fig. 8) also have high TBiasmax and 
inferred low sensitivity.

Although TBiasmax can be considered a form of community-level 
sensitivity, it does not account for warming rates, another important 
component of vulnerability1,2. To explicitly account for spatial patterns 
in warming rates and provide quantitative vulnerability predictions for 
marine communities, we further calculated the proportion of species 
in the community that would exceed the upper limit of their realized 
temperature distribution in 10 and 100 years from the present. These 
are based on each species’ contemporary upper thermal limits, recent 
summer temperatures, and the rate of warming expected at each site 
(based on ensemble averages from all climate models included in the 
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 
Report (AR5) for sea surface temperature anomaly under the RCP8.5 
scenario predicted for 2050–2099; http://www.esrl.noaa.gov/psd/ipcc/).

A total of 6 (out of 75) ecoregions included in the analysis were 
identified in which the mean summer sea temperature is expected 
to exceed the upper thermal limit of more than 50% of the recorded 
species by 2025 (Fig. 3a, b). Confidence scores for CTImax values are 
low for a number of sites in three of these ecoregions on the basis 
of less comprehensive sampling of species thermal distributions (see 
Methods and Extended Data Table 1), but were high for sites in the 
Gulf of Thailand, southwestern Caribbean and Three Kings-North 
Cape (New Zealand). Longer-term predictions are more extreme, 
with 100% of the present-day community composition apparently 
likely to exceed upper thermal limits in approximately one-third of 
surveyed ecoregions by 2115 (Fig. 3c, d). These are distributed in all 
ocean basins across the tropics, but also in some temperate areas such 
as the Great Australian Bight.

Locations of greatest predicted species loss do not closely align to 
locations of greatest warming, but instead correspond closely to the 
magnitude of thermal bias (measured as TBiasmax; Fig. 3b, d; GAMM 

results in Extended Data Table 2). This result is robust to the warming 
data used (see Supplementary Information), and shows that sensitivity 
associated with community thermal bias is an important component of 
vulnerability. Our results further indicate that exposure, and variability 
in warming rate predictions, may be considerably less important than 
previously suggested1 when it comes to local loss of marine species 
over the next century. Predicted species loss at locations with lower 
thermal bias is considerably greater than at locations with higher ther-
mal bias, despite some of the world’s most rapidly warming regions 
occurring within the latter. The western Mediterranean, for example, 
is predicted to warm by 0.24–0.29 °C per decade (depending on pre-
dictions used), but typical marine communities there consist of species 
with contemporary upper limits well above local summer SST (mean 
TBiasmax = 6.3 °C ± 1.1 s.d.).

Our predictions do not account for local influx of warmer affinity 
species, and do not comprise the only form of community-level vul-
nerability to warming. Rather, they describe effects of an additional 
component of ecological vulnerability. Species influx and warming- 
associated changes in species abundances will also contribute to local 
ecological change and are already occurring in the most rapidly warm-
ing areas that are well-connected to rich tropical faunas, such as south-
eastern Australia12. An influx of warm-affinity species may replace lost 
species or lead to accumulating richness in some regions, and probably 
have dramatic impacts on ecological processes6,31. Local species loss 
through extinction or range contraction will represent the main form 
of community change probable for low-latitude regions for which no 
pool of warmer affinity species exists11,32, however, and so our predic-
tions probably cover the major changes in composition expected in 
these regions.

A key assumption for our vulnerability analysis is that local extinc-
tion becomes more probable when a site becomes warmer than the 
typical maximum temperature at which a species has previously been 
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Figure 3 | Vulnerability of marine communities to warming-related 
local species loss. a–d, Proportion of fish and invertebrate species in 
present-day communities likely to exceed their upper realized thermal 
limit by 2025 (a) and 2115 (c) based on regional IPCC warming rates 
(RCP8.5 scenario), and in relation to the magnitude of community 

