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Abstract

Accurate predictions of extreme events are of critical importance for avoiding hu-
man losses and economic damages. Over the last decades, the conviction that
forecasts should be probabilistic in nature has gained ground. To assess forecast
quality, theoretically justifiable evaluation procedures for the verification of prob-
abilistic forecasts for extreme events thus have to be developed. Despite the large
variety of verification methods for general probabilistic forecasts, there is a no-
table lack of evaluation procedures tailored to extreme events. In many contexts,
particularly in the public and media, forecast evaluation takes place by restricting
the standard evaluation procedures to subsets of extreme events. However, we
demonstrate that conditioning the observation on being an extreme event leads
to the use of improper verification procedures that may discredit even the most
skillful forecasters. Recently, two novel approaches to the forecast verification
for extreme events have been proposed in the economic literature using weighted
scoring rules that emphasize specific regions of interest. We develop a general
framework for forecast evaluation and analyze these approaches within this frame-
work using a simulation study and a data example. Furthermore, a new approach
to forecast evaluation conditional on extreme ensemble predictions and a simple
regime-switching forecasting procedure for wind speed are proposed.

Zusammenfassung

Genaue Vorhersagen von Extremereignissen sind aufgrund deren gravierenden Aus-
wirkungen von außerordentlicher Wichtigkeit. In den letzten Jahrzehnten hat sich
in vielen wissenschaftlichen Disziplinen die Überzeugung durchgesetzt, dass Vor-
hersagen probabilistisch sein sollten. Zur Bewertung der Vorhersagequalität sind
somit Verifikationsmethoden für probabilistische Vorhersagen von Extremereignis-
sen notwendig. Trotz der Vielfalt entsprechender Methoden zur allgemeinen Be-
wertung probabilistischer Vorhersagen kann ein deutlicher Mangel an solchen Ve-
rifikationsmethoden für Extremereignisse festgestellt werden. Insbesondere in den
Medien findet die Bewertung von Vorhersagesystemen oft ausschließlich beschränkt
auf Extremereignisse statt. Es kann jedoch gezeigt werden, dass dieses Bedingen
auf Extremereignisse zu ungeeigneten Verifikationsmethoden führt, welche selbst
die leistungsfähigsten Vorhersagesysteme diskreditieren. In einem allgemeinen ma-
thematischen Rahmen für die Theorie probabilistischer Vorhersagen werden zwei
neue Ansätze zur Verifikation probabilistischer Vorhersagen für Extremereignis-
se analysiert, welche auf der Anwendung gewichteter Bewertungsregeln beruhen.
Des Weiteren führen wird eine neue Methode zur Bewertung probabilistischer Vor-
hersagen bedingt auf extreme Ensemblevorhersagen eingeführt und ein einfaches
Vorhersagemodell für Windgeschwindigkeit entwickelt, welches Ergebnisse aus der
Extremwerttheorie und aktuelle Vorhersagemodelle für Windgeschwindigkeit kom-
biniert.
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1. Introduction

Extreme events have a major influence on mankind and present society with sig-
nificant challenges. Severe weather and climate events are a great threat and
repeatedly cause human losses and economic damages. For the year 2005, the
Munich Re Foundation estimated economic losses due to weather-related disasters
of about US$ 200 billion, see Dlugolecki (2008) and references therein for details.
Over the last decades, an increase in weather and climate extremes can be observed
(Diaz and Murnane, 2008), for example in storms (Chang and Fu, 2002), flooding
(Milly et al., 2002) or heat waves (Schär et al., 2004). These changes in regional
extreme weather may result from the global climate change in the 20th century
(Beniston et al., 2007).

There is no unique definition of extreme events in the literature, particularly
since the words ”severe”, ”rare” and ”extreme” are often used interchangeably.
Here, we will follow the suggestions of Stephenson (2008) and define extreme events
as extreme values of some (meteorological) variables. Extreme events are generally
rare, i.e. sparse on a temporal and spatial scale, and often severe, i.e. resulting in
large socio-economic losses. In the applications discussed in this thesis, we focus
on extreme weather events. However, the results can be easily extended to other
areas such as climatology or economics.

Weather and climate extremes are an inherent part of nature (Diaz and Murnane,
2008) and cannot be avoided. Therefore, accurate predictions of these events are
of great importance for minimizing damages and human losses. Over the last two
decades, the conviction that forecasts should be probabilistic in nature has gained
ground (Dawid, 1984; Gneiting and Raftery, 2007). Probabilistic forecasts in the
form of predictive densities or cumulative distribution functions are able to pro-
vide information about the forecast uncertainty. This is particularly important for
predictions of extreme events which are usually associated with high uncertainty.
In order to assess the predictive ability and to rank competing forecasting meth-
ods, new evaluation procedures for probabilistic forecasts have been developed.
Probabilistic forecasts should be evaluated following the paradigm of maximizing
the sharpness of the predictive distribution subject to calibration (Gneiting et al.,
2007).

In general, the meteorological and the economic literature provide a variety of
theoretically justifiable methods to evaluate probabilistic forecasts (Jolliffe and
Stephenson, 2003; Gneiting et al., 2007). However, there is a notable lack of such
methods for the evaluation of probabilistic forecasts for extreme events. The thesis
at hand addresses this problem.

A natural approach for the evaluation of probabilistic forecasts for extreme events
is to select extreme events while discarding non-extreme events, and to proceed
with the evaluation using standard evaluation procedures. Intuitively, accurate
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predictions of extreme events seem to suggest superior predictive performance.
However, it can be shown that this approach is bound to discredit even the most
skillful forecasters (Gneiting and Ranjan, 2011b). This critical issue will be referred
to as the forecaster’s dilemma.

Note that this conditioning on extreme events is exactly what happens in the
public and in the media, where the attention is often only focused on the perfor-
mance of forecasters in case of extreme events. Therefore, skillful and calibrated
forecasters are bound to fail in the public eye. Table 1.1 presents recent examples
from renowned German and international newspapers and broadcasting corpora-
tions which demonstrate this focus on extreme events in various fields. Striking ex-
amples are the international financial crisis of 2007/8 and the L’Aquila earthquake
of 2009. After the financial crisis, lots of attention was paid to those economists
who correctly predicted the crisis, and a superior predictive ability was attributed
to them. In 2011, against the protest of thousands of scientists around the world,
a group of Italian seismologists was put on trial for not warning the public of the
L’Aquila earthquake of 2009 which caused 309 deaths. For details, see Hall (2011).

With the observed forecaster’s dilemma in mind, new verification procedures
for probabilistic forecasts for extreme events have to be developed. Recently, two
methods have been proposed in the economic literature using weighted scoring
rules that emphasize specific regions of interest, such as extreme events in the
right tail of the distributions (Gneiting and Ranjan, 2011b; Diks et al., 2011). The
purpose of this thesis is to embed the forecaster’s dilemma in a broader general
framework for the verification of probabilistic forecasts and to analyze these novel
approaches to forecast evaluation for extreme events. We will demonstrate that the
conditioning on extreme events leads to improper evaluation procedures and we
will compare the approaches to forecast evaluation for extreme events by Gneiting
and Ranjan (2011b) and Diks et al. (2011) using a simulation study and a data
example.

In many meteorological applications, the evaluation of probabilistic forecasts
conditional on extreme ensemble predictions might be of interest. We will demon-
strate that unlike conditioning on extreme observations, this does not result in the
use of improper verification procedures. Furthermore, we will propose a simple
regime-switching approach to probabilistic wind speed forecasting dependent on
extreme ensemble predictions which is able to significantly improve the predictions
of state-of-the-art ensemble postprocessing techniques.

The remainder of this thesis is organized as follows. Chapter 2 introduces a
general framework for the evaluation of probabilistic forecasts and discusses the
forecaster’s dilemma within this framework. Evaluation procedures for probabilis-
tic forecasts are introduced and extended to verification procedures for probabilistic
forecasts of extreme events. The simulation study discussed in Chapter 3 illustrates
the theoretical results and is used to closely compare the approaches to forecast
verification for extreme events by Gneiting and Ranjan (2011b) and Diks et al.
(2011). Chapter 4 analyzes the forecaster’s dilemma in a real-world data example
of probabilistic wind gust forecasts over the North-American Pacific Northwest.
Furthermore, a new approach to forecast evaluation conditional on extreme en-
semble predictions and a simple regime-switching forecasting procedure for wind
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Table 1.1.: Newspaper articles illustrating the public and media attention focusing
on the performance evaluation in case of extreme events. All sources
were accessed on May 5, 2012.

Category Year Article Source

Weather 2000 Ratlose Propheten - Ein neues Vorhersagesystem verhin-
derte die Warnung vor dem Jahrhundertsturm ”Lothar”.

Der
SPIEGEL1

Weather 2007 Landratsamt kritisiert Wetterdienst wegen fehlender War-
nung

Der
SPIEGEL2

Weather 2008 Kachelmann: Deutscher Wetterdienst hat versagt Süddeutsche
Zeitung3

Weather 2011 Bill Giles accepts blame for BBC Great Storm failures The Daily
Telegraph4

Weather 2007 Lessons learned from Great Storm BBC5

Geology 2011 Italian scientists on trial over L’Aquila earthquake CNN6

Geology 2011 Scientists Worry Over ”Bizarre” Trial on Earthquake Pre-
diction

Scientific
American7

Hydrology 2011 Bad Data Failed To Predict Nashville Flood NBC8

Weather,
Eco-
nomics

2011 Un-ending Model Failures in Economics and Weather Fore-
casting

Asian
Tribune9

Eco-
nomics

2009 How Did Economists Get It So Wrong? The New
York
Times10

Eco-
nomics

2009 Nouriel Roubini: The economist who predicted worldwide
recession

The
Guardian11

Eco-
nomics

2009 The Man Nobody Wanted to Hear: Global Banking
Economist Warned of Coming Crisis

Der
SPIEGEL12

Eco-
nomics

2010 Experts Who Predicted US Economy Crisis See Recovery
in 2010

Bloomberg13

Eco-
nomics

2010 An exclusive interview with Med Yones - The expert who
predicted the financial crisis

CEOQ
Magazine14

1 http://www.spiegel.de/spiegel/print/d-15348803.html
2 http://www.spiegel.de/panorama/0,1518,495866,00.html
3 http://www.sueddeutsche.de/panorama/orkan-ueber-deutschland-kachelmann-

deutscher-wetterdienst-hat-versagt-1.522051
4 http://www.telegraph.co.uk/topics/weather/8675175/Bill-Giles-accepts-blame-

for-BBC-Great-Storm-failures.html
5 http://news.bbc.co.uk/2/hi/science/nature/7044050.stm
6 http://articles.cnn.com/2011-09-20/world/world_europe_italy-quake-trial_1_

geophysics-and-vulcanology-l-aquila-seismic-activity?_s=PM:EUROPE
7 http://www.scientificamerican.com/article.cfm?id=trial-such-as-that-star
8 http://www.nbc15.com/weather/headlines/January_13_Report_Bad_Data_Failed_To_

Predict_Nashville_Flood_113450314.html
9 http://www.asiantribune.com/news/2011/01/16/un-ending-model-failures-

economics-and-weather-forecasting
10 http://www.nytimes.com/2009/09/06/magazine/06Economic-t.html?_r=

1&pagewanted=all
11 http://www.guardian.co.uk/business/2009/jan/24/nouriel-roubini-credit-crunch
12 http://www.spiegel.de/international/business/0,1518,635051,00.html
13 http://www.bloomberg.com/apps/news?pid=conewsstory&refer=conews&tkr=K:

US&sid=asziFnEsJSos
14 http://www.ceoqmagazine.com/whopredictedfinancialcrisis/index.htm
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speed are proposed. Connections to existing forecast verification procedures for
binary predictions of extreme events are discussed in Chapter 5. We close with a
discussion in Chapter 6.
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2. Theoretical results

2.1. A mathematical framework for forecasting
theory

2.1.1. Ideal forecasts

In order to provide information about their intrinsic uncertainty, forecasts should
be probabilistic in nature (Dawid, 1984). Probabilistic forecasts of real-valued
quantities can be represented in the form of predictive cumulative distribution
functions (CDF) or predictive densities. For complicated models, obtaining the
full predictive distributions might be computationally very demanding. However,
especially advances in Markov chain Monte Carlo methodology and the advent of
ensemble weather prediction systems have led to a growth in the use of predictive
distributions in various scientific disciplines (Gneiting and Raftery, 2007; Gneit-
ing, 2008). Based on Gneiting (2010), we develop a mathematical framework for
probabilistic forecasting and the evaluation of probabilistic forecasts.

Definition 2.1. We consider a probability space

(Ω,A,Q),

which will be referred to as the global space. The observation, a random variable
Y which takes values on ΩY , is a measurable mapping

Y : (Ω,A,Q) −→ (ΩY ,AY )

for a σ-algebraAY on ΩY . The measurable space (ΩY ,AY ) is called the observation
space.

We think of probabilistic forecasts P1, . . . , Pk as random quantities. Consider a
σ-algebra AP on the class of probability measures P on the observation space and
sub-σ-algebras A1, . . . ,Ak of A. The sub-σ-algebra Ai is called the information
basis of forecaster i who issues the probabilistic forecast

Pi : (Ω,Ai,Q) −→ (P ,AP).

The information basis Ai can be interpreted as data, expertise, theories and
assumptions at hand (Gneiting and Ranjan, 2011a).

For a real-valued quantity Y , the observation space is given by (R,B), where B
denotes the Borel-σ-algebra on R. In this case, P is a subset of the class of Borel
measures and a probabilistic forecast P can be identified with the corresponding
CDF F .

5



A probabilistic forecast Pi with CDF Fi is called ideal or Q-ideal relative to the
sub-σ-algebra Ai if

Pi = L(Y |Ai) Q− almost surely.

In practical applications, the global space (Ω,A,Q) and the information bases
A1, . . . ,Ak will always remain hypothetical. However, in theoretical examples and
simulation studies it is possible to define them explicitly. Henceforth, we will only
consider real-valued quantities Y and always identify the probabilistic forecast P
with the corresponding predictive CDF F or the corresponding predictive density
f . A simple example is given below.

Example 2.2. Let

Ω = R× R,
A = B ⊗ B,

Q = N2

((
0
0

)
,

(
1 0
0 2

))
be the global space.

The observation Y is given by

Y = Y (ω1, ω2) = ω1 + ω2

and the corresponding observation space

ΩY = R,
AY = B.

Suppose there exists a forecaster with information basis A1 = B ⊗ {∅,R}. This
forecaster knows the value of ω1, but does not know the value of ω2. The ideal
prediction relative to A1 is given by

F1 = L(Y |A1)

= L(ω1 + ω2|A1)

= ω1 +N (0, 2)

= N (ω1, 2).

Example 2.3. In the situation of Example 2.2, let

Y ∼ N (ω1 + ω2, 1).

The information basis of the perfect forecaster who has access to all available
information and therefore knows the value of ω1 and ω2 is given by

Ap = A = B ⊗ B.
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The perfect forecaster issues the forecast

Fp = L(Y |Ap)
= L(Y |σ(ω1, ω2))

= N (ω1 + ω2, 1)

= FY ,

which is the true distribution of the observation Y . The perfect forecaster is ideal
relative to A.

2.1.2. Calibration and Sharpness

The general goal of probabilistic forecasting should be to maximize the sharpness
of the predictive distribution subject to calibration (Murphy and Winkler, 1987;
Gneiting et al., 2007; Gneiting and Ranjan, 2011a). While ”calibration refers to
the statistical consistency between the predictive distributions and the associated
observations, and is a joint property of the predictions and the values that mate-
rialize”, ”sharpness refers to the concentration of the predictive distributions and
is a property of the forecasts only” (Gneiting et al., 2007, page 264). Calibration
requires that the observation is indistinguishable from a random draw of the pre-
dictive distribution. Sharper probabilistic forecasts correspond to less uncertainty,
thus the sharper the better, subject to calibration (Gneiting et al., 2008).

Definition 2.4. Let V ∼ U([0, 1]) be independent of the prediction F , the infor-
mation bases A1, . . . ,Ak and the observation Y .

The random variable

ZF = lim
y↑Y

F (y) + V (F (Y )− lim
y↑Y

F (y))

is the probability integral transform of the predictive distribution F .

For an almost surely continuous predictive distribution F , it holds that ZF (ω) =
[F (ω)](Y (ω)) almost surely. The probability integral transform dates back to
Rosenblatt (1952), see also Diebold et al. (1998). Since F (X) ∼ U([0, 1]) for
any real-valued random variable X with cumulative distribution function F , the
probability integral transform can be used to define calibration.

Definition 2.5. In the situation of Definition 2.1 with global space (Ω,A,Q), a
probabilistic forecast F is

(a) probabilistically calibrated if its probability integral transform ZF is uniformly
distributed on [0, 1] and

(b) marginally calibrated if EQ[F (y)] = Q(Y ≤ y) for all y ∈ R.

Theorem 2.6 (Gneiting and Ranjan, 2011a). A forecast F that is ideal relative to
a σ-algebra A0 is both probabilistically and marginally calibrated.
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Proof. The mathematical framework of Gneiting and Ranjan (2011a) slightly dif-
fers from the framework developed in 2.1.1. However, the arguments of the proof of
Theorem 2.9 of Gneiting and Ranjan (2011a) still hold in our framework: Suppose
that F = L(Y |A0) is ideal relative to the σ-algebra A0, so that by Definition 2.1
F (y) = Q(Y ≤ y|A0) almost surely for all y ∈ R. Marginal calibration follows
from

EQ[F (y)] = EQ[Q(Y ≤ y|A0)] = EQEQ[1(Y ≤ y)|A0] = Q(Y ≤ y),

where 1 denotes an indicator function.
To prove probabilistic calibration, let Q0 denote the marginal distribution of Y

under Q so that ZF = Q0((−∞, Y )|A0) + VQ0({Y }|A0) and

Q(ZF ≤ z) = EQEQ[1(ZF ≤ z)|A0]

for z ∈ (0, 1), where the final equality uses the key results of Brockwell (2007).

Example 2.7. Both F1 from Example 2.2 and Fp from Example 2.3 are ideal
relative to a sub-σ-algebra of A and therefore probabilistically and marginally
calibrated which follows directly from Theorem 2.6.

The sharpness of predictive distributions can be empirically assessed by com-
puting the average width of associated prediction intervals. Gneiting et al. (2007)
propose methods for the empirical evaluation of probabilistic and marginal cali-
bration in practical applications. Here, the true data-generating distribution L(Y )
remains hypothetical and therefore has to be replaced by the empirical distribution
function. For a set of forecast-observation pairs (Ft, yt), t = 1, . . . , T , a set of PIT
values pt = Ft(yt) is obtained.

Tests for the uniformity of the PIT values can be applied in order to test for
probabilistic calibration by employing formal tests as proposed by Diebold et al.
(1998) or graphical methods such as probability plots or PIT histograms. For small
sample sizes and notable deviations from uniformity, this can be done by plotting
the empirical CDF of the PIT values against the CDF of a uniform distribution
on [0, 1]. For large sample sizes and small departures from uniformity, histograms
of the PIT values with 10 or 20 bins can be checked for uniformity.

Inspection of the shape of the PIT histograms can furthermore suggest rea-
sons for the deficiencies of the probabilistic forecast at hand. While hump-shaped
histograms indicate overdispersion and too wide prediction intervals, U-shaped his-
tograms are caused by underdispersion and prediction intervals that are too nar-
row. Biased predictive distributions result in triangle-shaped histograms (Gneiting
et al., 2007).

Examples of Hamill (2001) and Gneiting et al. (2007) show that there are situ-
ations in which evaluation solely based on PIT histograms fails to detect a bias in
the single probabilistic forecasts or is unable to distinguish between the ideal fore-
caster and competitors. Therefore, Gneiting et al. (2007) propose the paradigm of
maximizing the sharpness of the predictive distributions subject to calibration.

Marginal calibration can be empirically assessed by comparing the average pre-
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dictive CDF,

F̄T (x) =
1

T

T∑
t=1

Ft(x), x ∈ R,

with the empirical CDF of the observations,

ĜT (x) =
1

T

T∑
t=1

1(xt ≤ x), x ∈ R.

Gneiting et al. (2007) propose marginal calibration diagrams which are plots of the
difference

F̄T (x)− ĜT (x), x ∈ R,

as a function of the threshold value x. Larger fluctuations around 0 contradict
the hypothesis of marginal calibration. To compare predictive distributions whose
marginal calibration diagrams exhibit fluctuations around 0 that are of different
magnitudes, plots of F̄T (x) and ĜT (x) against x can be used instead.

2.1.3. Ideal forecasts and extreme events

Probabilistically and marginally calibrated probabilistic forecasts may loose their
desirable properties when extreme events are investigated. Conditioning Y on
being an extreme event, for example Y being larger than the 95th percentile q of
its marginal distribution, changes the underlying global space and constitutes a
mapping

(Ω,A,Q) −→ (Ω?,A?,Q?),

where A? is a σ-algebra on Ω? and Q? is a probability measure on Ω?. In general,
Ω? ⊂ Ω, but Ω? may also be equal to Ω, while Q? = Q|Y > q 6= Q, otherwise every
outcome would have to be considered an extreme event which is inconsistent with
our definition of extreme events. This can be illustrated using the examples from
above.

Example 2.8. In the situation of Example 2.2, suppose that Y ? = Y |Y > q, where
q is the 95th percentile of the marginal distribution of Y. Then Ω? = {(ω1, ω2) ∈
R2|ω1 +ω2 > q} 6= Ω = R×R and A? is the corresponding σ-algebra on Ω?. Here,
Q? is a two-dimensional truncated normal distribution given by

Q?(a, b) = Q|C(a, b),

where C = {(a, b) ∈ R2|a+ b > q}.
Suppose that a forecaster knows the value ω1 but not the value ω2 and fur-

thermore knows that the outcome is an extreme event, then the corresponding
information basis becomes

A?1 = (B ⊗ {∅,R}) ∩ σ({Y > q})
= (B ⊗ {∅,R}) ∩ σ({ω1 + ω2 > q}).

9



The ideal forecast relative to this information basis is

F ?
1 = L(Y |A?1)

= ω1 +N[q−ω1,∞)(0, 2)

= N[q,∞)(ω1, 2),

where N[q,∞)(a, b) denotes a truncated normal distribution with mean a and vari-
ance b which is restricted to the interval [q,∞).

Because there exist sets A such that A ∈ A and A ∈ A? for whichQ(A) 6= Q?(A),
F1 will not be Q?-ideal relative to A1. Since F1 6= F ?

1 , F1 will also not be Q?-ideal
relative to A?1.

A simulation study suggests that F1 is neither probabilistically nor marginally
calibrated in case of extreme events. Figure 2.1 shows PIT histograms and plots of
the predictive and empirical cumulative distribution functions for 100 000 random
samples of Y . While the PIT histogram of F1 is uniform, the triangle-shaped PIT
histogram of F ?

1 indicates that this probabilistic forecast is biased and not prob-
abilistically calibrated. The comparative plot of the empirical and the predictive
cumulative distribution function exhibits no notable deviations from the empiri-
cal distribution function of the simulated values for F1 while there are significant
deviations for F ?

1 . Therefore, F1 appears to be probabilistically and marginally
calibrated and F ?

1 is neither probabilistically nor marginally calibrated when all
events are used for the evaluation.

However, if only observations larger than the 95th percentile of the marginal
distribution of Y are considered, F1 is no longer probabilistically or marginally
calibrated which can be seen from Figure 2.2. For these extreme events, the PIT
histogram of F1 basically consists of only one bar while the PIT histogram of F ?

1 is
essentially uniform. The comparison of empirical and predictive CDF shows that
unlike F ?

1 , F1 is not marginally calibrated.
From Theorem 2.6 it follows that there exists no sub-σ-algebra A0 ⊂ A? such

that F1 is Q?-ideal relative to A0 and the calibrated probabilistic forecast F1 is no
longer probabilistically or marginally calibrated if extreme events are investigated
while F ?

1 is probabilistically and marginally calibrated for these events.

Example 2.9. In the situation of Example 2.3, Ω and A remain unchanged after
conditioning on Y being an extreme event since no choice of ω1, ω2 would restrict
Y to non-extreme events. However, Q? will differ from Q by assigning larger
probabilities to values of ω1, ω2 which are more likely to produce extreme outcomes.

If we condition on Y > q, the predictive CDF of the perfect forecaster becomes

F ?
p = L(Y |σ(ω1, ω2) ∩ σ({ω1 + ω2 > q})) = N[q,∞)(ω1 + ω2, 1) = FY ? .

Obviously, Fp 6= F ?
p , and another simulation study suggests that Fp is neither

probabilistically nor marginally calibrated for the subset of extreme events. For
100 000 random samples from Y , PIT histograms and plots of the predictive and
empirical cumulative distribution functions for the subset of observations larger
than the 95th percentile of the marginal distribution of Y are displayed in Fig-
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Figure 2.1.: PIT histograms for (a) F1, (b) F ?
1 and (c) plots of the empirical (red)

and predictive (black) cumulative distribution functions for random
samples of Y .
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Figure 2.2.: PIT histograms for (d) F1, (e) F ?
1 and (f) plots of the empirical (red)

and predictive (black) cumulative distribution functions for random
samples of Y larger than the 95th percentile of the marginal distribu-
tion of Y .

ure 2.3. The triangle-shaped PIT histogram of Fp suggests that this predictive
distribution is biased while F ?

p seems to be probabilistically calibrated.
Furthermore, a comparison of the predictive and the empirical cumulative dis-

tribution functions shows that unlike F ?
p , Fp is also not marginally calibrated for

the subset of extreme events.
Therefore, even the perfect forecaster who has all available information except

for the knowledge of Y being an extreme event is neither probabilistically nor
marginally calibrated any more if only extreme events are investigated.

In the latter situation where Ω and A remain unchanged after conditioning on
Y being an extreme event, it is possible to show that there is no forecast which is
both Q-ideal and Q?-ideal relative to a sub-σ-algebra A0 ⊂ A = A?.

Corollary 2.10. If there exists a countable family of sets E generating the σ-
algebra AY and there exists a sub-σ-algebra A0 with A0 ⊂ A and A0 ⊂ A? such
that F is both Q1-ideal and Q2-ideal relative to this sub-σ-algebra for two measures
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Figure 2.3.: PIT histograms for (a) Fp, (b) F ?
p and (c) plots of the empirical (red)

and predictive (black) cumulative distribution functions for random
samples of Y larger than the 95th percentile of the marginal distribu-
tion of Y .

Q1 and Q2, i.e.

F = L(Y |A0) Q1-a.s. and

F = L(Y |A0) Q2-a.s.,

then the two measures Q1 and Q2 are identical on A0 almost surely.

Proof.

F = L(Y |A0) Q1-a.s. and F = L(Y |A0) Q2-a.s.

⇒ Q1(Y ≤ y|A0) = Q2(Y ≤ y|A0) ∀y ∈ R
⇒ EQ1(1(Y ≤ y)|A0) = EQ2(1(Y ≤ y)|A0).

Theorem 44.3 of Bauer (2002) states that if C is a sub-σ-algebra of A, if L(X|C)
and L?(X|C) are two conditional distributions of a random variable X : (Ω,A)→
(Ω′,A′), and if there exists a countable family of sets E ′ generating the σ-algebra
A′, then there exists a set N ∈ A of measure 0 such that

L(X|C)(ω,A′) = L?(X|C)(ω,A′) ∀ω ∈ N̄ , A′ ∈ A′,

where N̄ is the complement of N in Ω.
Since Q1(Y ≤ y|A0) = Q2(Y ≤ y|A0) holds for all y ∈ R which uniquely

determines the distribution of Y |A0, it follows that Q1 = Q2 on A0 almost surely.

If we consider two measures Q1 and Q2 which differ on a sub-σ-algebra A0 (for
example by imposing the constraint on Y that the outcome is an extreme event),
Corollary 2.10 implies that there is no forecast which is Q1-ideal and Q2-ideal
relative to A0. Thus, any forecast which is Q1-ideal relative to A0 will not be Q2-
ideal relative to A0 and may therefore no longer be probabilistically or marginally
calibrated.

12



If F is Q1-ideal relative to A0 and not Q2-ideal relative to A0 there might of
course still exist a different sub-σ-algebra A1 6= A0 such that F is Q2-ideal relative
to this σ-algebra and would therefore still be marginally and probabilistically cal-
ibrated. However, Example 2.9 showed that this may not even be the case for the
perfect forecaster who has access to all available information except for knowing
that the outcome of Y is an extreme event.

2.2. Forecast evaluation

Following Gneiting and Raftery (2007), we introduce proper scoring rules for the
evaluation of probabilistic forecasts within the mathematical framework developed
in 2.1.1. The evaluation of probabilistic forecasts follows the paradigm of maxi-
mizing the sharpness subject to calibration. Scoring rules assign a numerical score
to pairs of forecasts and observations and provide summary measures of predic-
tive performance by simultaneously addressing calibration and sharpness (Gneiting
et al., 2007). Scoring rules can be either positively or negatively oriented. For the
purpose of developing characterizations, we take scoring rules to be positively ori-
ented functions taking values on the extended real line R̄ = [−∞,∞]. If a forecaster
states the prediction P and the outcome y is observed, the value of the positively
oriented scoring rule S(P, y) can be thought of as a reward the forecaster wishes
to maximize.

2.2.1. Proper scoring rules

Based on the framework developed in Definition 2.1, consider an observation space
(ΩY ,AY ) and a convex class P of probability measures on (ΩY ,AY ).

Definition 2.11. A function defined on ΩY which takes values on R̄ = [−∞,∞] is
called P-quasi-integrable if it is measurable with respect toAY and quasi-integrable
with respect to every P ∈ P , i.e. if there exists a real-valued integral for its positive
or its negative part with respect to P (Bauer, 1992).

Definition 2.12. (a) A scoring rule is a function S : P × ΩY −→ R̄ such that
S(P, ·) is P-quasi-integrable for any P ∈ P .

(b) The expected score of the probabilistic forecast P under the true distribution
Q of Y is given by S(P,Q) =

∫
ΩY
S(P, ω) dQ(ω).

(c) A positively oriented scoring rule is called proper relative to P if

S(Q,Q) ≥ S(P,Q) ∀P,Q ∈ P

and strictly proper relative to P if equality holds if and only if P = Q.

(d) A scoring rule is regular relative to the class P if S(P, P ) ∈ R for all P ∈ P
and S(P,Q) ∈ [−∞,∞) for all P,Q ∈ P .
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Propriety of scoring rules is a desirable property as it encourages the forecaster
to quote his or her true belief and they are designed not to provide incentive
to digress from one’s true belief (Gneiting and Raftery, 2007; Gneiting et al.,
2008). Calibration, sharpness and the propriety of scoring rules correspond to the
three types of goodness of performance for general forecasting systems identified
by Murphy (1993). For details, see Friederichs and Thorarinsdottir (2012).

Proper scoring rules can be related to the theory of convex functions as follows.

Definition 2.13. A function G : P −→ R̄ is convex if

G(λP0 + (1− λ)P1) ≤ λG(P0) + (1− λ)G(P1)

for all λ ∈ [0, 1] , P0, P1 ∈ P . G is furthermore strictly convex if equality holds if
and only if P0 = P1.

A function G?(P, ·) : ΩY −→ R̄ is a subtangent of G in P ∈ P if G? is P -
integrable and P-quasi-integrable and

G(Q) ≥ G(P ) +

∫
ΩY

G?(P, ω) d(Q− P )(ω) (2.1)

for all Q ∈ P .

Theorem 2.14 (Gneiting and Raftery, 2007). A regular scoring rule S : P ×
ΩY −→ R̄ is proper if and only if there exists a convex, real-valued function G :
P −→ R such that

S(P, ω) = G(P )−
∫

ΩY

G?(P, ω) dP (ω) +G?(P, ω) (2.2)

for P ∈ P and ω ∈ ΩY , where G?(P, ·) : ΩY −→ R̄ is a subtangent of G in
P ∈ P. The statement still holds if proper is replaced by strictly proper and convex
is replaced by strictly convex.

Proof. Theorem 1 of Gneiting and Raftery (2007, page 361).

Definition 2.15. Suppose that S is a proper scoring rule relative to P .

(a) The function G : P −→ R,

G(P ) = S(P, P ) = sup
Q∈P

S(Q,P )

is the information measure or generalized entropy function associated with
S.

(b) If S is regular and proper,

d : P × P −→ R̄,
d(P,Q) = S(Q,Q)− S(P,Q)

is the divergence function associated with S.
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Note that the order of the arguments in the definition of d(P,Q) differs from the
previous practice. For P,Q ∈ P , the divergence function d(P,Q) is nonnegative
and if S is strictly proper, d(P,Q) is strictly positive except for P = Q. Using
Definition 2.15, the theory of proper scoring rules can be related to the theory of
Bregman distances (Bregman, 1967), which is widely used in convex optimization
and machine learning (Boyd and Vandenberghe, 2004; Gneiting and Raftery, 2007).

Proper scoring rules also occur in the context of decision theoretical problems
(Dawid, 1998). Let the scoring rule S be defined as

S(P, ω) = U(ω, aP ),

where ω is the observation, aP is the Bayes act for P ∈ P and U(ω, a) is the utility
for outcome ω and action a. Then S is proper relative to P . This follows from

S(Q,Q) =

∫
U(ω, aQ)dQ(ω)

≥
∫
U(ω, aP )dQ(ω)

= S(P,Q)

since the optimal Bayesian decision maximizes expected utility (Gneiting and
Raftery, 2007).

We have seen that proper scoring rules can be characterized using the theory
of convex functions and can be related to various other mathematical fields. In
the following two sections, we will discuss combinations of proper scoring rules and
examples of proper scoring rules for probabilistic forecasts of continuous real-valued
variables.

2.2.2. Combining proper scoring rules

We explore combinations of proper scoring rules of the form

S(P, ω) = h(S1(P, ω), S2(P, ω)),

where Si(P, ω), i = 1, 2 is a proper scoring rule and h : [−∞,∞) × [−∞,∞) −→
[−∞,∞). In particular, we are interested in conditions on h such that S is a
proper scoring rule.

Lemma 2.16 (Vector composition of convex functions). Consider gi : P −→
R, i = 1, 2 and h : [−∞,∞)× [−∞,∞) −→ [−∞,∞). If

(i) gi is convex for i = 1, 2,
(ii) h is convex and

(iii) h is nondecreasing in each argument,

then
f(P ) = h(g1(P ), g2(P ))

is convex.
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Proof.

f(λP0 + (1− λ)P1) = h(g1(λP0 + (1− λ)P1), g2(λP0 + (1− λ)P1))

≤ h(λg1(P0) + (1− λ)g1(P1), λg2(P0) + (1− λ)g2(P1))

since gi is convex and h is nondecreasing

(a)
= h(λ[g1(P0), g2(P0)] + (1− λ)[g1(P2), g2(P2)])

≤ λh(g1(P0), g2(P0)) + (1− λ)h(g1(P1), g2(P1))

since h is convex

= λf(P0) + (1− λ)f(P1),

where (a) follows since

(λg1(P0) + (1− λ)g1(P1), λg2(P0) + (1− λ)g2(P1)) =

(λ(g1(P0), g2(P0)) + (1− λ)(g1(P1), g2(P1))).

Lemma 2.17 (Ekeland and Temam (1976)). If (Fi)i∈I is a family of convex func-
tions of a vector space over R into R̄, their pointwise supremum F = supi∈I Fi is
convex.

Proof. Proposition 2.2 of Ekeland and Temam (1976, page 9).

In the statement of Lemma 2.17, convexity of the functions Fi, i ∈ I is a neces-
sary, but not sufficient condition: Suppose

f1(x) =

{
cos(x)− 1, x < 0

x2, x ≥ 0,

f2(x) =

{
x2, x ≤ 0

cos(x)− 1, x > 0.

Then the pointwise supremum, which is equal to the pointwise maximum

g(x) = sup
i=1,2

fi(x) = max
i=1,2

fi(x) = x2

is convex although neither f1 nor f2 is convex.

The following lemma will allow for formulating necessary conditions to be im-
posed on h in order to retrieve a proper scoring rule by combining proper scoring
rules.

Lemma 2.18. G(P ) = S(P, P ) is convex in P if and only if S is a proper scoring
rule.
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Proof. G(P ) is convex if and only if for all P1, P2 ∈ P and λ ∈ [0, 1] it holds that

λG(P1) + (1− λ)G(P2)−G(λP1 + (1− λ)P2) ≥ 0

⇔ λS(P1, P1) + (1− λ)S(P2, P2)

− S(λP1 + (1− λ)P2, λP1 + (1− λ)P2) ≥ 0 ∀P1, P2 ∈ P , λ ∈ [0, 1]

(a)⇔ λS(P1, P1) + (1− λ)S(P2, P2)−
[
λS(λP1 + (1− λ)P2, P1)

+ (1− λ)S(λP1 + (1− λ)P2, P2)
]
≥ 0 ∀P1, P2 ∈ P , λ ∈ [0, 1]

⇔ λ
[
S(P1, P1)− S(λP1 + (1− λ)P2, P1)

]
+ (1− λ)

[
S(P2, P2)− S(λP1 + (1− λ)P2, P2)

]
≥ 0 ∀P1, P2 ∈ P , λ ∈ [0, 1]

(b)⇔ S(P1, P1)− S(λP1 + (1− λ)P2, P1) ≥ 0

and S(P2, P2)− S(λP1 + (1− λ)P2, P2) ≥ 0 ∀P1, P2 ∈ P , λ ∈ [0, 1]

⇔ S(P1, P1) ≥ S(λP1 + (1− λ)P2, P1)

and S(P2, P2) ≥ S(λP1 + (1− λ)P2, P2) ∀P1, P2 ∈ P , λ ∈ [0, 1]

(c)⇔ S(P, P ) ≥ S(Q,P ) ∀P,Q ∈ P , λ ∈ [0, 1]

where (a) follows since S is linear in the second component:

Si(Q, λP1 + (1− λ)P2) =

∫
Ω

Si(Q,ω) d [λP1 + (1− λ)P2] (ω)

=

∫
Ω

Si(Q,ω)
[
dλP1(ω) + d(1− λ)P2(ω)

]
= λ

∫
Ω

Si(Q,ω) dP1(ω) + (1− λ)

∫
Ω

Si(Q,ω) dP2(ω)

= λSi(Q,P1) + (1− λ)Si(Q,P2)

and (b) follows since the sum in the equation above can only be nonnegative if both
summands are nonnegative. This follows from the fact that the statement holds
for any P1, P2 ∈ P and λ ∈ (0, 1) and furthermore implies that if one summand is
smaller than 0, the other one is as well and the equation above cannot hold.

The last statement (c) is equivalent to S being a proper scoring rule and follows
since the equation above holds for all Q = λP1 + (1 − λ)P2 with P1, P2 ∈ P .
Allowing λ to be 0 and 1 as well does not change the statements above, as for any
Q ∈ P one might just set λ = 1 and P1 = Q.

Dawid (1998) discusses more general versions of Lemma 2.18. S being a proper
scoring rule always implies convexity of G, but the converse does not necessarily
hold. Dawid (1998) refers to Example 4.1 of Hendrickson and Buehler (1971) as a
counter example but also mentions that the converse will hold ”in suitable spaces
under suitable continuity conditions” (Dawid, 1998, page 28). For a discussion of
these conditions he refers to Johnson (1991). The proof of Lemma 2.18 shows that
these conditions are met here.