thermal bias (measured as TBiasmax; b, d). Fitted curves (solid black line) 
and 95% confidence intervals (dotted black lines) are from GAMM models 
(Extended Data Table 2). Sites with confidence scores <2.5 were excluded 
from most ecoregion43 means (see Extended Data Table 1 for sample sizes 
and details of exclusions).
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observed. This assumption relies on the interactive mechanisms which 
presently set boundaries on species’ ranges remaining consistent, such 
as thermally driven performance reduction33,34 and increased suscep-
tibility to competition and predation18,35. This is unlikely to be true 
for all species, especially narrow-range endemics which are probably 
limited in distribution by factors other than temperature12. Regardless, 
we consider this generalization reasonable given the well-connected 
nature of the marine environment, typically with large geographic 
ranges36, and often closely matching fundamental (assessed in labora-
tory experiments) and realized (field-derived from distribution data) 
thermal niches37, as well as implications associated with lower concen-
trations of dissolved oxygen in the marine environment with increasing 
temperature38.

Our vulnerability predictions also do not account for ecological 
change resulting from extreme events, which will change biodiversity 
in spatially variable and largely unpredictable ways. This is particu-
larly true for indirect effects of extreme events, such as through habitat 
change, which place critical pressures on biodiversity39, and represent 
an important direction for future research.

Additional caveats associated with assessing vulnerability in terms 
of local loss of species from present-day communities include: (1) the 
upper thermal limits for many tropical marine species could exceed 
contemporary ocean temperature maxima, and (2) adjustment and 
thermal adaptation could reduce species loss from that predicted. The 
former does not affect results for temperate regions, but could lead to 
lower vulnerability than predicted for tropical regions, despite results 
of laboratory experiments that have applied greater temperatures than 
contemporary SST, suggesting that maximum thermal tolerance levels 
are more constrained for tropical than temperate species11,27,40. Because 
of these caveats, we emphasize that absolute values presented in  
Fig. 3 should be considered as a ‘worst case scenario’ and interpreted 
with caution. Nevertheless, relative differences in the magnitude of pre-
dicted change between regions and times should be robust, other than 
perhaps overestimation of site-scale species loss at the lowest latitudes 
relative to cooler climes. Most importantly, the strength of empirical 
trends indicates that thermal bias is a fundamental element affecting 
global variability in future biodiversity change.

Tracking and managing warming impacts on 
biodiversity
In contrast to prior global studies of potential biodiversity losses associ-
ated with climate change, which typically consider loss of species from 
their full distribution or use regional species lists inferred from range 
maps, our study focused on probabilities of local-scale losses from 
assemblages of interacting species. These will be much more perva-
sive than cases of global extinction, and have important consequences 
with respect to the way ecosystems currently function. We identify a 
substantial pressure of warming through the future, with an alarmingly 
large proportion of species predicted to exceed current realized thermal 
limits based on current distribution patterns.

Our results imply that locations at which the average summer SST 
is presently approximately 24 °C are most vulnerable to community 
change in general. This temperature corresponds to the upper realized 
thermal limit of many temperate species, and consequently a ceiling 
on CTImax for most temperate communities. For locations with con-
nections to tropical faunas, it is also where the influx from the large 
pool of tropical species is going to be greatest. By contrast, the warmest 
tropical locations are likely to suffer from local loss of species with little 
replacement, a result consistent among other studies relating biodiver-
sity change to global variation in predicted ocean climate velocity4,6.

Management options for decreasing local marine species losses 
resulting from warming are limited; nevertheless, reducing the effects 
of other threats such as pollution, invasive species, and excessive extrac-
tion of living resources, will probably provide the best opportunities 
for prolonging persistence of species at the warm end of their range. 
Although some local losses of species appears inevitable, management 

can bolster community resilience to ocean warming through strate-
gies to reduce influx of warm-affinity species at those regions where 
accumulation is predicted. Actions to support more intact naturally 
functioning communities are recommended, including implementa-
tion of marine protected areas (MPAs) and more conservative fisheries 
management. Recent evidence from an effective temperate MPA sug-
gests that local predators hinder poleward progression of warm-affinity  
species18, and invasion theory more generally predicts intact and 
diverse natural communities possess greater resistance to invasive 
species than degraded communities41.