If G(P ) is convex, then S is a proper scoring rule and G(P ) = S(P, P ) =
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supQ∈P S(Q,P ). This can be used to find necessary conditions on h such that

S(P, ω) = h(S1(P, ω), S2(P, ω)),

is a proper scoring rule.

Theorem 2.19. If

(i) Si is a proper scoring rule for i = 1, 2,
(ii) h : [−∞,∞)× [−∞,∞) −→ [−∞,∞) is convex and

(iii) h is non-decreasing in each component,

then
S(P, ω) = h(S1(P, ω), S2(P, ω)),

is a proper scoring rule.

Proof. In order to use the statement of Lemma 2.18, we show that G(P ) =
S(P, P ) = h(S1(P, P ),S2(P, P )) is convex. This follows directly from Lemma 2.16:
Condition (i) implies that Si(Q,P ) for i = 1, 2 is convex in P for all Q ∈ P
which was shown in the proof of Lemma 2.18 or can be obtained directly from
Lemma 2.17. Together with (ii), (iii), Lemma 2.16, we can conclude that G(P ) is
convex in P and therefore the propriety of S follows from Lemma 2.18.

Example 2.20. Possible choices of h include

- linear functions S(P, ω) = h(S1(P, ω), S2(P, ω)) = aS1(P, ω)+bS2(P, ω) with
a, b > 0,

- S(P, ω) = h(S1(P, ω), S2(P, ω)) =
[
S1(P, ω)q + S2(P, ω)q)

] 1
q for q ≥ 1,

- any norm ‖·‖ on R2 such that S(P, ω) = ‖(S1(P, ω), S2(P, ω))T‖,

- S(P, ω) = h(S1(P, ω), S2(P, ω)) =
[

max{S1(P, ω), 0}q + max{S2(P, ω), 0}q
] 1

q

for q ≥ 1.

To obtain propriety of S(P, ω) = h(S1(P, ω), S2(P, ω)), h must be non-decreasing
in each component. Otherwise there may exist Q,P ∈ P with Q 6= P such that

S(Q,P ) = h(S1(Q,P ),S2(Q,P )) > h(S1(P, P ),S2(P, P )) = S(P, P ).

Not all choices of S1 and S2 yield meaningful proper scoring rules. Dawid (2007)
defines equivalence of scoring rules.

Definition 2.21 (Dawid, 2007). Let c ∈ R, c > 0. A scoring rule S1 is equivalent
to another scoring rule S2 if

S1(P, ω) = cS2(P, ω) + k(ω)

for all P ∈ P , ω ∈ ΩY and a real-valued function k on ΩY .
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Corollary 2.22. Combinations of equivalent proper scoring rules do not provide
any additional information compared to using only one of the equivalent proper
scoring rules.

Proof. If S1 is equivalent to S2, it holds that

S1(Q,P ) = cS2(Q,P ) + k(P ),

where k(P ) =
∫

ΩY
k(ω)dP (ω). Thus, S2(Q1, P ) ≤ S2(Q2, P ) implies that

S1(Q1, P ) = cS2(Q1, P ) + k(P ) ≤ cS2(Q2, P ) + k(P ) = S1(Q2, P )

for all Q1, Q2, P ∈ P .
Therefore, S1 does not provide any additional information compared to S2 if for

example the predictive performance of two competing predictive distributions is
compared, and neither will any combination of S1 and S2.

We will now introduce examples of proper scoring rules for probabilistic forecasts
of continuous real-valued variables such as temperature or wind speed.

2.2.3. Proper scoring rules for continuous real-valued variables

In order to use results from the theory of convex functions, we have only considered
positively oriented proper scoring rules so far. From now on, we will take scoring
rules to be negatively oriented, following the common practice of forecast evaluation
(Gneiting and Raftery, 2007). An negatively oriented scoring rule S

(n)
0 can easily

be obtained from any positively oriented scoring rule S
(p)
0 by setting S

(n)
0 = −S(p)

0 .

If the forecaster states the prediction P and y is observed, S
(n)
0 (P, y) can be thought

of as a penalty the forecaster wishes to minimize.
Analogous to the definition of propriety for positively oriented scoring rules we

define:

Definition 2.23. A negatively oriented scoring rule is called proper relative to P
if

S(Q,Q) ≤ S(P,Q) ∀P,Q ∈ P

and strictly proper relative to P if equality holds if and only if P = Q.

Gneiting and Raftery (2007) introduce several examples of scoring rules for fore-
casts of continuous variables.

Definition 2.24. For a σ-finite measure µ on (ΩY ,AY ) and α > 1, let Lα denote
the class of probability measures on (ΩY ,AY ) that are absolutely continuous with
respect to µ and have µ-density f such that

‖f‖α =

(∫
f(ω)αµ(dω)

)1/α

exists.
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A probabilistic forecast P ∈ Lα can be identified with its µ-density f which is a
predictive density or density forecast.

Example 2.25. (a) The quadratic score,

QuadrS(f, ω) = ‖f‖2
2 − 2f(ω),

is strictly proper relative to L2.

(b) The pseudospherical score,

PseudoS(f, ω) = −f(ω)α−1

‖f‖α−1
α

,

is strictly proper relative to Lα and reduces to the spherical score for α = 2.

(c) The logarithmic score or ignorance score,

LogS(f, ω) = − log f(ω),

is strictly proper relative to L1.

(d) The linear score,
LinS(f, ω) = −f(ω),

is not a proper scoring rule (Gneiting and Raftery, 2007).

Gneiting and Raftery (2007) argue that in many applications, the restriction
to density forecasts is impractical and scoring rules should be defined directly in
terms of predictive cumulative distribution functions instead. They propose the
continuous ranked probability score, which is defined as the integral over the Brier
score (Brier, 1950) for the associated binary probability forecasts at all real-valued
thresholds (Matheson and Winkler, 1976; Hersbach, 2000). Here, we consider
(ΩY ,AY ) = (R,B) and identify a probabilistic forecast with the corresponding
cumulative distribution function F .

Definition 2.26. The continuous ranked probability score (CRPS) is defined as

CRPS(F, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2dz.

For some distributions, closed form expressions for the integral can be obtained.
For normal distributions with mean µ and variance σ2, the CRPS is given by

CRPS(N (µ, σ2), y) = σ

[
− 1√

π
+ 2ϕ

(
y − µ
σ

)
+
y − µ
σ

(
2Φ

(
y − µ
σ

)
− 1

)]
,

where ϕ and Φ denote the probability density function and cumulative distribution
function of a standard Gaussian variable respectively (Gneiting and Raftery, 2007).
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Results of Baringhaus and Franz (2004) show that

CRPS(F, y) = EF |Y − y| −
1

2
EF |Y − Y ′| ,

where Y and Y ′ are two independent random variables with cumulative distribution
function F and finite first moment (Gneiting and Raftery, 2007).

The CRPS is proper relative to the class of Borel probability measures on R and
strictly proper relative to the subclass of Borel probability measures with finite
first moment. It can be reported in the same unit as the observation and can be
used to directly compare deterministic and probabilistic forecasts since it reduces
to the absolute error if F is a deterministic forecast which corresponds to F being
a point measure (Gneiting and Raftery, 2007).

2.3. Evaluation of probabilistic forecasts for extreme
events

We have seen that there is a large variety of theoretically justifiable methods for
the evaluation of probabilistic forecasts, for example by following the paradigm
of maximizing the sharpness of the predictive distribution subject to calibration.
However, this is not the case for the evaluation in case of extreme events. The nat-
ural approach would be to select extreme outcomes while discarding non-extreme
outcomes, and to apply proper scoring rules restricted to this subset of extreme
events. The following will show that the conditioning on extreme events has un-
expected and unwanted effects and that restricting proper scoring rules to subsets
of extreme events yields improper scoring rules. However, proper scoring rules for
extreme events can be defined using weighted scoring rules to emphasize regions
of interest. Two methods have recently been proposed in the economic literature
(Gneiting and Ranjan, 2011b; Diks et al., 2011).

2.3.1. Restricting proper scoring rules to extreme events

Since we take scoring rules to be negatively oriented, a scoring rule S(f, y) for a
density forecast is proper if

S(f, Y ) = EfS(f, Y ) =

∫
f(y)S(f, y)dy

≤
∫
f(y)S(g, y)dy

= EfS(g, Y ) = S(g, Y )

for all probability density functions f and g. S is strictly proper if equality only
holds for f = g.

Gneiting and Ranjan (2011b) show that the product of a proper scoring rule
and a weight function w(y) which depends on the observation y yields an improper
scoring rule.
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Theorem 2.27 (Gneiting and Ranjan, 2011b). Suppose that f is the sampling
density of the random variable Y . Let S0 be any proper scoring rule and let w be a
weight function such that 0 <

∫
w(y)f(y)dy < ∞. Then the expected value of the

score
S(h, Y ) = w(Y )S0(h, Y )

is minimized by the density forecast

g(y) =
w(y)f(y)∫
w(y)f(y)dy

.

Proof. Theorem 1 of Gneiting and Ranjan (2011b, page 415).

Thus, S(h, Y ) = w(Y )S0(h, Y ) is improper except for constant weight functions
w since the expected score is minimized by issuing the density forecast g which dif-
fers from the true sampling density f . By choosing w(y) = 1(y ≥ t) for a threshold
t ∈ R, Theorem 2.27 implies that restricting proper scoring rules to extreme events
corresponds to the use of improper scoring rules. Thus, computing proper scoring
rules for subsets of extreme events will discredit skillful and calibrated forecasting
procedures.

This can be illustrated using an example given by Diks et al. (2011).

Example 2.28. The logarithmic score restricted to the set of observations larger
than t ∈ R is given by

LogS?(f, y) = −1(y ≥ t) log f(y)

as proposed by Amisano and Giacomini (2007), who use this scoring rule in the
context of a weighted likelihood ratio test. If it holds that

g(y) > f(y)

for all y ≥ t and two competing density forecasts f and g, then

ELogS?(g, y) < ELogS?(f, y)

independent of the true sampling density.
This may have far-reaching consequences: A fat-tailed density forecast g might

be preferred over a thin-tailed density f , even if f is the true sampling density.
Obviously, the restricted logarithmic score LogS? is not proper.

Theorem 2.27 furthermore suggests a hedging strategy if the improper scoring
rule S(h, y) = w(y)S0(h, y) is used. The forecaster will minimize the expected score
by issuing the density forecast g which is proportional to his true belief f and the
weight function w (Gneiting and Ranjan, 2011b). In the situation of Example 2.28,
the optimal density forecast is given by

g(y) =
f(y)∫

[t,∞)
f(y)dy

1(y ≥ t).
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We will now discuss the observation of Theorem 2.27 in view of the mathematical
framework developed in Section 2.1.1. For observations

Y : (Ω,A,Q) −→ (ΩY ,AY )

and probabilistic forecasts in the form of predictive densities

f : (Ω,A) −→ (P ,AP),

a proper scoring rule S is a mapping

S : P × ΩY −→ R̄.

Conditioning Y on being an extreme event corresponds to restricting the observa-
tion space (ΩY ,AY ) to a subspace (Ω?

Y ,A?Y ). Therefore, the scoring rule restricted
to the subset of extreme events, S?, is a mapping

S? : P × Ω?
Y −→ R̄

and is thus minimized by

L(Y |A?) = L(Y ?) = F ? 6= F = L(F ) = L(Y |A).

S? is minimized by a different element of P and therefore an improper scoring rule,
even if S is proper.

2.3.2. Proper scoring rules for extreme events

The previous section showed that the natural approach of restricting proper scoring
rules to subsets of extreme events yields improper scoring rules which allow for a
simple hedging strategy. Therefore, proper scoring rules restricted to subsets of
extreme events should not be used to evaluate probabilistic forecasts and new
methods for the evaluation of probabilistic forecasts have to be developed. Here,
we investigate two methods which have recently been proposed in the economic
literature (Gneiting and Ranjan, 2011b; Diks et al., 2011).

We consider density forecasts in a time series context, where density forecasts
for an observation which lies k time steps ahead are issued. Competing density
forecasts f̂t+k and ĝt+k are generated at times t = 1, . . . , n − k, where n is the
total number of observations. Gneiting and Ranjan (2011b) furthermore require
the forecasts to be produced only depending on the data in a rolling estimation
window which consists of the past m observations. However, for the purpose of
comparing the approaches of Gneiting and Ranjan (2011b) and Diks et al. (2011),
we will omit this. The different size of information bases of different forecasters
might of course explain differences of the predictive performance. Therefore, we
will always point out if different amounts of data are taken into account to produce
the forecasts.
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Threshold- and quantile-weighted scoring CRPS

We now turn to appropriately weighted, proper versions of the continuous ranked
probability score as proposed by Gneiting and Ranjan (2011b). While in Defini-
tion 2.26, the CRPS was defined in terms of a predictive cumulative distribution
function F , this can easily be extended to predictive densities. Any density fore-
cast f can be identified with the corresponding predictive cumulative distribution
function F . Therefore, we can simply define

CRPS(f, y) = CRPS(F, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2dz,

where F is the predictive CDF corresponding to the density forecast f and y is
observed.

The CRPS can be represented in three equivalent ways,

CRPS(f, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2dz (2.3)

= Ef |Y − y| −
1

2
Ef |Y − Y ′| (2.4)

= 2

∫ 1

0

(1{y ≤ F−1(α)} − α)(F−1(α)− y)dα, (2.5)

where Y and Y ′ are independent random variables with sampling density f . The
kernel score representation (2.4) was proved by Gneiting and Raftery (2007) and
already discussed above. Laio and Tamea (2007) showed the equivalence of the
quantile score representation (2.5) and the threshold decomposition (2.3) (Gneiting
and Ranjan, 2011b). The quantile score representation corresponds to the integral
over the quantile score

QSα(F−1(α), y) = 2(1{y ≤ F−1(α)} − α)(F−1(α)− y)

over all α ∈ [0, 1], where F−1(α) is the quantile forecast for α corresponding to the
predictive CDF F .

The threshold decomposition and the quantile score representation can be used
to construct weighted versions of the continuous ranked probability score.

Definition 2.29. (a) The threshold-weighted continuous ranked probability score
is given by

CRPSt(f, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2u(z)dz, (2.6)

where u is a nonnegative weight function on the real line.

(b) The quantile-weighted continuous ranked probability score is given by

CRPSq(f, y) = 2

∫ 1

0

(1{y ≤ F−1(α)} − α)(F−1(α)− y)v(α)dα, (2.7)
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where v is a nonnegative weight function on [0, 1].

Matheson and Winkler (1976) prove that the threshold-weighted CRPS and
the quantile-weighted CRPS are both proper scoring rules (Gneiting and Ranjan,
2011b).

For u ≡ 1 and v ≡ 1, the usual unweighted CRPS is obtained. Different weight
functions can be used to emphasize specific regions of interest. If the interest lies
in the predictive performance in case of extreme events, u might be chosen as an
indicator function u(z) = 1(z ≥ r), which is 1 for values larger than a threshold
r ∈ R and v might be chosen as an indicator function v(α) = 1(α ≥ q), which is 1
for quantiles larger than a threshold q ∈ [0, 1]. Furthermore, Gneiting and Ranjan
(2011b) propose potential weight functions if the interest lies in the center, tails,
right or left tail of the distribution which are listed in Table 2.1.

Table 2.1.: Table 4 of Gneiting and Ranjan (2011b, page 416). Proposed weight
functions for threshold- and quantile-weighted CRPS. ϕa,b and Φa,b de-
note density function and CDF of a normal distribution with mean a
and standard deviation b.

Emphasis Threshold weight function Quantile weight function

Center u1(z) = ϕa,b(z) v1(α) = α(1− α)
Tails u2(z) = 1− ϕa,b(z)/ϕa.b(0) v2(α) = (2α− 1)2

Right tail u3(z) = Φa,b(z) v3(α) = α2

Left tail u4(z) = 1− Φa,b(z) v4(α) = (1− α)2

Alternative weight functions may be suggested by specific applications at hand.
Gneiting and Ranjan (2011b) illustrate this using a data example of wind speed
forecasts. Optimal wind speed point forecasts are α-quantiles of the predictive
distribution, where α depends on market conditions. Typical market conditions
and costs associated with over- or underpredictions suggest a triangular quantile
weight function v(α) = 40.73(α), which has a peak of height 1 at α = 0.73 and
decays to 0 at α = 0 and α = 1.

If no closed-form expressions of (2.6) and (2.7) are available, discretized approx-
imations can be computed. The threshold-weighted CRPS (2.6) can be approxi-
mated by

CRPSt(f, y) ≈ yu − yl
I − 1

I∑
i=1

(F (yi)− 1{y ≤ yi})2u(yi),

where (yl, yu) is the range of interest and yi = yl + iyu−yl
I

. The quantile-weighted
CRPS (2.7) can be approximated by

CRPSq(f, y) ≈ 1

J − 1

J−1∑
j=1

2(1{y ≤ F−1(αj)} − αj)(F−1(αj)− y)v(αj),

where αj = j
J

. These discretizations are feasible since discrete versions of proper
scoring rules are themselves proper scoring rules (Gneiting and Ranjan, 2011b).
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Conditional and censored likelihood scoring rules

While Gneiting and Ranjan (2011b) generalize the continuous ranked probability
score in order to emphasize different regions of interest, the approach of Diks et al.
(2011) is based on the comparison of density forecasts using the Kullback-Leibler
information criterion (KLIC) as suggested by Amisano and Giacomini (2007). The
Kullback-Leibler information criterion for a density forecast f̂ is defined as

KLIC(f̂) = Ep(log p(Y )− log f̂(Y ))

=

∫ ∞
−∞

p(y) log

(
p(y)

f̂(y)

)
dy,

where p denotes the true sampling density. Lower expected values of the logarith-
mic score with respect to the true density p,

S(f, y) = Ep[− log f(Y )],

are equivalent to lower values of the KLIC. The KLIC has absolute lower bound
0 which is achieved if and only if f̂ = p and thus can be used as a measure of the
divergence between f̂ and p (Diks et al., 2011). If p is unknown, the KLIC cannot
be evaluated directly, but can still be used to measure the relative accuracy of two
competing density forecasts f̂ and ĝ by using the difference KLIC(f̂) − KLIC(ĝ).
The term Ep[log p(Y )] drops out which yields the logarithmic score difference d =

log ĝ(y) − log f̂(y). However, the KLIC cannot be used directly to measure the
accuracy of a density forecast in a specific region of interest (Diks et al., 2011). This
corresponds to the results and observations of Theorem 2.27 and Example 2.28.
Restricting the logarithmic score to a specific region of interest, which is of course
equivalent to restricting the KLIC to this region, corresponds to the use of an
improper scoring rule.

The aim of Diks et al. (2011) is to address this deficiency of the approach of
Amisano and Giacomini (2007) and to generalize likelihood-based scoring rules
in order to compare density forecasts on a specific region of interest. The main
reasons for this pursuing are that likelihood-based scoring rules are invariant under
transformations of the observation space and that they lead to likelihood ratio tests
which have are known to perform well in many statistical settings (Diks et al.,
2011).

This aim is achieved by replacing the full likelihood with the conditional likeli-
hood given that the observation lies in the region of interest or with the censored
likelihood.

Definition 2.30. Given a region of interest A ⊂ R, the conditional likelihood (CL)
scoring rule is defined as

CL(f, y) = −1(y ∈ A) log

(
f(y)∫

A
f(s)ds

)
, (2.8)

where f is a density forecast and y is observed.
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Using the CL scoring rule, density forecasts are evaluated only based on their
behavior in the region of interest. Density forecasts are normalized on the region
of interest, such that they can be compared in terms of their relative KLIC (Diks
et al., 2011). However, this normalization also gives rise to the problem that
the total probability assigned to the region of interest is not taken into account.
Therefore, the CL scoring rule should only be used to compare density forecasts
which assign similar probabilities to the region of interest. For the purpose of
taking the tail probability into account, Diks et al. (2011) propose the censored
likelihood scoring rule which censors observations outside the region of interest.