Abundance-weighted CTI, as used in our thermal biogeographic 
analysis, offers an important tool for measuring the success of such 
management actions, as it integrates signals from local species gains 
and losses, and also abundance shifts related to temperature. The 
CTI provides a powerful metric for tracking long-term biodiversity 
change in relation to warming over larger scales15, and for informing 
the wider public of the magnitude of warming impacts on biodiversity. 
It can thus fill a critical gap in the indicator suite used for assessing 
progress towards international targets agreed under the Convention 
on Biological Diversity (CBD). However, we must consider for such 
application that the magnitude of CTI change will be nonlinear across  
latitude, with reduced scope for change in tropical regions. The CTI 
offers an important opportunity to extend emphasis from charts 
or maps of pressures, such as atmospheric CO2 concentrations and 
ocean heat content42, towards measures of biodiversity change, thereby  
providing a better understanding of real-life consequences of ocean 
warming for effective long-term change in policy and human behaviour.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Reef fish and invertebrate data. Standardised quantitative censuses of reef fishes 
and echinoderms (holothurians, echinoids, asteroids, crinoids), molluscs (gastro-
pods, cephalopods), and crustaceans (decapods) were undertaken by trained rec-
reational SCUBA divers along 7,040 transects at 2,447 sites worldwide through the 
Reef Life Survey (RLS) program. Full details of fish census methods are provided 
in refs 20, 21, and an online methods manual (http://www.reeflifesurvey.com) 
describes all data collection methods, including for invertebrates. Data quality and 
training of divers are detailed in ref. 20 and supplementary material in ref. 24. Data 
used in this study are densities of all species recorded per 500 m2 transect area for 
fishes (2 × 250 m2 blocks), and per 100 m2 for invertebrates (2 × 50 m2 blocks). Four 
per cent of all records were not identified to species level (mostly invertebrates) 
and were omitted from analyses for this study.

Data from fish and invertebrate surveys were analysed separately for thermal 
biogeography analyses, but combined for the vulnerability predictions shown in 
Fig. 3. Although collected on the same transect lines, these survey components 
cover different areal extents, and so were combined to represent densities per 
50 m2 (block size for invertebrate surveys). Raw invertebrate data were therefore 
used, but one in five individual fishes were randomly subsampled from those 
surveyed in each 250 m2 block to provide equivalent densities and richness of 
fishes per 50 m2.
Characterization of species’ thermal distributions. A realized thermal dis-
tribution was constructed for all species recorded on RLS transects, based on 
occurrences rather than species distribution models. All individual records within 
the RLS database were combined with all records of these species in the Global 
Biodiversity Information Facility (GBIF: http://www.gbif.org/), after applying 
filters to limit records to depths shallower than 26 m and time of collection since 
2004. This resulted in a data set of 399,927 geo-referenced occurrences of 3,920 
species.

Remotely sensed local SST data were then matched to each occurrence location. 
Long-term mean annual SST values from 2002–2009 from the Bio-ORACLE data 
set22 were used to provide a time-integrated picture of temperatures species were 
typically associated with for the thermal biogeographic analysis. The fifth and 95th 
percentiles of the temperature distribution occupied by each species were then 
calculated, and the midpoint between these used as a measure of central tendency 
of their realized thermal distribution. Midpoints were considered a reasonable 
proxy for the temperature associated with species’ maximum ecological success, 
confirmed by a close alignment of midpoints with the temperatures at which spe-
cies occurred in maximum abundance in the global RLS data set (slope of midpoint 
versus temperature of sites at which species were at maximum abundance = 1.003, 
Pearson correlation = 0.93, P < 0.001). Thus, although interspecific variation is 
expected, deviation in temperatures either side of the midpoint results in reduced 
abundance for the average species.

We also calculated and explored other metrics from the thermal range, includ-
ing the median and mode, but these were more sensitive to the distribution and 
intensity of sampling effort across the temperature range of species, and therefore 
less robust than the midpoints. Fifth and 95th percentiles were deliberately chosen 
as endpoints rather than the maximum and minimum because marine species 
range boundaries are not static, with dynamic tails in distributions44. Sightings of 
individual vagrants are common, sometimes at large distances from the nearest 
viable populations. Furthermore, any misidentification errors would have greatest 
influence if at the edge of species ranges.
Community temperature index calculation and thermal bias. CTI was calcu-
lated separately for fishes and invertebrates for each transect in the RLS database 
as the average of thermal midpoint values for each species recorded, weighted 
by their log(x + 1) abundance. Multiple transects were usually surveyed at each 
site (2.8 transects global mean across sites used in this study). CTI values were 
averaged across these to create a site-level mean that was used for analyses. In 
some cases this averaged out seasonal effects, where sites were surveyed across 
multiple seasons.

Thermal bias was calculated as the difference between the CTI and mean annual 
SST at each site. Mean thermal bias values across sites surveyed in each ecoregion 
are shown in Extended Data Fig. 3, with sample sizes for ecoregions shown in 
Extended Data Table 1.
Confidence scores. The number of occurrence records for each species ranged 
from a single record (numerous species) to 1,009 (the Indo-Pacific cleaner wrasse, 
Labroides dimidiatus), with an overall mean of 36 records (47 for fishes, 16 for 
invertebrates). In order to consider how variation in the comprehensiveness of 
data on the thermal distribution for each species affected the calculation of CTI 
and provide an objective measure of confidence in site-level CTI values, we used 
a semiquantitative confidence scoring system. A confidence value ranging from 
one (very little confidence) to three (high confidence) was allocated to each species 
through a four-step process:

(1) The number of records (sites) for each species was used as a first pass for 
classification, with species observed at 30 or more sites given a value of three, 10–29 
sites a value of two, and less than 10 sites, a value of one.

(2) The thermal range for each species (the difference between 95th and fifth 
percentiles) was used in a second pass for all species that were initially given a value 
of two. For this, those species with a thermal range of less than 3 °C were reduced 
to a value of one, as it is possible these species have not been surveyed across their 
full potential thermal range.

(3) Species with a value of three and a thermal range of less than 1 °C were 
reduced to a two, given these likely represent well-sampled, but range-restricted 
species, and their potential thermal range is likely greater than their realized range 
(which is probably limited by other factors such as dispersal or historical bio-
geography).

(4) The frequency of occurrences across temperatures was also plotted sepa-
rately for each species. Frequency histograms were visually inspected as a last pass, 
and confidence scores reduced by one if the thermal distribution appeared to be 
unduly influenced by widely separated records.

We then recalculated CTI for using confidence scores for each species, weighted 
by their abundance (also log(x + 1) transformed), creating a CTI confidence score 
for each transect and each site. A mean site confidence score of > 2.5 was used as 
a cut-off for many analyses and figures, as indicated in figure captions. Although 
a score of 2.5 can be achieved in many ways, this effectively represents at least 75% 
of the individuals present belonging to species with the maximum confidence 
score of three.
Thermal guilds. Given few truly subtropical species were identified in this study, 
and this outcome could potentially result from bias in the distribution of sam-
pling effort towards areas outside of subtropical locations (see Supplementary 
Information for more detail), we replicated Fig. 2 along a comprehensively  
sampled latitudinal gradient in Australia. The majority of Australian species are 
well-sampled across their geographic distributions and numerous sites have been 
surveyed in subtropical locations in Australia. We divided the RLS data from 968 
sites into 10° latitudinal bands along the east coast of Australia (and Papua New 
Guinea and Solomon Islands) from the equator to 43.7° S, and plotted histograms 
of thermal distribution midpoints of 1,105 species with a confidence of two or 
three (Extended Data Fig. 6). These clearly show very few species with midpoints 
of 23–24 °C, even in the band from 20° S to 30° S where the mean annual SST of 
sites was 23.97 °C. They also show the intrusion of numerous tropical species in 
temperate latitudes, particularly for fishes.
Vulnerability predictions. Vulnerability predictions required characterization 
of the warmest temperatures experienced by species across their range. We re- 
constructed the thermal distributions for each species using the maximum of the 
weekly mean SST from all occurrence sites over the 12 weeks before the sampling 
date, obtaining the 95th percentile of these. We then calculated the difference 
between this value and the mean of summer temperatures (the mean of the warm-
est 8 weeks was taken for each year between 2008 and 2014, with the mean of these 
used). This is analogous to a form of thermal safety margin, although in this case 
it does not mean a species cannot survive if the summer SST exceeds the 95th 
percentile, but rather that it has been recorded at very few sites in the combined 
RLS and GBIF databases at times in which the temperatures exceeded this value.