Definition 2.31. Given a region of interest A ⊂ R, the censored likelihood (CSL)
scoring rule is defined as

CSL(f, y) = −
[
1(y ∈ A) log f(y) + 1(y ∈ Ac) log

(∫
Ac

f(s)ds

)]
, (2.9)

where f is a density forecast, y is observed and Ac is the complement of A.

Note that both (2.8) and (2.9) differ from the definitions of Diks et al. (2011) in
their signs because we take scoring rules to be negatively oriented.

The previous definitions of the conditional and censored likelihood scoring rules
depend on a specific region of interest. However, they can easily be generalized
by replacing the indicator functions 1(y ∈ A) with a weight function w(y). This
allows for emphasizing regions of interest in a more general way. Therefore, we
redefine the conditional and censored likelihood scoring rule.

Definition 2.32. (a) Given a weight function w(y) on the real line, the gener-
alized conditional likelihood (CL) scoring rule is defined as

CL(f, y) = −w(y) log

(
f(y)∫

w(s)f(s)ds

)
, (2.10)

where f is a density forecast and y is observed.

(b) Given a weight function w(y) on the real line, the generalized censored like-
lihood (CSL) scoring rule is defined as

CSL(f, y) = −
[
w(y) log f(y) + (1− w(y)) log

(
1−

∫
w(s)f(s)ds

)]
,

(2.11)
where f is a density forecast and y is observed.

Obviously, the original definition follows as a special case for w(y) = 1(y ∈ A).
As for the threshold- and quantile-weighted versions of the CRPS, the computation
of discretized versions of the CL and CSL scoring rule is feasible.

Theorem 2.33 (Diks et al., 2011). If

(i) the two density forecasts f and g satisfy KLIC(f) < ∞ and KLIC(g) < ∞,
where KLIC(h) =

∫
p(y) log(p(y)/h(y))dy is the Kullback-Leibler divergence

between the density forecast h and the true density p, and
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(ii) (a) the weight function w is only determined by the information available
at the time when the outcome is observed, (b) 0 ≤ w(y) ≤ 1 and (c)∫
w(y)p(y)dy > 0,

the generalized conditional likelihood (CL) scoring rule given in (2.10) and the
generalized censored likelihood (CSL) scoring rule given in (2.11) are proper.

Proof. Lemma 1 of Diks et al. (2011, page 220)

Tests of equal performance

For the purpose of comparing the predictive performance of competing density
forecasts on several specific regions of interest, for example in case of more and
more extreme events, the values of the corresponding proper scoring rules are of
different magnitudes and cannot be directly compared. If, for example, we use two
threshold-weighted versions of the continuous ranked probability score, CRPSt

i for
i = 1, 2 with weight functions wi(y) = 1(y ≥ ri), where r1 < r2, then

CRPSt
1(f, y) > CRPSt

2(f, y)

for all density forecasts f and observations y. Different thresholds ri result in
expected scores of different magnitudes.

To compare such results for competing density forecasts, formal tests of equal
performance can be applied. Both Gneiting and Ranjan (2011b) and Diks et al.
(2011) follow Amisano and Giacomini (2007) in using test statistics proposed by
Diebold and Mariano (1995).

As before, we consider density forecasts for an observation which lies k time
steps ahead. Competing density forecasts f̂t+k and ĝt+k are generated at times
t = 1, . . . , n− k and ranked by comparing their average scores. For

S̄fn =
1

n− k + 1

n−k∑
t=1

S(f̂t+k, yt+k) and

S̄gn =
1

n− k + 1

n−k∑
t=1

S(ĝt+k, yt+k),

we prefer f if S̄fn < S̄gn and g otherwise (Gneiting and Ranjan, 2011b). We will
consider tests of equal performance based on the Diebold-Mariano-type test statistic

tn =
√
n
S̄fn − S̄gn
σ̂n

, (2.12)

where σ̂2
n is an estimator of the asymptotic variance of the score difference. Under

certain regularity conditions, tn asymptotically follows a standard normal distribu-
tion under the null hypothesis of equal performance. This allows for interpretations
of the observed average score differences in terms of significance. The approaches
of Gneiting and Ranjan (2011b) and Diks et al. (2011) differ not only in their
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choice of the scoring rule S(f, y), but also in the way of estimating the asymptotic
variance of the score difference.

Gneiting and Ranjan (2011b) propose threshold- and quantile-weighted versions
of the CRPS. They estimate the asymptotic variance by

σ̂2
n =

1

n+ k − 1

k−1∑
j=−(k−1)

n−k−|j|∑
t=1

∆t,k∆t+|j|,k,

where ∆t,k = S(f̂t+k, yt+k) − S(ĝt+k, yt+k), as proposed by Diebold and Mariano
(1995). This variance estimator only considers autocorrelation of forecast errors
up to lag k − 1. Diebold and Mariano (1995) note that optimal k-step-ahead
forecast errors are at most (k − 1)-dependent. However, in practical applications,
(k − 1)-dependence might be violated due to various reasons. Even so, they still
suggest to take (k− 1)-dependence as a ”reasonable benchmark for a k-step-ahead
forecast error” (Diebold and Mariano, 1995, page 254). Therefore, the variance
estimator chosen by Gneiting and Ranjan (2011b) seems to be a reasonable choice.
Gneiting and Ranjan (2011b) prove the asymptotic normality of the test statistic
tn under a moment condition which can be reduced to the rule of thumb that
”the normal approximation for tn is appropriate unless the forecast densities have
infinite moments of low order” (Gneiting and Ranjan, 2011b, page 417).

Diks et al. (2011) only consider 1-step-ahead forecasts and use the conditional
(CL) and censored (CSL) likelihood scoring rules to rank competing density fore-
casts. They propose the use of a heteroskedasticity and autocorrelation-consistent
(HAC) variance estimator σ̂2

n, as for example

σ̂2
n = γ̂0 + 2

J−1∑
j=1

aj γ̂j,

where γ̂j denotes the lag-j-sample covariance of the sequence of score differences,
aj = 1−j

J
are the Bartlett weights and J = bn1/4c. This estimation procedure takes

into account autocorrelation up to a lag larger than k−1 dependent on the sample
size n.

Taking into account autocorrelation up to a lag larger than k− 1 following Diks
et al. (2011) will in general lead to larger estimates of the asymptotic variance than
those obtained following Gneiting and Ranjan (2011b). Given that the same scor-
ing rules are used, this results in smaller absolute values of the test statistic tn and
suggests less significant differences of the predictive performance of two competing
forecasting procedures. Therefore, we expect a tendency to find more significant
score differences when following Gneiting and Ranjan (2011b), whose approach is
based on the assumption of at most (k − 1)-dependence. This assumption was
motivated by theoretical results and can be readily assessed empirically (Diebold
and Mariano, 1995).

In the current chapter, we have seen that during the last two decades, a large
variety of methods to assess the predictive performance of probabilistic forecasts
of continuous, real-valued variables has been developed. The evaluation of prob-
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abilistic forecasts should follow the paradigm of maximizing the sharpness of the
predictive distribution subject to calibration. Proper scoring rules provide sum-
mary measures of predictive performance by simultaneously addressing calibration
and sharpness (Gneiting and Ranjan, 2011b). The literature concerned with eval-
uation of probabilistic forecasts of rare and extreme events is more sparse. The
natural approach of applying standard evaluation procedures after selecting ex-
treme events and discarding non-extreme events is bound to fail since it results
in the use of improper scoring rules. Therefore, forecast evaluation should not be
carried out conditional on the outcome being an extreme event. However, proper
scoring rules such as the CRPS or the logarithmic score can be extended by us-
ing weight functions which emphasize specific regions of interest. In the following
chapter, we illustrate these results using a simulation study. Furthermore, we will
compare the approaches to forecast evaluation for extreme events of Gneiting and
Ranjan (2011b) and Diks et al. (2011).
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3. Simulation study

3.1. Mathematical framework

Based on the simulation study of Gneiting et al. (2007), we consider a simulation
study where at each time t = 1, 2, . . . , T , nature chooses a distribution Gt which we
think of as the true data-generating process and each forecaster picks a predictive
distribution Ft. Here, Gt = N (µt, 1), where µt is drawn from a standard normal
distribution for each t. In a weather-forecasting context, µt might be thought of as
an ”accurate description of the latest observable state of the atmosphere, summa-
rizing all information that a forecaster might possibly have access to” (Gneiting
et al., 2007, page 244).

We compare different forecasting procedures which are summarized in Table 3.1.
The ideal forecaster has complete knowledge of the current state µt. In the frame-
work of Section 2.1.1, his information basis contains all available information and
he issues the ideal probabilistic forecast relative to this information basis which is
the true distribution of the data-generating process. Thus, this forecast is ideal
relative to the sub-σ-algebra generated by µt and the probabilistic forecast is prob-
abilistically and marginally calibrated. The climatological forecaster predicts the
unconditional distribution Ft = N (0, 2) which is ideal relative to the trivial sub-
σ-algebra and is thus probabilistically and marginally calibrated as well. The
unfocused forecaster observes µt, but adds a bias in form of a mixture compo-
nent which is a normal distribution with standard deviation 1 and mean value
1 or −1 with equal probability. Gneiting et al. (2007) show that the unfocused
forecaster is probabilistically calibrated, but not marginally calibrated. The sign-
biased forecaster correctly observes µt except for the sign and is marginally, but not
probabilistically calibrated (Gneiting et al., 2007). Therefore, for both the unfo-
cused and the sign-biased forecaster, there exists no sub-σ-algebra such that they
are ideal relative to this sub-σ-algebra. This follows directly from Theorem 2.6

Table 3.1.: Mathematical scenario for the simulation study with Gt = N (µt, 1),
µt ∼ N (0, 1), a = 2.5 and τt = ±1 with probability 1

2
each.

Forecaster Ft

Ideal N (µt, 1)
Climatological N (0, 2)
Unfocused 1

2
{N (µt, 1) +N (µt + τt, 1)}

Sign-biased N (−µt, 1)
Biased N (µt + a, 1)
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(Gneiting and Ranjan, 2011a). The biased forecaster here adds a constant bias of
2.5 to the true mean value µt. Due to this constant bias, the biased forecaster will
obviously be neither probabilistically nor marginally calibrated.

Gneiting et al. (2007) use their simulation study for the purpose of illustrating
the disconcerting result that forecast evaluation solely based on checking the PIT
histograms for uniformity is unable to distinguish between the ideal, the climato-
logical and the unfocused forecaster. Despite predicting the true CDF, the ideal
forecaster would not be preferred over these competitors. The authors address this
deficiency by proposing the paradigm of maximizing the sharpness of the predictive
distributions subject to calibration and show that proper scoring rules such as the
CRPS or the logarithmic score are able to distinguish between the ideal forecaster
and his competitors.

Here, we are interested in the predictive performance of the competing forecast-
ing procedures in case of extreme events. We will briefly summarize the results of
Gneiting et al. (2007) and then turn to an application of the evaluation procedures
for probabilistic forecasts discussed in the previous chapter. This will provide fur-
ther insight into differences, advantages and disadvantages of the two approaches
proposed by Gneiting and Ranjan (2011b) and Diks et al. (2011).

3.2. Results for all events

3.2.1. Calibration

We repeat the prediction experiment T = 10 000 times. As noted above, theoretical
results suggest that the ideal, the climatological and the unfocused forecaster are
probabilistically calibrated. Figure 3.1 shows PIT histograms for all forecasters.
While only minor deviations from uniformity for the ideal, the climatological and
the unfocused forecaster empirically confirm these findings, the U-shaped PIT
histogram of the sign-biased forecaster indicates underdispersion and prediction
intervals that are too narrow on average. The triangle-shaped PIT histogram of the
biased forecaster is caused by the constant bias and indicates lack of probabilistic
calibration.

Marginal calibration can be assessed not only by comparing predictive and ob-
served cumulative distribution functions, but also by comparing marginal predic-
tive densities, as shown in Figure 3.2. The marginal density curves of the cli-
matological and the sign-biased forecaster are identical to the curve of the ideal
forecaster, who predicts the true density of the observations. Therefore, the ideal,
the climatological and the sign-biased forecaster are marginally calibrated. The
marginal density curve of the unfocused forecaster matches the true marginal den-
sity in location, but not in shape, with a standard deviation which seems slightly
too high. Due to the constant mean bias, the marginal density curve of the biased
forecaster matches the true marginal density in shape, but not in location, being
shifted to the right by 2.5. In accordance with the theoretical results, both the
unfocused and the biased forecaster appear to be not marginally calibrated.
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Figure 3.1.: PIT histograms for (a) the ideal forecaster, (b) the climatological
forecaster, (c) the unfocused forecaster, (d) the sign-biased forecaster
and (e) the biased forecaster for 10 000 repetitions of the prediction
experiment.
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Figure 3.2.: Marginal predictive densities of the forecasters given in Table 3.1.
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Table 3.2.: Average values of the CRPS, the LogS, the mean absolute error (MAE)
and the empirical coverage (in %) of 80% prediction intervals.

Forecaster CRPS LogS MAE Coverage

Ideal 0.56 1.42 0.80 80.1
Climatological 0.79 1.76 1.12 80.4
Unfocused 0.63 1.53 0.89 80.3
Sign-biased 1.38 3.39 1.77 43.6
Biased 1.97 4.52 2.49 11.1

3.2.2. Summary measures

Table 3.2 shows values of various summary measures of predictive performance
for the competing forecasters. Here, CRPS and LogS denote the mean continuous
ranked probability score, 1

T

∑T
t=1 CRPS(Ft, yt), and the mean logarithmic score,

1
T

∑T
t=1 LogS(Ft, yt), respectively. The mean absolute error (MAE) is the mean

absolute difference between the mean value of the predictive distribution and the
observation. The average coverage of, for example, 80% prediction intervals is the
relative frequency with which observations fall into 80% prediction intervals cen-
tered around the mean value of the predictive distribution. The average coverage
can be used to assess probabilistic calibration which is indicated by values close to
the theoretical coverage of 80%. As expected, the ideal forecaster outperforms any
other forecasting procedure in terms of these summary measures. Being neither
probabilistically nor marginally calibrated, the biased forecaster performs by far
the worst. However, as we see below, these results change dramatically if only
subsets of extreme events are considered.

3.3. Results for extreme events

3.3.1. Calibration

Here, we condition the observations on being extreme events. More precisely, we
select all observations larger than the 99th percentile of the marginal distribution
of the observations and discard the rest. PIT histograms for this subset of ex-
treme events are shown in Figure 3.3. Although the ideal, the climatological and
the unfocused forecaster are probabilistically calibrated, they appear not to be
probabilistically calibrated for the extreme events. The same holds for the sign-
biased forecaster, who is not probabilistically calibrated, neither for all events nor
for extreme events. The biased forecaster still appears not to be probabilistically
calibrated. However, the deviations from uniformity are much smaller compared
to the competing forecasting procedures.

A similar observation can be made when marginal calibration is examined. Fig-
ure 3.4 shows marginal predictive densities conditional on the observation being
an extreme event. Although there was a large concordance between the marginal
densities of the ideal, the climatological, the unfocused and the sign-biased fore-
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Figure 3.3.: PIT histograms for (a) the ideal forecaster, (b) the climatological fore-
caster, (c) the unfocused forecaster, (d) the sign-biased forecaster and
(e) the biased forecaster using all observations larger than the 99th
percentile of the marginal distribution of the observations.

caster in the unconditional case, none of these competing conditional predictive
densities matches the true marginal conditional density of the observation in lo-
cation or shape. Note that this in particular holds for the ideal forecaster due
to the difference between the unconditional and the conditional distribution. The
conditional predictive density of the biased forecaster seems to have large parts
of its mass in the correct location, while the shape strongly differs from the true
marginal conditional density.

3.3.2. Proper scoring rules restricted to extreme events

Table 3.3 shows the results of the summary measures for the subset of extreme
events. The biased forecaster outperforms all competing forecasting procedures in
terms of all summary measures and would be preferred over the ideal forecaster
although the ideal forecaster issues the true unconditional distribution of the ob-
servations. Therefore, if the forecast evaluation was only based on this subset of
extreme events, skillful and calibrated forecasting procedures would be discredited.

Figure 3.5 shows plots of the summary measures as functions of the thresh-
old which defines extreme events. For example, the value of the mean restricted
CRPS for the threshold 1.5 is the value of the mean CRPS computed only based
on all observations larger than 1.5. The values of mean CRPS, mean LogS and

35



−4 −2 0 2 4 6

0.
0

0.
5

1.
0

1.
5

x

C
on

di
tio

na
l d

en
si

ty

ideal
climatological
unfocused
sign−biased
biased

Figure 3.4.: Marginal predictive densities of the forecasters given in Table 3.1 given
that the observation is larger than the 99th percentile of the marginal
distribution, for which the corresponding conditional density is indi-
cated by the dotted black line.

Table 3.3.: Average values of the CRPS, the LogS, the mean absolute error (MAE)
and the empirical coverage (in %) of 80% prediction intervals for the
subset of observations larger than the 99th percentile of the marginal
distribution of the observations.

Forecaster CRPS LogS MAE Coverage

Ideal 1.36 8.47 1.86 18.1
Climatological 2.92 4.75 3.72 0.0
Unfocused 1.34 2.69 1.84 30.0
Sign-biased 5.01 16.87 5.58 0.0
Biased 0.55 1.38 0.79 81.9
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Figure 3.5.: Summary measures for subsets of extreme values as functions of the
threshold defining extreme values in terms of quantiles of the marginal
distribution (left column) or values (right column).
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MAE increase for larger thresholds for all forecasting procedures except the biased
forecaster, for which they decrease. For thresholds larger than around 2, which ap-
proximately corresponds to the 90th percentile of the marginal distribution of the
observations, the biased forecaster outperforms any competing forecasting proce-
dure. In particular, the biased forecaster outperforms the ideal forecaster although
the ideal forecaster predicts the true unconditional density. Therefore, we observe
what was to be expected from the theoretical results of Theorem 2.27: Restrict-
ing proper scoring rules to extreme events corresponds to the use of an improper
scoring rule. Forecast evaluation based on subsets of extreme events will discredit
skillful and calibrated forecasting procedures, even the ideal forecaster who predicts
the true unconditional density.

Qualitatively, the same behavior can be observed for the average coverage of
80% prediction intervals, see bottom row of Figure 3.5. For mostly non-extreme
events, the ideal, the climatological and the unfocused forecaster are probabilis-
tically calibrated, the average coverage is close to the theoretical coverage of 80%.
For subsets of more and more extreme events, the coverage progressively decreases.
On the contrary, the coverage of 80% prediction intervals for the biased forecaster
approaches the theoretical value of 80% for more and more extreme thresholds.

Instead of plotting the values of scoring rules as functions of the threshold defin-
ing extreme events, we may also use test of equal performance by computing values
of Diebold-Mariano-type test statistics

tn =
√
n
S̄fn − S̄gn
σ̂n

(3.1)

depending on this threshold, where S denotes the corresponding restricted scoring
rule. Computing p-values associated with the values of the test statistic under
the standard normal hypothesis gives us further insight into the significance of the
observed score differences.

Figure 3.6 shows the test statistics of the test of equal performance comparing
the ideal and the biased forecaster for the restricted CRPS (left column) and the
restricted LogS (right column) together with p-values associated with the values of
the test statistic under the standard normal hypothesis. If the test statistic attains
values smaller than 0, we prefer the ideal forecaster over the biased forecaster,
otherwise we prefer the biased forecaster over the ideal forecaster.

However, note that the standard normal hypothesis might be violated for larger
thresholds due to the increasingly smaller sample sizes. For the restricted CRPS,
σ̂n was estimated as proposed by Gneiting and Ranjan (2011b), for the restricted
LogS, the HAC estimator proposed by Diks et al. (2011) was used. Qualitatively
comparable results were obtained if the respectively different variance estimation
procedure was used. However, since we are interested in studying proper scoring
rules for the evaluation of probabilistic forecasts for extreme events and we already
saw that restricted versions of the CRPS and the LogS are improper, we postpone
the analysis of variance estimation effects to the next section where we will in-
vestigate the threshold-weighted CRPS as well as the conditional and censored
likelihood scoring rule.
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Figure 3.6.: Top row: Diebold-Mariano-type test statistic (3.1) for test of equal
performance comparing the ideal and the biased forecaster as functions
of the threshold which defines extreme events, using (a) the restricted
CRPS and (b) the restricted LogS. Bottom row: Corresponding p-
values under the standard normal hypothesis, the dashed lines indicate
a 5% significance level.

For both restricted CRPS and restricted LogS, the Diebold-Mariano-type test
statistics for the comparison of the ideal and the biased forecaster shown in Fig-
ure 3.6 are negative up to a threshold value of approximately the 90th percentile
of the marginal distribution of the observations, which corresponds to a value of
around 2, and positive for larger threshold values. The measured score differences
are significant, except for a small interval of thresholds around the 90th percentile
of the marginal distribution as indicated by the corresponding p-value plots. In
particular, the tests of equal performance prefer the biased forecaster over the
ideal forecaster for extreme events and the measured score differences are signifi-
cant even for small significance levels. This observation again confirms our finding
of the impropriety of the restricted CRPS and the restricted LogS.

3.3.3. Proper scoring rules for extreme events

Gneiting and Ranjan (2011b) and Diks et al. (2011) propose proper scoring rules
for extreme events which were discussed in 2.3.2. We apply the threshold-weighted
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Figure 3.7.: Diebold-Mariano-type test statistics (3.1) for tests of equal perfor-
mance using the threshold-weighted CRPS to compare the ideal fore-
caster with (a) the climatological, (b) the unfocused, (c) the sign-
biased and (d) the biased forecaster as functions of the threshold r in
(3.2). The second row shows corresponding p-values under the stan-
dard normal hypothesis, with dashed lines indicating a 5% significance
level.

continuous ranked probability score,

CRPSt(f, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2w(z)dz,

the conditional likelihood scoring rule,

CL(f, y) = −w(y) log

(
f(y)∫

w(s)f(s)ds

)
,

and the censored likelihood scoring rule,

CSL(f, y) = −
[
w(y) log f(y) + (1− w(y)) log

(
1−

∫
w(s)f(s)ds

)]
,

to the competing forecasting procedures and study effects of sample size, variance
estimation and the choice of weight functions. At first, we will assume the weight
function w to be an indicator function,

wr(x) = 1(x ≥ r), (3.2)

where r ∈ R is a real-valued threshold. Later, we will study different weight
functions.

Figure 3.7 shows plots of the test statistic tn as a function of r, in terms of
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Figure 3.8.: Diebold-Mariano-type test statistics (3.1) for tests of equal perfor-
mance using the conditional likelihood scoring rule to compare the
ideal forecaster with (a) the climatological, (b) the unfocused, (c) the
sign-biased and (d) the biased forecaster as functions of the thresh-
old r in (3.2). The second row shows corresponding p-values under
the standard normal hypothesis, with dashed lines indicating a 5%
significance level.

quantiles of the marginal distribution of the observations, for the comparison of
the ideal forecaster and the competing forecasting procedures using the threshold-
weighted CRPS. In case of negative values of the test statistic the ideal forecaster
is preferred over the competitor, for positive values the competitor is preferred
over the ideal forecaster. The asymptotic variance of the score difference was
estimated as proposed by Gneiting and Ranjan (2011b). We will investigate the
effects of different variance estimation procedures below. In all four cases, the
ideal forecaster is preferred over his competitor for all choices of r, all observed
score differences are significant under the standard normal hypothesis. Note that
here, the sample size equals T for any choice of r, which was not the case for the
restricted scoring rules used in the previous section. Thus, the standard normal
hypothesis is much more likely to hold in the case of larger values of r as well.

Figures 3.8 and 3.9 show analogous plots for the conditional and the censored
likelihood scoring rule. Here, the asymptotic variance of the score differences was
estimated as proposed by Diks et al. (2011). For the conditional likelihood scoring
rule, all observed values of the test statistics are negative, however, the observed
differences are much less significant under the standard normal hypothesis. The
score differences between the ideal and the unfocused forecaster are only signif-
icant up to approximately r = 0.5 which corresponds to the 60th percentile of
the marginal distribution of the observations. The conditional likelihood scor-
ing rule is furthermore unable to significantly distinguish between the predictive
performance of the ideal and the biased forecaster for thresholds larger than the
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Figure 3.9.: Diebold-Mariano-type test statistics (3.1) for tests of equal perfor-
mance using the censored likelihood scoring rule to compare the ideal
forecaster with (a) the climatological, (b) the unfocused, (c) the sign-
biased and (d) the biased forecaster as functions of the threshold r in
(3.2). The second row shows corresponding p-values under the stan-
dard normal hypothesis, with dashed lines indicating a 5% significance
level.

97th percentile of the marginal distribution of the observations. The results for
the censored likelihood scoring rule are qualitatively equivalent to those for the
threshold-weighted CRPS. However, in case of the unfocused forecaster, the score
differences measured by the censored likelihood scoring rule are not significant for
values of r larger than the 95th percentile of the marginal distribution of the obser-
vations. The corresponding score differences measured by the threshold-weighted
CRPS are significant for all thresholds.

To summarize, the results of the simulation study are coherent with the theoret-
ical results of Gneiting and Ranjan (2011b) and Diks et al. (2011) in that the three
scoring rules indeed appear to be proper and are well able to distinguish between
the predictive performance of the ideal forecaster and various competitors. How-
ever, for predictive distributions with similar tail behavior, the score differences
measured by the conditional likelihood scoring rule are much less significant than
the results for the other two scores. This holds, for example, for the comparison
of the ideal and the unfocused forecaster. Note that Diks et al. (2011) suggest to
only use the CL scoring rule if similar probabilities are assigned to the region of
interest. However, that is the case here.

The remainder of this chapter is dedicated to a detailed comparison of the effects
of variations of sample sizes, variance estimation procedures and weight functions
on the ability of the different proper scoring rules to significantly distinguish be-
tween the ideal forecaster and his competitors.
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Figure 3.10.: P-values associated with the observed values of the Diebold-Mariano-
type test statistics for tests of equal performance using the threshold-
weighted CRPS to compare the ideal with (a) the unfocused and (b)
the biased forecaster as functions of the threshold r, for different
sample sizes. The dashed lines indicate a 5% significance level.

Sample size

To begin with effects of the sample size, we focus on tests of equal performance of
ideal and unfocused, and ideal and biased forecaster. This seems to be a reasonable
choice because on the one hand, the unfocused forecaster is only outperformed by
the ideal forecaster and Figures 3.7, 3.8 and 3.9 indicate that the least significant
score differences are measured between the ideal and the unfocused forecaster. On
the other hand, we also want to compare the ideal and the biased forecaster in order
to see if any disconcerting results as for the restricted CRPS and LogS occur.

We repeat the simulation study with T = 1 000 and T = 100, the asymptotic
variance of the score differences is estimated as above. For all choices of r and
every proper scoring rule, the test statistics only attain strictly negative values in
favor of the ideal forecaster. Thus, the proper scoring rules can also be used to
distinguish predictive performance for smaller sample sizes. However, the measured
skill differences are less significant for smaller sample sizes as indicated by the plots
of p-values as functions of r in terms of quantiles of the marginal distribution of
the observations, which are shown in Figures 3.10 (threshold-weighted CRPS), 3.11
(CL scoring rule) and 3.12 (CSL scoring rule).

The threshold-weighted CRPS differences between the ideal and the unfocused
forecaster are significant under the standard normal hypothesis up the 60th per-
centile of the marginal distribution of the observations for sample size 100 and up
to the 90th percentile for sample size 1 000. The threshold-weighted CRPS differ-
ences between the ideal and the biased forecaster are significant for all thresholds
and sample sizes. If the CL scoring rule is used, basically none of the observed
score differences between the ideal and the unfocused forecaster are significant for
T = 100 and T = 1 000, even when comparing the ideal and the biased forecaster,
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Figure 3.11.: P-values associated with the observed values of the Diebold-Mariano-
type test statistics for tests of equal performance using the CL scoring
rule to compare the ideal with (a) the unfocused and (b) the biased
forecaster as functions of the threshold r, for different sample sizes.
The dashed lines indicate a 5% significance level.
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Figure 3.12.: P-values associated with the observed values of the Diebold-Mariano-
type test statistics for tests of equal performance using the CSL scor-
ing rule to compare the ideal with (a) the unfocused and (b) the
biased forecaster as functions of the threshold r, for different sample
sizes. The dashed lines indicate a 5% significance level.
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the observed score differences are insignificant for thresholds larger than the 85th
(sample size 100) or the 95th (sample size 1 000) percentile of the marginal dis-
tribution of the observations. The CSL scoring rule performs better in comparing
the ideal and the biased forecaster, all observed score differences are significant.
However, if the ideal and the unfocused forecaster are compared for smaller sample
sizes, the score differences are not significant for all thresholds (sample size 100)
or thresholds larger than 0.55 (sample size 1 000) which corresponds the to 65th
percentile of the marginal distribution of the observations.

Thus, CL and CSL scoring rule seem to be much more prone to score differences
being insignificant due to smaller sample sizes than the threshold-weighted CRPS.
This effect might be caused by the differences in the variance estimation. If the
variance estimation procedure proposed by Gneiting and Ranjan (2011b) is used
for the CL and CSL scoring rule as well, the results for the CSL scoring rule
are qualitatively equivalent to those for the threshold-weighted CRPS. The CL
scoring rule, however, is still not able to significantly distinguish between the ideal
and the unfocused forecaster for thresholds larger than the 70th percentile of the
marginal distribution of the observations and furthermore fails to detect significant
score differences for thresholds larger than the 90th percentile if the ideal and the
biased forecaster are compared. In the following, variance estimation effects will
be discussed in more detail.

Variance estimation

The approaches to forecast evaluation for extreme events of Gneiting and Ranjan
(2011b) and Diks et al. (2011) differ not only in their choice of the scoring rule
S, but also in how the asymptotic variance of the score differences is estimated.
As discussed in Section 2.3.2, Gneiting and Ranjan (2011b) follow Diebold and
Mariano (1995) by only taking into account auto-correlation up to a lag of at most
k − 1. Diks et al. (2011), on the contrary, take into account autocorrelation up to
a lag larger than k − 1.

Figures 3.13 and 3.14 illustrate the effect of using these two different variance
estimation procedures. For larger differences in forecasting quality, as for example
if the ideal and the biased forecaster are compared (Figure 3.13), the variance esti-
mation procedure does not effect the significance of the observed score differences.
Except for the CL scoring rule and very large thresholds, any combination of scor-
ing rule and variance estimation procedure yields significant score differences for
all thresholds. The ideal forecaster is always preferred over the biased forecaster.

However, if forecasters of similar predictive performance are compared, larger
dissimilarities in the significance of the score differences can be observed. Fig-
ure 3.14 shows test statistics and corresponding p-values for the three scoring rules
and the two different variance estimation procedures comparing the ideal and the
unfocused forecaster. As expected, by taking into account autocorrelation up to a
larger lag, the values of tn are much smaller if the asymptotic variance is estimated
as proposed by Diks et al. (2011). Although still preferring the ideal forecaster
over the unfocused forecaster, the observed score differences thus are much less
significant compared to those obtained by employing the variance estimation pro-
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Figure 3.13.: Test statistics tn for tests of equal performance using (a) the
threshold-weighted CRPS, (b) CL and (c) CSL scoring rule to com-
pare the ideal and the biased forecaster as functions of the threshold
r. The asymptotic variance was estimated as proposed by Gneiting
and Ranjan (2011b) (GR, blue) and Diks et al. (2011) (DPvD, red).
The bottom row shows the corresponding p-values under the stan-
dard normal hypothesis. Note that for clarity of the presentation,
the scale of the test statistics varies in the plots in the top row.

cedure proposed by Gneiting and Ranjan (2011b). For both the threshold-weighted
CRPS and the CL scoring rule, the observed score differences are not significant
for thresholds larger than approximately the 70th percentile of the marginal dis-
tribution of the observations if the HAC estimator of Diks et al. (2011) is used.
Neither are the censored likelihood score differences for thresholds larger than the
corresponding 95th percentile. As opposed to this, the score differences for all scor-
ing rules are significant for all thresholds if the variance is estimated as proposed
by Gneiting and Ranjan (2011b), except for the CL scoring rule and very large
thresholds.

The estimator of the asymptotic variance proposed by Gneiting and Ranjan
(2011b) is based on the theoretical assumption of Diebold and Mariano (1995)
that optimal k-step-forecast errors are at most (k − 1)-dependent. However, this
assumption of (k − 1)-dependence might be violated in practice due to various
reasons. In our simulation study, the values of the scoring rules, which can be in-
terpreted as forecast errors, are 0-dependent by construction. This can empirically
be confirmed by computing estimates of the autocorrelation, as shown in Fig-
ure 3.15 for the ideal forecaster. Qualitatively equivalent results can be obtained
for all other forecasting procedures. Thus, the approach to variance estimation
used by Gneiting and Ranjan (2011b) seems to be a reasonable choice for our sim-
ulation study, while the approach proposed by Diks et al. (2011) takes into account
unnecessary large amounts of autocorrelation up to lag 10.

46



0.0 0.2 0.4 0.6 0.8 1.0

−
40

−
30

−
20

−
10

0
10

(a)

Threshold (quantile)

t n

GR
DPvD

0.0 0.2 0.4 0.6 0.8 1.0

−
40

−
30

−
20

−
10

0
10

(b)

Threshold (quantile)

t n

GR
DPvD

0.0 0.2 0.4 0.6 0.8 1.0

−
40

−
30

−
20

−
10

0
10

(c)

Threshold (quantile)

t n

GR
DPvD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold (quantile)

p−
va

lu
e

GR
DPvD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold (quantile)

p−
va

lu
e

GR
DPvD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold (quantile)

p−
va

lu
e

GR
DPvD

Figure 3.14.: Test statistics tn for tests of equal performance using (a) the
threshold-weighted CRPS, (b) CL and (c) CSL scoring rule to com-
pare the ideal and the unfocused forecaster as functions of the thresh-
old r. The asymptotic variance was estimated as proposed by Gneit-
ing and Ranjan (2011b) (GR, blue) and Diks et al. (2011) (DPvD,
red). The bottom row shows the corresponding p-values under the
standard normal hypothesis.
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Figure 3.15.: Autocorrelation of the values of (a) threshold-weighted CRPS, (b)
CL and (c) CSL scoring rule for the ideal forecaster.
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Figure 3.16.: Top row: Test statistics of the test of equal performance of the
ideal and the biased forecaster as functions of the threshold r for
(a) threshold-weighted CRPS, (b) CL and (c) CSL scoring rule using
the normal CDF weight function (3.3). The asymptotic variance was
estimated as proposed by Gneiting and Ranjan (2011b) (GR, blue)
and Diks et al. (2011) (DPvD, red). Bottom row: Corresponding
p-values under the standard normal hypothesis.

Weight functions

Thus far, we only used weight functions of the form

wr(x) = 1(x ≥ r)

with r ∈ R in order to emphasize extreme events. However, proper scoring rules
based on this weight function are not able to distinguish between two competing
density forecasts with identical tail behavior on [r,∞), but different behavior on
(−∞, r). In order to emphasize the right tail of a distribution, Gneiting and Ranjan
(2011b) propose the weight function

w(x) = Φa,b(x),

where Φa,b denotes the CDF of a normal distribution with mean a and standard
deviation b. In the remainder of this chapter, we investigate the use of this weight
function in comparison to the indicator function used before. In order to obtain a
similar threshold dependence, we set a = r and b = 1 so that

wr(x) = Φr,1(x). (3.3)

Figures 3.16 and 3.17 show the test statistics as functions of r in terms of quan-
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Figure 3.17.: Top row: Test statistics of the test of equal performance of the ideal
and the unfocused forecaster as functions of the threshold r for (a)
threshold-weighted CRPS, (b) CL and (c) CSL scoring rule using
the normal CDF weight function (3.3). The asymptotic variance was
estimated as proposed by Gneiting and Ranjan (2011b) (GR, blue)
and Diks et al. (2011) (DPvD, red). Bottom row: Corresponding
p-values under the standard normal hypothesis.

tiles of the marginal distribution of the observations using the normal CDF weight
function as defined in (3.3) to compare the ideal and the biased forecaster (Fig-
ure 3.16), and the ideal and the unfocused forecaster (Figure 3.17). The results
are equivalent to those obtained if the indicator weight function wr(x) = 1(x ≥ r)
is used. The ideal forecaster is preferred over the competitor for all choices of the
threshold r. The observed score differences appear to be slightly more significant
if the asymptotic variance is estimated as proposed by Diks et al. (2011) compared
to the results for this estimation procedure and the indicator weight function. If
the asymptotic variance is estimated as proposed by Gneiting and Ranjan (2011b),
all observed score differences are significant for all scoring rules.

We can conclude that here, the choice of an indicator weight function wr(x) =
1(x ≥ r) is admissible as well. However, if density forecasts with identical tail
behavior, but different behavior on the remaining part of the real line are compared,
the normal CDF weight function wr(x) = Φr,1(x) should be used instead.

3.4. Summary

Our simulation study empirically confirms the theoretical results of the previous
chapter and suggests that the discussed proper scoring rules for extreme events
work well. In our simulation study, all proper scoring rules for extreme events
prefer the ideal forecaster over the biased forecaster which is not the case if proper
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scoring rules are restricted to subsets of extreme events. However, the observed
score differences between the ideal forecaster and his competitors are not always
significant.

In general, the score differences measured by the conditional likelihood scoring
rule tend to be less significant if forecasters with similar predictive performance
are compared. Diks et al. (2011) note that the CL scoring rule should only be used
to compare forecasters who assign similar probabilities to the region of interest.
However, we found that the CL scoring rule is unable to distinguish between the
ideal and the unfocused forecaster despite the similarity of their marginal densities.

A comparison of the approaches of Gneiting and Ranjan (2011b) and Diks et al.
(2011) indicates that the smaller the sample size, the less significant the observed
score differences. The threshold-weighted CRPS seems to be less prone to insignifi-
cant score differences due to smaller sample sizes. However, this is mainly an effect
of the different approaches to estimating the asymptotic variance of the score differ-
ences. The variance estimation procedure proposed by Diks et al. (2011) generally
produces less significant score differences by taking into account autocorrelation
up to a larger lag. The variance estimation procedure proposed by Gneiting and
Ranjan (2011b) is based on the theoretical result of at most (k− 1)-dependence of
the forecast errors which we empirically confirmed here. Therefore, in this situa-
tion, the variance estimation procedure proposed by Gneiting and Ranjan (2011b)
seems to be the better choice. Using this estimation procedure, all proper scoring
rules yield significant score differences for nearly all thresholds. In the situation of
our simulation study, different choices of the weight function to emphasize extreme
events result in equivalent decisions.

Both the threshold-weighted CRPS and the censored likelihood scoring rule are
well able to distinguish between the ideal forecaster and all competitors. The
variance estimation procedure should be chosen dependent on the amount of au-
tocorrelation empirically found in the vector of score differences.
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4. Case study

4.1. Introduction

In an application to wind gust forecasting, we investigate the forecaster’s dilemma
and the proper scoring rules for extreme events proposed by Gneiting and Ranjan
(2011b) and Diks et al. (2011) in a real-world example. A wind gust is a sudden,
brief increase in wind speed during a specific time interval. The exact technical
definition varies dependent on the observation system at hand. Accurate forecasts
of wind speeds are necessary in many applications such as agriculture, aviation or
energy production. In particular, accurate and reliable forecasts of wind gust are
of importance for minimizing damages and human losses in high-impact extreme
weather events. Wind gusts furthermore influence the design of buildings and
bridges (Friederichs et al., 2009; Thorarinsdottir and Johnson, 2012).