We re-calculated this value for 10 years and 100 years from present, using rates 
of SST warming projected by coupled climate models’ CMIP5 PCP8.5 scenario, 
calculated and freely provided by the NOAA Ocean Climate Change Web Portal 
(http://www.esrl.noaa.gov/psd/ipcc/ocn/). Sea surface temperature anomaly  
(difference in the mean climate in the future time period, 2050–2099, compared 
to the historical reference period, 1956–2005) was selected as the statistic repre-
senting the average of 25 models, interpolated to a 1° latitude by 1° longitude grid 
and matched to each RLS site. Summer SST was predicted for each RLS site for 
10 and 100 year time periods using these values. Vulnerability was then estimated 
as the proportion of all species (fishes and invertebrates) recorded on each RLS 
survey that is expected to exceed the 95th percentile, based on the predicted SST 
at that site. This component of analyses did not incorporate abundance data, as 
the goal was to assess local species loss, rather than loss of individuals. Weighting 
by abundance had little influence on conclusions, however.

Confidence scores were also recalculated without abundance (and thus repre-
sent the mean confidence of species present), and sites with confidence scores < 2.5 
were excluded from calculation of ecoregion means for all ecoregions with three 
or more sites with confidence >2.5. Twenty-one of 81 ecoregions had fewer than 
three sites with confidence >2.5 with which to calculate means, so low confidence 
sites were included in means for these ecoregions. The effect of this is conserva-
tive, theoretically reducing thermal bias (see Supplementary Information), but the 
rationale was that ecoregion means would be more accurate through their inclusion 
than if heavily weighted by few sites. To provide an additional cut-off for ecoregions 
in which the overall mean confidence was still low, we excluded ecoregions with 
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mean confidence <1.75. This resulted in the exclusion of six ecoregions (North 
and East Barents Sea, Oyashio Current, Agulhas Bank, Sea of Japan/East Sea, Gulf 
of Maine/Bay of Fundy, Malvinas/Falklands).

To explore the contributions of warming rates and thermal bias to vulner-
ability predictions, we also recalculated CTI as the mean 95th percentiles of 
fish and invertebrate species recorded on transects (CTImax) and thermal bias 
(TBiasmax) as the difference between site-level CTImax and mean summer SST. 
TBiasmax can therefore be considered the sensitivity component of the vulner-
ability predictions, based on recent mean summer SST and not accounting for 
warming rates (exposure). We applied GAMMs to assess vulnerability scores as 
a function of TBiasmax and warming rates, with ecoregion as a random factor 
(Extended Data Table 2).

Conclusions are robust to the warming data used, with qualitatively similar 
results using historical warming data from another source8, instead of future predic-
tions (site warming rates in °C per decade taken from http://www.coastalwarming. 
com/data.html), and ecoregion mean vulnerability scores changing very little when 
the 99th percentile of species’ thermal distributions were used instead of the 95th 
percentile, even for 2115 predictions (Pearson correlation = 0.97, P < 0.01).
Data reporting. No statistical methods were used to predetermine sample size. 
The investigators were not blinded to allocation during experiments and outcome 
assessment.

44. Bates, A. E. et al. Distinguishing geographical range shifts from artefacts of 
detectability and sampling effort. Divers. Distrib. 21, 13–22 (2015).

http://www.coastalwarming.com/data.html
http://www.coastalwarming.com/data.html
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Extended Data Figure 1 | Sites used in analyses at which fish and invertebrate communities were surveyed by the Reef Life Survey program. 
Numerous points are overlapping and hidden (n = 2,447). Ecoregion boundaries are shown in grey lines.
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Extended Data Figure 2 | Community temperature index values 
for reef fishes and invertebrates against mean annual sea surface 
temperature. a–d, CTI calculated using abundance-weighted fish (a) and 
invertebrate (b) data, and including sites at which mean CTI confidence 
scores were less than 2.5 (n = 2,447 and 2,383 for fishes and invertebrates, 
respectively). Sites are colour-coded by ecoregion to help distinguish 

spatial patterns, but as a result of numerous ecoregions (n = 81), many 
ecoregion colours are similar. CTI calculated using presence-only fish (c) 
and invertebrate (d) data, and excluding sites with confidence scores <2.5 
(n = 2,188 and 1,812 for fishes and invertebrates, respectively). Dotted 
lines have a slope of one, plotted for comparison with data.
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Extended Data Figure 3 | Global distribution of reef fish and 
invertebrate community thermal bias. a, b, Community thermal bias 
(°C) is the difference in abundance-weighted CTI from local long-term 
mean annual sea surface temperature. Positive regions (warm colours) 
encompass ecological communities with a predominance of individuals 

with warmer thermal affinity than mean local sea temperatures. Colours 
are scaled to the mean thermal bias of sites surveyed within each ecoregion 
(see Extended Data Table 1 for sample sizes). Only ecoregions with sites 
that were surveyed are included.
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Extended Data Figure 4 | Frequency distribution of fish and invertebrate species’ latitudinal range midpoints. a, b, Species for which confidence in 
thermal distribution midpoints (and therefore geographical distribution midpoints) was low are excluded (see Methods).
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Extended Data Figure 5 | Frequency distribution of fish (left) and invertebrate (right) species’ thermal distribution midpoints in 10° latitudinal 
bands from Papua New Guinea and down eastern Australia (rows). a–j, Note y axes are on different scales and only species with confidence scores of 
two and three are included (see Methods).
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Extended Data Figure 6 | Frequency distribution of thermal distribution midpoints of species in major fish families spanning temperate and 
tropical zones. Note y axes are on different scales and only species with confidence scores of two and three are included.
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Extended Data Figure 7 | Global distribution of TBiasmax of reef faunal 
communities. TBiasmax is calculated as the difference between CTImax 
(using the 95th percentiles of species’ thermal distributions and presence 
data) and mean summer SST. Colours are scaled to the mean TBiasmax 

of sites surveyed within each ecoregion (see Extended Data Table 1 
for sample sizes). Only ecoregions in which quantitative surveys were 
undertaken are included.
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Extended Data Figure 8 | The CTImax (mean 95th percentile of species 
thermal distributions) for reef faunal communities across temperate 
(blue), tropical (red) and subtropical (grey) sites. SST data are means 
of the warmest 8 weeks of the year over the survey period (2008–2014). 
Points represent the surveyed community of fishes and invertebrates 
at each site (n = 2,091, only confidence scores >2.5). Regression lines 
are fitted to the maximum values within each ecoregion, with separate 
regressions fitted for sites categorised from Fig. 1 as temperate, tropical 
and subtropical.
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extended data table 1 |  ecoregion means, sample sizes and vulnerability predictions

The number of sites used in figures is the number of sites with confidence > 2.5, with number of sites with confidence <2.5 shown in brackets. An asterisk indicates that sites with confidence <2.5 were 
included in calculations of ecoregion means. Group identifies whether fauna surveyed at sites within the ecoregion can be classified as temperate (TE), tropical (TR), subtropical (ST), subpolar (SP), and 
temperate-subpolar transition (TE-SP) on the basis of CTI.
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extended data table 2 |  GAMM results

Results for Fig. 3b and d. Proportion of species loss predicted by 2025 and 2115 as a function of warming rate and TBiasmax. n = 2,091.
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