However, wind gust observations are sparse both on the spatial and the temporal
scale, and are not a standard output from numerical weather prediction (NWP)
models. Our case study is based on the work of Thorarinsdottir and Johnson
(2012) who propose a forecasting framework for gust speed when maximum wind
speed forecasts are available. In a first step, an ensemble forecast utilizing multiple
runs of an NWP model with different initial conditions and numerical represen-
tation of the atmosphere is obtained (Gneiting and Raftery, 2005). Calibrated
and sharp probabilistic 48-hour-ahead forecasts of maximum gust speed are then
obtained using the ensemble predictions of maximum wind speeds, gust factors,
and nonhomogeneous Gaussian regression (NGR) (Thorarinsdottir and Gneiting,
2010).

We propose competing forecasting procedures with the objective of accurate
predictions of extreme gust speeds by employing generalized extreme value (GEV)
and generalized Pareto (GP) distributions and investigate the forecast evaluation
procedures discussed in Chapter 2. In addition, we propose an improvement of the
NGR forecasting procedure for wind speed of Thorarinsdottir and Gneiting (2010)
where we use a regime-switching forecasting procedure dependent on the median
ensemble forecast.

4.2. Gust speed forecasting

4.2.1. Nonhomogeneous Gaussian Regression

The gust speed forecasting procedure proposed by Thorarinsdottir and Johnson
(2012) consists of three parts. Based on ensemble postprocessing procedures lead-
ing to probabilistic forecasts of daily maximum wind speed, and estimates of the
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probability of gust, probabilistic forecasts of maximum gust speed conditional on
gust being observed are obtained.

Predictive distributions of wind speed can be modeled as a mixture of gamma
distributions using Bayesian model averaging (BMA) as proposed by Sloughter
et al. (2010) or as normal distributions truncated at 0 using nonhomogeneous
Gaussian regression (NGR) as proposed by Thorarinsdottir and Gneiting (2010).
Both methods provide calibrated and sharp probabilistic wind speed forecasts.
For the purpose of gust speed forecasting, the NGR approach is more appealing
if the assumption of a multiplicative relationship between wind speed and gust
speed is made. Following the meteorological tradition of estimating gust speed
by multiplying wind speed forecasts with gust factors, predictive truncated nor-
mal distributions for gust speed can immediately be obtained since the family of
truncated normal distributions is closed under affine transformations.

We will now briefly summarize the NGR approach to gust speed forecasting
proposed by Thorarinsdottir and Johnson (2012). Let Y denote wind speed and let
X1, . . . , Xk denote distinguishable ensemble member forecasts for Y . Following the
NGR approach of Thorarinsdottir and Gneiting (2010), the predictive distribution
for wind speed is modeled by a truncated normal distribution with a cutoff at 0,

Y |X1, . . . , Xk ∼ N[0,∞)(µ, σ
2),

where the location parameter µ = a + b1X1 + · · · + bkXk is an affine function of
the ensemble forecasts and the variance σ2 = c + dS2 is an affine function of the
ensemble variance S2 = 1

k

∑k
i=1(Xi − X̄)2. The density of this truncated normal

distribution is given by

f(y) =
1

Φ
(
µ
σ

) [ 1

σ
ϕ

(
y − µ
σ

)]
for y > 0 and 0 otherwise, where ϕ and Φ denote the density and the cumulative
distribution function of the standard normal distribution, respectively.

The parameters a, b1, . . . , bk, c, d can be estimated using minimum CRPS esti-
mation over a rolling training period which consists of the observations of the last
m days. The parameters are estimated regionally in that training data from all
stations are pooled together. Under the assumption of a multiplicative relationship
between the wind speed Y and the gust speed Z,

Z = γY

for a gust factor γ ≥ 1, we obtain a predictive distribution

Z|X1, . . . , Xk ∼ N[0,∞)(γµ, [γσ]2).

The estimation of gust factors and maximum gust speed depends on the defini-
tion of wind gust. Thorarinsdottir and Johnson (2012) use data from the North
American Automated Surface Observation System (ASOS) network, where only
gust speeds of at least 14 knots (1 kt = 0.514 m s−1) are reported. Two separate
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gust factors for the probability of gust and the gust speed forecasts conditional on
gust being observed are estimated. The probability of gust being observed is

P(Z ≥ 14|X1, . . . , Xk) =
1

Φ
(
µ
σ

) [1− Φ

(
14− γ1µ

γ1σ

)]
.

Given NGR parameter estimates for µ and σ, the parameter γ1 is estimated by
minimizing the Brier score (Brier, 1950),

1

J

J∑
j=1

[
P(Zj ≥ 14|Xj

1 , . . . , X
j
k)− 1{Zj observed}

]2
,

where the sum extends over all forecast cases in the training set.

The predictive distribution of gust speed conditional on gust being observed and
given NGR parameter estimates for µ and σ is N[14,∞)(γ2µ, [γ2σ]2). The param-
eter γ2 can be estimated using minimum CRPS estimation over the gust speed
observations in the training set. Here, the CRPS becomes

CRPS(N[14,∞)(α, β), z) = βλ(α, β)−2

{
z − α
β

λ(α, β)

[
2Φ

(
z − α
β

)
+ λ(α, β)− 2

]
+ 2ϕ

(
z − α
β

)
λ(α, β)− 1√

π

[
1− Φ

(√
2

14− α
β

)]}
,

where λ(α, β) = 1 − Φ[(14 − α)/β] and z ≥ 14. Thus, given NGR parameter
estimates for wind speed, only the estimation of gust factors is required and the
additional computational costs are very low.

4.2.2. Forecasting procedures based on extreme value theory

We will now use theoretical results from extreme value theory (EVT), the branch
of probability theory and statistical science that is concerned with the modeling
of extreme events (Coles, 2001), to obtain accurate and calibrated forecasts for
subsets of extreme gust speeds. EVT uses subsets of large sample values to infer
the extremal behavior of the underlying data-generating process (Coelho et al.,
2008). Large values can be selected in various ways, for example as block maxima
or as values exceeding a high threshold. Here, we fit parameters of generalized
extreme value (GEV) and generalized Pareto (GP) distributions to extreme events
exceeding a high threshold to obtain probabilistic forecasts of gust speed. In the
following, we will only discuss predictive distributions of gust speed conditional on
gust being observed. The probability of gust being observed can be estimated by
minimizing the Brier score as discussed in Section 4.2.1.

Generalized extreme value distribution

The Fisher-Tippett theorem or extreme value theorem describes asymptotic distri-
butions of extreme order statistics Mn = max{X1, . . . , Xn}. It was named after
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Fisher and Tippett (1928), for further details see Reiss and Thomas (2007). Three
types of limits, known as the Gumbel, Fréchet and Weibull family, arise as limit
distribution F (z),

P
(
Mn − bn
an

≤ z

)
−→ F (z), (4.1)

if suitable sequences of real-valued constants an > 0 and bn exist. These families
can be combined into a single family of models having distribution functions of the
form

FGEV (z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
,

defined on the set {z ∈ R : 1+ξ(z−µ)/σ > 0}, where the parameters satisfy −∞ <
µ <∞, σ > 0 and −∞ < ξ <∞. FGEV is the cumulative distribution function of
the generalized extreme value (GEV) distribution with location parameter µ, scale
parameter σ and shape parameter ξ (Coles, 2001). The cases ξ > 0 and ξ < 0
correspond to the Fréchet family and to the Weibull family in (4.1), respectively.
The limit ξ → 0 leads to the Gumbel family with CDF

FGumbel(z) = exp

[
− exp

{
−
(
z − µ
σ

)}]
,

where −∞ < z <∞ (Coles, 2001).

GEV distributions can be used to model extreme values obtained as block max-
ima. The parameters of GEV distributions will be estimated over various training
sets of extreme gust speed observations, using maximum likelihood (ML) estima-
tion or minimum CRPS (minCRPS) estimation.

Maximum likelihood estimation corresponds to minimizing the mean logarithmic
score over the training set. For the GEV distribution, there is no analytical solu-
tion (Coles, 2001), but numerical approximations can be obtained using standard
algorithms (Hosking, 1985; Smith, 1985). Here, we apply the algorithm provided
by the R package ismev.

Minimum CRPS parameter estimates are obtained by minimizing the mean
CRPS over the training set. Friederichs and Thorarinsdottir (2012) prove a closed-
form expression of the CRPS for the GEV distribution with shape parameter ξ < 1.
For ξ 6= 0, the CRPS is given by

CRPS(FGEV , y) =

(
µ− σ

ξ
− y
)

(1− 2FGEV (y))

− σ

ξ

(
2ξΓ(1− ξ)

)
− 2Γl(1− ξ,− logFGEV (y)),

where Γ(·) denotes the gamma function and Γl(·) denotes the lower incomplete
gamma function. For ξ = 0, the CRPS is given by

CRPS(FGEV , y) = µ− y + σ(C − log 2)− 2σEi(logFGEV (y)),

where C ≈ 0.5772 is the Euler-Mascheroni constant and Ei(x) =
∫ x
−∞

et

t
dt. The
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minimization is carried out using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm as implemented in R (R Development Core Team, 2010). The BFGS
algorithm is a quasi-Newton method, for further details see Bertsekas (1995). Due
to reasons of numerical stability, values of the shape parameter ξ between −0.01
and 0.01 are rounded to 0. Since the closed form expression of the CRPS is
only valid for ξ < 1, we furthermore restrict the shape parameter to the interval
(−∞, 1). However, note that none of the corresponding ML estimates of the shape
parameter takes a value larger than 1 for all forecasting procedures and training
sets.

For the parameter estimation, three different kinds of training sets consisting of
extreme gust speed observations are employed. The parameters can be assumed to
be constant in terms of location and time, which is similar to standard climatolog-
ical forecasting of marginal distributions. In this case, all gust speed observations
from the years 2006 and 2007 which are at least 29 kt, the 90th percentile of the
marginal distribution of the gust speed observations, are used to estimate the pa-
rameters of a GEV distribution. Due to the large size of the training set, numerical
minimization of the CRPS is associated with large computational costs. Therefore,
we use only maximum likelihood estimation for this training set.

As for the NGR method, the parameters can be estimated regionally using a
rolling training period of 20 days. All observations of gust speed larger or equal
to 29 kt during the last 20 days are pooled together and used to estimate the
parameters of a GEV distribution which is issued as a probabilistic 48-h-ahead
forecast. Both maximum likelihood and minimum CRPS estimation are applied to
these training sets. Rolling training periods of different lengths were used as well
but did not result in significant changes of the predictive performance which is in
accordance with the results of Thorarinsdottir and Gneiting (2010).

Furthermore, the parameters can be estimated locally for each station. Due to
the sparsity of extreme gust speeds, all gust speed observations larger or equal to
29 kt from the years 2006 and 2007 at the corresponding station were used to esti-
mate the parameters. Here, both ML estimation and minimum CRPS estimation
were applied as well.

The forecasting procedures are summarized in Table 4.1.

Generalized Pareto distribution

The Pickands-Balkema-de Haan theorem states that the tail of a distribution func-
tion can be well approximated by a generalized Pareto distribution for a large class
of distributions. It was named after Balkema and de Haan (1974) and Pickands
(1975), for further details see Reiss and Thomas (2007).

More precisely, the theorem states that if extreme events are regarded as those
events that exceed some high threshold µ, the behavior of extreme events is given
by the conditional excess probability

P(Y > µ+ y|Y > µ) =
1− F (µ+ y)

1− F (µ)
, y > 0,

where Y is a random variable with CDF F (Coles, 2001). For large enough µ, the

55



Table 4.1.: Model choices, training sets and parameter estimation procedures used
in this case study.

Abbreviation Training set Parameter estimates

GEV1 2006/7 Constant in location and time
GEV2ML last 20 days Time-varying, constant in location
GEV2minCRPS last 20 days Time-varying, constant in location
GEV3ML 2006/7 Varying over stations, constant in time
GEV3minCRPS 2006/7 Varying over stations, constant in time

GP1ML 2006/7 Constant in location and time
GP2ML last 50 days Time-varying, constant in location
GP3ML 2006/7 Varying over stations, constant in time

distribution function of Y conditional on Y > µ is approximately

FGP (y) =

1−
(

1 + ξ(y−µ)
σ

)−1/ξ

for ξ 6= 0,

1− exp
(
−y−µ

σ

)
for ξ = 0,

defined on {y : y ≥ µ when ξ ≥ 0 and µ ≤ y ≤ µ − σ/ξ when ξ < 0}. FGP
defines the generalized Pareto distribution with location parameter µ ∈ R, scale
parameter σ > 0 and shape parameter ξ ∈ R (Embrechts et al., 1997).

Generalized Pareto distribution and generalized extreme value distribution are
closely related. They differ in their characterization of extreme events as excesses
over a large threshold or as block maxima, but it can be shown that if block
maxima have approximating distribution FGEV , then threshold excesses have a
corresponding approximate distribution FGP within the generalized Pareto family
with the same shape parameter ξ (Coles, 2001). Therefore, we expect similar
results for GEV and GP forecasting procedures.

The parameters of the GP distributions are estimated using maximum likelihood
estimation over the same training sets as before. As for the GEV parameter es-
timation, analytical maximization of the log-likelihood is not possible and we use
the numerical approximation algorithm provided by the R package ismev. For fur-
ther details, see Smith (1985). Friederichs and Thorarinsdottir (2012) also prove a
closed-form expression of the CRPS for the generalized Pareto distribution. How-
ever, minimum CRPS estimation suffered from numerical instability problems for
our case study. Therefore, we will restrict our attention to maximum likelihood
parameter estimates. This will suffice in order to demonstrate the forecaster’s
dilemma due to the similar predictive performance of GEV and GP distributions
and maximum likelihood and minimum CRPS estimation. For the GPD2ML fore-
casting procedure, the training period had to be set to 50 days due to reasons of
numerical stability. The various training sets and parameter estimation procedures
are summarized in Table 4.1.
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Figure 4.1.: Figure 2 of Thorarinsdottir and Johnson (2012, page 893). Locations
of the 83 ASOS stations over the North American Pacific Northwest,
including the Canadian provinces of British Columbia (BC) and Al-
berta (AB), and the U.S. states of Washington (WA), Oregon (OR),
Idaho (ID), California (CA), and Nevada (NV).

4.3. Data

We use forecast and observation data from 83 stations of the North American
Automated Surface Observation System (ASOS) network over the North American
Pacific Northwest. The locations of the stations are shown in Figure 4.1.

At these stations, a 5-s average wind speed is stored in memory for 10 minutes
and the maximum in memory is reported as gust if it is greater than the current
2-min average wind speed by at least 3 knots, the current wind speed is more than
2 kt, and the maximum gust in memory is at least 10 kt greater than the minimum
5-s average wind speed over the last 10 min (Thorarinsdottir and Johnson, 2012).
Only gust speeds of at least 14 kt are reported. All observations are rounded to
the nearest whole knot.

The wind speed forecasts are 48-h-ahead forecasts of maximum wind speed ob-
tained from the University of Washington Mesoscale Ensemble (UWME) system
using bilinear interpolation (Eckel and Mass, 2005). As Thorarinsdottir and John-
son (2012), we use data from 1 January to 31 December 2008. Observations are
available for 291 days and a total of 22 863 individual forecast cases. Gust was
observed in 8 324 forecast cases (36% of all forecast cases).

4.4. Results

4.4.1. Results for all events

Calibration

To assess probabilistic calibration, PIT histograms for the NGR model and the
GEV2minCRPS forecasting procedure are shown in Figure 4.2 together with a ver-
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Figure 4.2.: Verification rank histogram for the ensemble and PIT histograms for
the NGR and the GEV2minCRPS forecasting procedure.

ification rank histogram for the ensemble predictions. Verification rank histograms
or Talagrand diagrams have been proposed, among others, by Anderson (1996) and
Hamill and Colucci (1997). They are histograms of the rank of the observations
when pooled within the ordered ensemble predictions (Gneiting et al., 2007). PIT
histograms can be seen as continuous analogs of verification rank histograms.

The verification rank histogram indicates underdispersive UMWE predictions,
too many observations fall outside the ensemble range. The NGR forecasting pro-
cedure significantly improves the ensemble forecasts. The PIT histogram shows
only minor deviations from uniformity and the NGR forecasts appear to be prob-
abilistically calibrated. The PIT histogram of the GEV2minCRPS forecasting
procedure basically consists of only one bar which indicates the bias arising from
the construction of the training sets used for the parameter estimation. PIT his-
tograms for the other EVT forecasting procedures look almost identical with none
of these forecasting procedures being probabilistically calibrated.

For the purpose of assessing marginal calibration, it is possible to compare the
empirical density of the gust speed observations with marginal predictive densities
of the different forecasting procedures as shown in Figure 4.3. Marginal predictive
densities are obtained by averaging over all density forecasts over all days and
stations in 2008 where gust was observed. While the NGR method appears to be
marginally calibrated, the GEV2minCRPS marginal predictive density strongly
differs from the empirical density of observed gust speed. With almost identical
marginal predictive densities, none of the GEV and GP forecasting procedures
seems to be marginally calibrated.

Summary measures

Table 4.2 summarizes values of various summary measures of predictive perfor-
mance for the competing forecasting procedures. Mean CRPS, MAE and average
width of 77.8% prediction intervals are given in kt. This specific prediction inter-
val was chosen because it corresponds to the probability that the observation falls
within the range of a perfectly calibrated ensemble. The MAE is the mean abso-
lute error of point forecasts given by the median of the corresponding predictive
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Figure 4.3.: Histogram of observed gust speed and marginal predictive densities
under the NGR (solid line) and the GEV2minCRPS (dashed line)
model.

Table 4.2.: Mean CRPS, MAE, average coverage (in %) and width of 77.8% pre-
diction intervals for various probabilistic gust speed forecasts.

Forecast CRPS MAE Coverage Width

Climatology 3.08 4.33 81.6 12.81
UWME with gust factors 3.72 4.68 52.9 8.61
NGR 2.56 3.60 76.9 10.50

GEV1 10.35 11.16 8.5 10.00
GEV2ML 10.16 10.87 7.9 9.07
GEV2minCRPS 9.98 10.92 8.5 8.51
GEV3ML 10.40 11.22 8.1 9.59
GEV3minCRPS 10.32 11.38 8.2 8.87

GP1ML 10.36 12.00 8.9 11.62
GP2ML 10.68 11.63 8.5 10.09
GP3ML 11.29 12.64 7.4 9.24
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Figure 4.4.: Verification rank histogram for the ensemble and PIT histograms for
various forecasting procedure based on the gust speed observations of
at least 29 kt.

distribution. For densities that are not strictly positive, for example the predictive
generalized Pareto densities, the logarithmic score does not attain finite values.
Therefore, no values of the logarithmic score were computed.

The NGR method significantly improves the ensemble predictions and clearly
outperforms any GEV or GP forecasting procedure. All forecasting procedures
based on EVT exhibit poor predictive performance. On the contrary, the NGR
method provides calibrated, sharp and accurate predictions of gust speed. How-
ever, this changes dramatically if only subsets of extreme events are regarded.

4.4.2. Results for subsets of extreme events

Calibration

We restrict our attention to subsets of extreme events by selecting all gust speed
observations of at least 29 kt, which corresponds to the 90th percentile of the
marginal distribution of gust speeds, and discarding the rest. Figure 4.4 shows the
verification rank histogram for the ensemble predictions and PIT histograms for
selected forecasting procedures based on these extreme events.

For this subset of extreme events, neither the ensemble nor the NGR predictions
are probabilistically calibrated. The corresponding rank verification histogram
and PIT histogram indicate an apparent bias. The PIT histograms of the forecast-
ing procedures based on EVT exhibit smaller deviations from uniformity. How-

60



Gust Speed in Knots

D
en

si
ty

14 24 34 44 54 64

0.
00

0.
05

0.
10

0.
15

0.
20 NGR

GEV2ML
GEV2minCRPS
GPD2ML

Figure 4.5.: Histogram of observed extreme gust speed and marginal predictive
densities under the NGR and competing EVT models.

ever, none of them appears to be perfectly probabilistically calibrated, but both
GEV2minCRPS and GEV3minCRPS perform reasonably well. Note that the sam-
ple size of 970 differs from the number of gust speed observations and thus, due
to random effects, larger deviations from uniformity are to be expected even for
perfectly calibrated forecasting procedures.

Figure 4.5 shows a histogram of the extreme gust speed observations together
with marginal predictive densities of different forecasting procedures. The dis-
played marginal predictive densities of all forecasting procedures based on EVT
seem to provide good fits to the marginal density of extreme gust speed observa-
tions while there is no concordance to the marginal NGR predictive density. Thus,
unlike the NGR forecasting procedure, all forecasting procedures based on EVT
appear to provide marginally calibrated probabilistic forecasts for this subset of
extreme events.

Summary Measures

Table 4.3 summarizes values of the summary measures discussed before, now re-
stricted to the subset of extreme events. Neither the gust speed climatology (based
on all gust speed observations), nor the ensemble or the NGR forecasting procedure
perform well in predicting these extreme events.

On the contrary, all forecasting procedures based on EVT provide accurate and
sharp probabilistic forecasts for these events. Only minor differences in their pre-
dictive performances can be observed. Since extreme observations are reported as
those observations larger than a high threshold and since the parameters of the
GEV and GP models are estimated using training sets consisting of observations
exceeding the same threshold, the Pickands-Balkema-de Haan theorem suggest
that the GP models should outperform the GEV models. However, despite these
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Table 4.3.: Mean CRPS, MAE, average coverage (in %) and width of 77.8% pre-
diction intervals for various probabilistic gust speed forecasts and gust
speed observations of at least 29 kt.

Forecast CRPS MAE Coverage Width

Climatology 10.10 13.79 9.7 13.21
UWME with gust factors 6.36 7.60 39.7 9.88
NGR 6.44 8.82 39.2 13.22

GEV1 2.34 3.26 72.9 10.00
GEV2ML 2.41 3.23 68.0 8.96
GEV2minCRPS 2.40 3.31 72.6 8.54
GEV3ML 2.40 3.31 69.2 9.51
GEV3minCRPS 2.46 3.40 70.2 8.74

GP1ML 2.43 3.35 76.1 11.62
GP2ML 2.37 3.29 73.1 10.35
GP3ML 2.58 3.61 63.7 8.74

theoretical results, the GEV models appear to provide better calibrated and more
accurate forecasts than GP models. Furthermore, minimum CRPS parameter esti-
mation appears to produce slightly better calibrated and sharper, but less accurate
probabilistic forecasts than ML parameter estimation.

To summarize, if the forecast evaluation was only based on extreme gust speed
observations, any of the forecasting procedures based on EVT would be preferred
over the NGR forecasting procedure although the latter provides much more ac-
curate and calibrated forecasts of gust speed. Again, the forecaster’s dilemma
can be observed: Forecast evaluation only based on subsets of extreme events dis-
credits skillful and calibrated forecasting procedures such as the NGR forecasting
procedure.

Proper scoring rules restricted to subsets of extreme events

Table 4.3 shows values of the CRPS and the MAE if the 90th percentile of the
marginal distribution of gust speed observations is used as threshold defining ex-
treme events. As for the simulation study discussed in Chapter 3, it is possible
to plot the summary measures as functions of the threshold which defines extreme
events.

Figure 4.6 shows the mean restricted CRPS as a function of this threshold. The
average values of the restricted CRPS for the ensemble, the climatological fore-
caster and the NGR forecasting procedure increase for subsets of more and more
extreme events. On the contrary, the values for the GEV and GP forecasting
procedures decrease for larger thresholds and increase again for thresholds close
to the 99th percentile of the marginal distribution of the gust speed observations.
For thresholds larger than 24 knots, which approximately corresponds to the 70th
percentile of the marginal distribution, all forecasting procedures based on EVT
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Figure 4.6.: CRPS restricted to subsets of extreme events as function of the thresh-
old which defines extreme events in terms of quantiles of the marginal
distribution of the observations (left) and values in knots (right).

outperform the NGR forecasting procedure. Again, it can be observed that re-
stricting proper scoring rules to subsets of extreme events yields improper scoring
rules and discredits skillful and calibrated forecasting systems. Plots of the fore-
casting procedures not shown in Figure 4.6 and plots of the restricted MAE yield
qualitatively equivalent results and are omitted here.

Furthermore, the restricted CRPS can be used to test for equal performance
using the Diebold-Marino-type test statistic

tn =
√
n
S̄fn − S̄gn
σ̂n

depending on the threshold defining extreme events (Diebold and Mariano, 1995).
Computing p-values associated with the values of the test statistic under the stan-
dard normal hypothesis allows us to gain further insight into the significance of
the observed score differences. Note that the standard normal assumption might
be violated due to the small sample sizes for large thresholds.

Figure 4.7 shows the test statistics of the test of equal performance comparing
the NGR and the GEV2minCRPS forecasting procedure as well as the associated p-
values. The asymptotic variance was estimated as proposed by Gneiting and Ran-
jan (2011b). If the test statistic attains values smaller than 0, the NGR forecaster
is preferred over the GEV2minCRPS forecaster, otherwise the GEV2minCRPS
forecaster is preferred over the NGR forecaster. The test statistic is negative up
to a threshold of approximately the 70th percentile of the marginal distribution
of the observations. For larger thresholds, the test statistic is positive and prefers
the GEV2minCRPS forecaster over the NGR forecaster. In the simulation study
discussed in Chapter 3, a small interval of insignificant score differences around 0
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Figure 4.7.: Left: Diebold-Mariano-type test statistic for test of equal performance
comparing the NGR and the GEV2minCRPS forecasting procedure as
functions of the threshold defining extreme events, using the restricted
CRPS. Right: Corresponding p-values under the standard normal hy-
pothesis, the dashed line indicates a 5% significance level.

could be observed (c.f. Figure 3.6). Here, all observed score differences are signifi-
cant under the standard normal hypothesis because all observations are rounded to
the nearest whole knot. For the threshold r = 23, the value tn = −5.1 significantly
favors the NGR forecasting procedure, while for the threshold r = 24, the value
tn = 4.6 significantly favors the GEV2minCRPS forecasting procedure. Therefore,
no interval of insignificant score differences is observed.

The test of equal performance based on the restricted CRPS thus prefers the
GEV2minCRPS forecasting procedure over the NGR forecasting procedure for
thresholds larger than 23 which again confirms the impropriety of the restricted
CRPS. For all other forecasting procedures based on EVT, qualitatively equivalent
results can be obtained.

4.4.3. Results for proper scoring rules for extreme events

Turning to proper scoring rules for extreme events as proposed by Gneiting and
Ranjan (2011b) and Diks et al. (2011), a deficiency of the conditional and censored
likelihood scoring rules becomes obvious. Meaningful forecast evaluation using
these proper scoring rules proposed by Diks et al. (2011) requires the predictive
densities to attain strictly positive values at all observations. Therefore, applying
them to the predictive GEV and GP densities results in infinite mean scores, no
longer allowing us to distinguish predictive performance. Therefore, we focus on
the threshold weighted CRPS,

CRPSt(f, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2w(z)dz,
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Figure 4.8.: Diebold-Mariano-type test statistics for test of equal performance us-
ing the threshold-weighted CRPS to compare the NGR model and
(a) the climatological forecaster, (b) the raw ensemble, and (c) the
GEV2minCRPS forecasting procedure as functions of the threshold
which defines extreme events. The bottom row shows the correspond-
ing p-values under the standard normal hypothesis, the dashed lines
indicate a 5% significance level.

which does not suffer from this deficiency.

Figure 4.8 shows plots of the Diebold-Mariano-type test statistics using the
threshold-weighted CRPS to compare the NGR model and the raw ensemble, the
climatological, and the GEV2minCRPS forecasting procedure. Here, the indicator
weight function wr(z) = 1(z ≥ r) was used. In all three cases, the test statistics
attain only negative values and always prefer the NGR forecaster over the respec-
tive competitor. All observed score differences are significant, except for the score
differences between the NGR and the climatological forecasting procedure for very
large thresholds. Note that due to the dependence of the NGR forecasting proce-
dure on the poorly performing ensemble, this might be a consequence of the lack
of correlation between ensemble predictions and observations for extreme events.
For details, see Figure 4.13.

Thus, using the proper scoring rule proposed by Gneiting and Ranjan (2011b)
shows that the NGR forecaster outperforms any forecasting procedure based on
EVT if the right tail of the marginal distribution of gust speed observations is
emphasized. Again, qualitatively equivalent results are obtained for all other
forecasting procedures based on EVT and for the normal CDF weight function
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Figure 4.9.: Autocorrelation of the values of the threshold-weighted CRPS for the
NGR model, the raw ensemble and the GEV2minCRPS forecaster.

wr(z) = Φr,1(z).

The asymptotic variance was estimated as proposed by Gneiting and Ranjan
(2011b). Plots of empirical estimates of the autocorrelation of the score vectors for
different forecasters as displayed in Figure 4.9 show that the theoretical assumption
of at most (k − 1)-dependence is not violated here and that the applied variance
estimation procedure thus is appropriate. Here, k = 2 since the forecasts are
issued 48-h-ahead and the gust speeds are observed as daily maximum. For the
GEV2minCRPS forecasting procedure, a larger amount of autocorrelation can be
observed which is due to the constant bias towards larger values.

These empirical results confirm the observations made in the simulation study of
Chapter 3. Restricting the evaluation to subsets of extreme events corresponds to
the use of improper scoring rules and discredits skillful and calibrated forecasting
procedures. If, however, proper scoring rules as proposed by Gneiting and Ranjan
(2011b) are used, the NGR forecasting procedure is preferred over the competitors
based on EVT.

4.5. Extreme ensemble forecasts

In the situation of our case study, it might be interesting to assess which forecasting
procedure performs best in case of extreme ensemble predictions. Note that condi-
tioning on extreme ensemble predictions significantly differs from conditioning the
observations on being extreme events.

Conditioning Y on being an extreme event, Y ? = Y |Y ≥ r with r ∈ R, cor-
responds to restricting the observation space (ΩY ,AY ) to a subspace (Ω?

Y ,A?Y ).
Therefore, the scoring rule restricted to the subset of extreme events, S?, is a
mapping

S? : P × Ω?
Y −→ R̄

which is minimized by

L(Y |A?) = L(Y ?) = F ? 6= F = L(F ) = L(Y |A).
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Therefore, S? is an improper scoring rule, even if S is proper.
On the contrary, conditioning Y on the corresponding median ensemble predic-

tion being an extreme event, Ỹ = Y |med{X1, . . . , Xk} ≥ r with r ∈ R, does not
effect the observation space (ΩY ,AY ) because Y does not depend on the ensemble
predictions X1, . . . , Xk. Computing the value of a proper scoring rule S restricted
to the subset of observations made after the median ensemble prediction was an
extreme event corresponds to the use of the scoring rule

S̃ : P̃ × ΩY −→ R̄,

where P̃ is the class of probabilistic forecasts of forecasters with information bases
containing the information that the median ensemble prediction is an extreme
event. S̃ is minimized by L(Ỹ ) = L(Y |Ã), where

L(Y |Ã) =

{
G0 = L(Y ) if L(Y ) ∈ P̃ ,
G̃ = minG∈P̃ S̃(G̃,L(Ỹ )) if L(Y ) /∈ P̃ .

Unlike S?, S̃ is a proper scoring rule since

S̃(F̃ , G0) ≥ S̃(G̃, G0) = min
G∈P̃

S̃(G̃, G0) ≥ S̃(G0, G0)

for all F̃ ∈ P̃ .
Note that in particular, the conditioning on the ensemble prediction cannot be

achieved by employing a weight function w(y) on the observations and the result
of Theorem 2.27 does not hold here.

Results

Here, we set r = 29 and consider only observations which were made after the
median ensemble prediction for gust speed was at least 29 kt. Ensemble predictions
for gust speed are obtained as products of ensemble predictions for wind speed and
gust factors as discussed in 4.2.1.

Figure 4.10 shows the verification rank histogram for the ensemble and PIT
histograms for the NGR and the GEV2minCRPS forecasting procedure restricted
to the subset of observations made after the median ensemble prediction was an
extreme event. The ensemble and the GEV2minCRPS forecasting procedure are
biased. Both models overestimate the gust speed and are not probabilistically
calibrated. Similar results can be obtained for all other GEV and GP forecasting
procedures. With only minor deviations from uniformity, the NGR forecasting
procedure significantly improves the ensemble predictions and appears to be prob-
abilistically calibrated for this subset of gust speed observations.

Qualitatively, the same can be observed when marginal calibration is examined.
While the NGR forecasting procedure appears to provide a good fit to the subset
of gust speed observations obtained after extreme ensemble predictions, none of
the competing forecasting procedures based on EVT is marginally calibrated, see
Figure 4.11.
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Figure 4.10.: Verification rank histogram for the ensemble and PIT histograms for
the NGR and the GEV2minCRPS forecasting procedure based on the
gust speed observations made after the median ensemble prediction
was at least 29 kt.

Gust Speed in Knots

D
en

si
ty

14 24 34 44 54 64

0.
00

0.
05

0.
10

0.
15

0.
20 NGR

GEV2ML
GEV2minCRPS
GPD2ML

Figure 4.11.: Histogram of gust speeds observed after extreme median ensemble
predictions and marginal predictive densities under the NGR and the
competing models based on EVT.
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Table 4.4.: Mean CRPS, MAE, average coverage (in %) and width of 77.8% pre-
diction intervals for various probabilistic gust speed forecasts and gust
speed observations made after the median ensemble prediction was at
least 29 kt.

Forecast CRPS MAE Coverage Width

Climatology 6.11 8.50 54.2 13.14
UWME with gust factors 6.15 7.55 39.3 10.41
NGR 3.88 5.45 72.3 14.65

GEV1 5.57 5.89 35.1 10.00
GEV2ML 5.49 5.56 32.0 8.87
GEV2minCRPS 5.39 5.42 32.8 8.46
GEV3ML 5.61 5.64 33.1 9.54
GEV3minCRPS 5.57 5.64 33.1 8.73

GP1ML 5.92 6.17 37.3 11.62
GP2ML 5.73 5.92 35.1 10.12
GP3ML 6.10 6.41 30.5 9.25

Table 4.4 shows the values of the summary measures of predictive performance
for the subset of observations made after extreme median ensemble predictions. In
the case of large ensemble predictions, the ensemble performs far worse compared
to the set of all gust speed observations and is outperformed by all competing fore-
casting procedures. Despite the dependence on the ensemble predictions, the NGR
forecasting procedure significantly improves the ensemble predictions and performs
best in terms of mean CRPS, MAE and average coverage of 77.8% prediction in-
tervals. In particular, the NGR forecasting procedure outperforms all forecasting
procedures based on EVT. The NGR forecasting procedure is thus well able to
correct the biased and uncalibrated extreme ensemble predictions. Note that the
average width of 77.8% prediction intervals is significantly larger compared to the
subset of extreme events or all events for both the ensemble predictions and the
NGR forecasting procedure. Therefore, larger median ensemble predictions are
associated with larger uncertainty.

Figure 4.12 shows the value of the mean CRPS restricted to subsets of gust speed
observations made after extreme ensemble predictions as a function of the threshold
r which defines extreme events. For increasing values of r, the mean CRPS values
of the climatological forecaster, the ensemble and the NGR forecasting procedure
increase. The mean CRPS curves of the climatological forecaster and the ensemble
exhibit a significantly larger slope than the curve of the NGR forecasting proce-
dure. On the contrary, the mean CRPS values of the GEV and GP forecasting
procedures decrease for larger thresholds. For thresholds larger than around 27,
which approximately corresponds to the 80th percentile of the gust speed obser-
vations, all forecasting procedures based on EVT and the climatological forecaster
outperform the ensemble. However, even for large thresholds, the NGR forecasting
procedure still outperforms all GEV and GP forecasting procedures.
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Figure 4.12.: CRPS restricted to subsets of observations made after the median
ensemble prediction was larger than a threshold as function of this
threshold in terms of quantiles of the marginal distribution of the
observations (left) and values in knots (right).

These empirical results confirm the theoretical results from above in that re-
stricting the CRPS to subsets of the observations conditional on the ensemble
predictions does not discredit skillful and calibrated forecasting procedures as the
NGR model.

4.6. Regime-switching combination of NGR and
GEV forecasting procedures

4.6.1. Wind gust

The theoretical results from EVT summarized in Section 4.2.2 show that extreme
values can be modeled using GEV or GP distributions. Assuming that the ensemble
predictions and the observations are highly correlated, it should thus be possible
to improve the NGR forecasting procedure by combining it with a forecasting
procedure based on EVT, depending on the ensemble predictions. In particular, we
use the NGR model if the median ensemble prediction is smaller than a threshold
r ∈ R and a forecasting procedure based on EVT otherwise.

However, no combination of thresholds and EVT forecasting procedures leads to
any improvements of the results of the NGR forecasts for the gust speed observa-
tions. This might be a consequence of the lack of correlation between the median
ensemble predictions and the observations. If no significant positive correlation be-
tween the ensemble predictions and the observations is observed, the observations
made after extreme ensemble predictions do not follow the theoretical extreme
value distribution. Figure 4.13 shows pairs of observations and point predictions,
obtained as median ensemble predictions, for all gust speed observations, and for
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Figure 4.13.: Scatterplot of the median ensemble predictions for gust speed and the
corresponding gust speed observations for (a) all observations and
(b) the subset of observations conditional on the median ensemble
prediction being an extreme event. The solid line indicates an angle
of 45 degrees which corresponds to a perfect linear dependence.

gust speed observations made after the median ensemble prediction was at least
29 kt. While there seems to be a relatively large correlation for all observations,
the ensemble clearly overestimates the gust speed in the case of extreme ensemble
predictions of gust speed. The correlation of 0.52 for all observations reduces to
0.20 for the restricted sample. This deficiency of the ensemble forecasts might arise
from the approach of estimating gust speed assuming a simple multiplicative rela-
tionship between wind speed and gust speed. The lack of correspondence between
the ensemble predictions and the gust speed observations furthermore explains the
comparatively bad results for the ensemble and the NGR forecasting procedure
in case of extreme ensemble predictions as summarized in Table 4.4. Improve-
ments might be achieved by more elaborated models for gust speed, for example
by modeling gust speed as a more general function of wind speed. For details, see
Thorarinsdottir and Johnson (2012) and the references therein.

4.6.2. Wind speed

Here, we turn to the corresponding ensemble predictions and observations of wind
speed. Scatterplots of the median ensemble predictions and the wind speed ob-
servations are shown in Figure 4.14. Here, extreme predictions are identified as
predictions of at least 17 kt, the 90th percentile of the wind speed observations.
Compared to the ensemble predictions for gust speed, a larger concordance between
predictions and observations can be observed, although the ensemble still appears
to overestimate the wind speed in case of large values of the median ensemble
prediction. The correlations of 0.60 for all observations and 0.29 for observations
made after extreme median ensemble predictions are improved as well.
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Figure 4.14.: Scatterplot of the median ensemble predictions for wind speed and the
corresponding wind speed observations for (a) all observations and
(b) the subset of observations conditional on the median ensemble
prediction being an extreme event. The solid line indicates an angle
of 45 degrees which corresponds to a perfect linear dependence.

None of the GEV and GP forecasting procedures introduced in Section 4.2.2 de-
pends on the ensemble predictions. In order to improve the predictive performance
of the forecasting procedures based on EVT, we use a Bayesian covariate selection
method as described in Section 3.3 of Friederichs and Thorarinsdottir (2012). De-
tails on the regression variable selection algorithm can be found in Stephenson and
Tawn (2004), Galiatsatou et al. (2008) and Hoff (2009). We estimate the parame-
ters of a GEV distribution, where the location parameter µGEV = µ0 +αX̄ is given
as a linear function of the ensemble mean X̄, and the scale and shape parameter
σGEV = σ0 and ξGEV = ξ0 are estimated independent of the ensemble predictions.

For the model selection, we focused on the GEV forecasting procedures and
model location and scale parameter of the GEV distributions as linear functions of
the ensemble mean and the ensemble variance. However, using data from 2006 and
2007 as training data, the Markov chains of the latent variables associated with
the inclusion of the covariates failed to converge except for the chains associated
with the constant parts for both the location and the shape parameter, and the
ensemble mean for the location parameter, which yields the model from above.

The parameters µ0, α, σ0 and ξ0 are estimated using minimum CRPS estimation
over different training sets as described in Section 4.2.2. For different thresholds r
and different training sets, the best results were obtained by using a threshold of
13 kt and an estimation procedure similar to the GEV3minCRPS procedure. The
parameters of the GEV distribution are thus estimated station-wise, assuming to
be constant in time, using all wind speed observations from 2006 and 2007 made at
the specific station after the median ensemble prediction was at least 13 kt. This
forecast model for wind speed will be referred to as the GEV3minCRPS? model.
The threshold value of 13 kt approximately corresponds to the 78th percentile of
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Table 4.5.: Mean CRPS, MAE, average coverage (in %) and width of 77.8%
prediction intervals for various probabilistic wind speed forecasting
procedures.

Forecast CRPS MAE Coverage Width

UWME 2.64 3.23 45.3 4.94
NGR 2.20 3.06 78.6 9.16
GEV3minCRPS? 2.34 3.29 78.7 10.51
NGR + GEV3minCRPS? 2.06 2.88 81.1 9.24

the observations and the 80th percentile of the median ensemble predictions. Note
that the results for the GEV3minCRPS? forecasting procedure for all wind speed
observations are worse than those of the NGR forecasting procedure as the wind
speed observations obviously do not follow an extreme value distribution.

We consider the following regime-switching combination of probabilistic forecasts
for wind speed produced by the NGR and GEV3minCRPS? models, depending on
the median ensemble prediction. For the individual forecast cases t = 1, . . . , 22 863,
the predictive CDF is given by

F̂t =

{
Φ[0,∞)(µ

N
t , σ

N
t ), if X t

m < 13 kt,

FGEV(µGEV
t , σGEV

t , ξGEV
t ), if X t

m ≥ 13 kt,
(4.2)

where X t
m denotes the corresponding median ensemble prediction for wind speed

and Φ[0,∞)(µt, σt) denotes the CDF of a truncated normal distribution with a cutoff
at zero, N[0,∞)(µ

N
t , σ

N
t ). Note that µNt and σNt denote mean and standard deviation

for the truncated normal distribution, and µGEV
t and σGEV

t denote location and scale
for the GEV distribution. The NGR model and the GEV model do not share any
parameter values, the common symbols are used for consistency of the notation.
The parameters of the truncated normal distribution are estimated using the NGR
approach as described in Section 4.2.1, the parameters of the GEV distribution are
estimated using the GEV3minCRPS? approach described above. Results for the
summary measures of predictive performance are given in Table 4.5.

The combination of the NGR and the GEV3minCRPS? forecasting procedures
significantly improves the results of the NGR forecasting procedure. The mean
CRPS is reduced from 2.20 to 2.06 (by approximately 6.1%). The mean CRPS
for observations made after the median ensemble prediction was at least 13 kt
is improved from 3.24 to 2.58 (by 20.4 %). For different choices of thresholds,
training sets and parameter estimation procedures for the GEV distribution, the
combined forecasting procedures also outperform the NGR forecasting procedure.
However, the improvements are considerably smaller than for the combination as
defined in (4.2). For example, if the same threshold is chosen and the parameters
are estimated independent of the ensemble predictions using the same training sets
as above and ML estimation, the mean CRPS of the NGR method is reduced from
2.20 to 2.11. Note that these improvements of the combined forecasting procedures
compared to the NGR forecasting procedure are not due to the location-specific
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estimation of the GEV parameters. The local approach for the NGR method results
in lower general predictive performance (Thorarinsdottir and Johnson, 2012).

For the purpose of assessing probabilistic calibration, we use probability plots
as suggested by Coles (2001). Let yt, t = 1, . . . , T denote the ordered observations,
then the empirical cumulative distribution function evaluated at yt is given by

F̄ (yt) =
t

T + 1
.

The corresponding model-based estimates are given by F̂t(yt) for F̂ as defined in
(4.2). For a probabilistically calibrated model, the probability plot consisting of
the points {(

F̄ (yt), F̂t(yt)
)
, t = 1, . . . , T

}
should lie close to the unit diagonal (Coles, 2001). Figure 4.15 shows the prob-
ability plots for the NGR model and for the combination of the NGR and the
GEV3minCRPS? forecasting procedure defined in (4.2). Both methods appear to
be quite well calibrated. For larger wind speed observations, indicated by larger
values of the empirical CDF, the curve corresponding to the combination of the
NGR and the GEV3minCRPS? forecasting procedure is slightly closer to the unit
diagonal. Therefore, the combined model is slightly better calibrated than the
NGR model for larger observations. However, the NGR model is slightly better
calibrated for lower values. The corresponding PIT histograms shown in Fig-
ure 4.16 suggest the same interpretation. The verification rank histogram for the
raw ensemble forecasts indicates underdispersion and is omitted here.

To assess marginal calibration, we examine the marginal predictive densities of
the models. Figure 4.17 shows a histogram of the observed wind speeds together
with marginal predictive densities for the NGR model, the GEV3minCRPS? model
and the combination of those two models. Compared to the NGR model, the
combined model appears to improve the marginal calibration, in particular for
larger wind speed observations. Note that both the NGR model and the combined
model overestimate the probability of very small wind speed observations.

To summarize, the predictive performance of the NGR model can be improved
by combining it with models based on EVT dependent on the median ensemble
predictions. The combination of the NGR model and the GEV3minCRPS? model
results in lower values of the mean CRPS and the MAE and exhibits better prob-
abilistic and marginal calibration, especially for large wind speed observations. If
there was a larger correlation between high values of the median ensemble predic-
tions and the wind speed observations, the results for the combined model would
possibly be even more improved.
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Figure 4.15.: Probability plot comparing the empirical CDF of the wind speed
observations with the model CDF of the raw ensemble (gray dashed
line), the GEV3minCRPS? model (gray solid line), the NGR model
(black dashed line) and the forecasting procedure combining the NGR
and the GEV3minCRPS? model (black solid line). The dotted line
indicates the unit diagonal.
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Figure 4.16.: PIT histograms for the NGR model, the GEV model and the forecast-
ing procedure combining the NGR and the GEV3minCRPS? model.

75



Wind Speed in Knots

D
en

si
ty

0 5 10 15 20 25 30 35 40

0.
00

0.
02

0.
04

0.
06

0.
08

Figure 4.17.: Histogram of the observed wind speeds together with marginal predic-
tive densities of the NGR model (dashed line), the GEV3minCRPS?

model (dotted line) and the combination of those models (solid line)
as defined in (4.2).

76



5. Connections to evaluation
procedures for binary events

We discuss connections to the theory of forecast evaluation for binary predictions
and events. With the advent of operational weather forecasting in the second half
of the 19th century, questions about the quality of forecasts arose (Murphy, 1996).
The work of Finley (1884) marks the beginning of substantial developments in
the discipline of forecast verification. Since this seminal paper and the follow-
ing responses, the forecast verification for binary events and predictions such as
the tornado warnings analyzed by Finley (1884) focuses on performance measures
based on 2 × 2 contingency tables. A contingency table C lists the number of 0’s
predicted as 0, the number of 0’s predicted as 1 (false alarms), the number of 1’s
predicted as 0 (misses), and the number of 1’s predicted as 1 (hits). In the liter-
ature, there exists no unique notation and ordering of the entries of contingency
tables. Here, contingency tables will always be of the form shown in Table 5.1.

For the purpose of verifying binary predictions of binary events, various sum-
mary measures of contingency tables have been proposed and discussed in the
meteorological literature. Prominent examples are

- the Hit Rate, H = d
b+d

,

- the False Alarm Rate, F = c
a+c

,

- the Fraction Correct, FRC = a+d
n

,

- the Critical Success Index, CSI = d
b+c+d

, and

- Heidke’s Skill Score, HSS = 2 detC
n0(c+d)+n1(a+b)

.

Except for the False Alarm Rate, all given performance measures are positively
oriented, larger values indicate a better predictive performance. For more examples

Table 5.1.: Contingency table for the evaluation of deterministic forecasts of binary
events.

Non-Event observed Event observed

Non-Event forecasted a b a+ b
Event forecasted c d c+ d

n0 = a+ c n1 = b+ d n
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and a detailed comparison of the performance measures, we refer to Doswell et al.
(1990), Marzban (1998) and Mason (2003).

Some of the given performance measures allow for hedging. For example, a
simple hedging strategy for the Hit Rate is given by always predicting the event.
This obviously unskillful forecasting approach leads to the largest possible Hit Rate
of 1. A similar hedging strategy can be found for the False Alarm Rate by always
predicting a non-event. Gilbert (1884) demonstrates that the Fraction Correct
(FRC), which was used by Finley (1884), can be hedged, Gandin and Murphy
(1992) show the same for the Critical Success Index. More elaborated measures
such as Heidke’s Skill Score (Heidke, 1926) appear to be less prone to hedging.
Heidke’s Skill Score is currently used by the German National Weather Service
(DWD) to evaluate storm warning systems (Deutscher Wetterdienst, 2009).

The base rate, i.e. the proportion p = n1

n
of observed events, cannot be con-

trolled by a forecasting system and should thus not affect the assessment of pre-
dictive quality (Mason, 2003). However, Marzban (1998) shows that under certain
regularity conditions, most of the widely used performance measures are base-rate
dependent and furthermore converge to a trivial limit as the rarity of the predicted
event increases. In a nutshell, the performance measures degenerate because the
entries b, c, and d of the contingency table tend to converge to zero at unequal
rates (Ferro, 2007; Ferro and Stephenson, 2011). Therefore, these measures do not
allow for a meaningful performance evaluation for rare binary events with low base
rates. This observation was followed by the development of new base-rate indepen-
dent performance measures which do not degenerate and converge to meaningful
limits for rare events. Stephenson et al. (2008) proposed the Extreme Dependency

Score, EDS = 2 log[(d+b)/n]
log[d/n]

− 1, which, however, was later shown to be base-rate

dependent and prone to hedging (Primo and Ghelli, 2009; Ghelli and Primo, 2009;
Ferro and Stephenson, 2011). These and other shortcomings of the EDS led to the
development of the Extremal Dependence Index,

EDI =
log(F )− log(H)

log(F ) + log(H)
,

by Ferro and Stephenson (2011), where H denotes the Hit Rate and F denotes the
False Alarm Rate. The EDI is positively oriented and restricted to the interval
[−1, 1]. Ferro and Stephenson (2011) show that the EDI is base-rate independent
and does not allow for hedging.

Note that as the summary measures discussed before, the EDI was developed
for the performance evaluation for binary predictions of binary events. However,
binary predictions and events can be easily obtained from general real-valued point
predictions and observations by choosing thresholds which identify (in our case
extreme) events. In this process, some information about the distribution of the
predictions and observations is lost.

In this thesis, we investigate the more general situation of probabilistic forecasts.
Point predictions can be obtained from probabilistic forecasts as functionals of the
predictive distributions. However, using these point predictions obtained from
probabilistic forecasts is accompanied by a further loss of information since the
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point predictions do not contain any uncertainty information, and leads to erro-
neous performance evaluation. This can be demonstrated using the data example
of gust speed predictions discussed in Chapter 4.

The EDI suffers from the drawback that it is not able to detect differences in
the predictive performance arising from a bias of the predictions and should thus
only be used to evaluate calibrated forecasts (Ferro and Stephenson, 2011). Here,
forecasts are said to be calibrated if the number of forecasted events (c+ d) equals
the number of observed events (b + d). If extreme events are defined as those
observations larger or equal to a threshold r ∈ R, the following contingency tables
for the NGR forecasting procedure and the raw ensemble forecasts are obtained:

- r = 29 knots (corresponds to the 90th percentile of the marginal distribution
of the observations):

CNGR =

(
795 7234
175 120

)
and CUWME =

(
571 6880
399 474

)
- r = 33 knots (corresponds to the 95th percentile of the marginal distribution

of the observations):

CNGR =

(
377 7856
50 41

)
and CUWME =

(
297 7640
130 157

)
Here, the same thresholds were used to identify observed and predicted extreme

events and the point predictions were obtained as the median of the correspond-
ing predictive distributions. However, obviously neither the NGR model nor the
ensemble are calibrated for both thresholds. In order to apply the EDI, the pre-
dictions thus have to be recalibrated. Ferro (2007) and Stephenson et al. (2008)
propose a simple recalibration technique, where the thresholds for observations
and predictions are chosen as upper q quantiles for the same value of q. How-
ever, this recalibration technique did not result in calibrated forecasts for our data
example. Therefore, we recalibrate the forecasts using numerical optimization to
minimize the absolute difference between the number of observed and predicted
events to find thresholds which identity predicted extreme events for given values
of r. Note that there are situations in which it might be impossible or not desirable
to recalibrate the forecasts (Hogan et al., 2009).

The thresholds for identifying predictions of extreme events strongly differ from
the corresponding thresholds for the observations. For r = 29 knots, thresholds
of 24.6 knots (NGR) and 28.4 knots (UWME) are obtained, for r = 33 knots,
thresholds of 27.7 knots (NGR) and knots (UWME) are obtained, respectively.

The standard error of the EDI can be estimated by

sEDI =
2| log(F ) + H

1−H log(H)|
H(log(F ) + log(H))2

√
H(1−H)

pn
,

as proposed by Ferro and Stephenson (2011). Table 5.2 summarizes values of the
EDI and estimates of the corresponding standard errors for the recalibrated fore-
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casts. Recall that the EDI is positively oriented and restricted to the interval
[−1, 1]. For r = 29 knots, the ensemble outperforms the NGR forecasting proce-
dure, for r = 33 knots, the NGR model outperforms the ensemble. Note that the
estimated standard errors are relatively large compared to the difference of the val-
ues of the EDI. Thus, the EDI is not able to correctly and significantly distinguish
between the predictive performance of the NGR model and the ensemble.

Table 5.2.: Values and estimated standard errors of the EDI for the NGR model
and ensemble predictions after recalibration.

Threshold Forecast EDI sEDI

29 knots NGR 0.51 0.02
UWME 0.52 0.02

33 knots NGR 0.51 0.03
UWME 0.49 0.03

If, on the other hand, the threshold-weighted CRPS is used to evaluate the
predictive performance of the probabilistic forecasts, no recalibration is necessary
and the NGR model significantly outperforms the ensemble. Table 5.3 shows the
values of the threshold-weighted CRPS where an indicator function w(z) = 1(z ≥
r) was chosen as weight function. Here, the NGR model outperforms the ensemble
predictions for both thresholds. The observed score differences are significant. The
test statistic tn of the test of equal performance comparing the NGR model and the
ensemble attains a value of −13.4 (−11.2) for r = 29 knots (r = 33 knots), which
corresponds to a p-value smaller than 10−40 (10−25) under the standard normal
hypothesis. A plot of the test statistic as a function of the threshold r in terms of
quantiles of the marginal distribution of the gust speed observations can be found
in Figure 4.8.

Table 5.3.: Values of the threshold-weighted CRPS for the NGR model and ensem-
ble predictions (without recalibration).

Threshold Forecast CRPSt

29 knots NGR 0.41
UWME 0.59

33 knots NGR 0.19
UWME 0.29

To summarize, this data example demonstrates that the EDI, a state-of-the-
art forecast evaluation procedure for binary predictions of binary events based
on contingency tables, does not suffice to assess the predictive performance of
probabilistic forecasts for extreme events. Furthermore, using the EDI requires a
recalibration of the predictions which might often be impossible or not desirable
and can lead to counterintuitive results. Therefore, other approaches for the ver-
ification of probabilistic forecasts for rare and extreme events are needed. In this
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thesis, we demonstrated that proper scoring rules for extreme events such as the
threshold-weighted CRPS are well able to correctly and significantly distinguish
the predictive performance of competing forecasting procedures.
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6. Summary and discussion

Based on the work of Gneiting (2010), we have developed a general framework
for the evaluation of probabilistic forecasts and analyzed the observation of the
forecaster’s dilemma in this framework. The theoretical results discussed in Chap-
ter 2 show that conditioning proper scoring rules on extreme observations yields
improper scoring rules. However, proper scoring rules for extreme events can be
obtained using the approaches of Gneiting and Ranjan (2011b) and Diks et al.
(2011) by employing appropriately weighted versions of the CRPS and the loga-
rithmic score. For the purpose of comparing the predictive performance of com-
peting density forecasts, tests of equal performance as proposed by Diebold and
Mariano (1995) prove useful due to the different magnitude of the weighted scores
for different weight functions or threshold values.

In Section 2.2.2, we discussed adequate combinations of proper scoring rules
S1(P, ω) and S2(P, ω) of the form S(P, ω) = h(S1(P, ω), S2(P, ω)) which result in
proper scoring rules. Theorem 2.19 might be of use to develop proper scoring rules
for extreme events which combine the advantages of the threshold- or quantile-
weighted CRPS and the conditional or the censored likelihood scoring rules by
combining them in an appropriate way. However, it might be difficult to find com-
binations which are readily interpretable and due to the large class of admissible
weight functions, both the threshold- or quantile-weighted versions of the CRPS
and the CL or CSL scoring rule appear to be sufficiently flexible. Therefore, we
have focused on assessing the performance of the approaches of Gneiting and Ran-
jan (2011b) and Diks et al. (2011).

The simulation study conducted in Chapter 3 empirically confirms the theoretical
results of the preceding chapter. If proper scoring rules are applied to subsets of
extreme events, they prefer the biased forecaster over the ideal forecaster who
predicts the true unconditional distribution of the observations. The scoring rules
proposed by Gneiting and Ranjan (2011b) and Diks et al. (2011), on the other
hand, are able to correctly and significantly distinguish the predictive performance.
A comparison of the weighted versions of the CRPS and the logarithmic score
suggests that these approaches also work for small sample sizes and different choices
of weight functions. An important aspect is the choice of an estimator of the
asymptotic variance of the score difference. The variance estimation procedure
proposed by Diks et al. (2011) appeared to overestimate the asymptotic variance
by taking into account autocorrelation up to a large lag which resulted in less
significant score differences. Gneiting and Ranjan (2011b) follow the suggestions
of Diebold and Mariano (1995) and only take into account auto-correlation up to a
lag of at most (k − 1) if k-step-ahead forecasts are compared. For the situation of
our simulation study, the forecast errors are 0-dependent by construction and the
variance estimation procedure proposed by Gneiting and Ranjan (2011b) appears
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to be the more suitable choice and produces more significant score differences. In
general, the choice of an estimator of the asymptotic variance should be based on
an empirical assessment of the range of dependence of the forecast errors at hand.

In Chapter 4, we investigated the forecaster’s dilemma and the weighted proper
scoring rules for extreme events in a real-world example using an application to
wind gust forecasting. A deficiency of the CL and CSL scoring rules proposed by
Diks et al. (2011) becomes obvious at this point. Both scoring rules require the pre-
dictive densities to attain strictly positive values at all observations. Since this did
not hold for all models considered in our case study, we focused on the threshold-
weighted version of the CRPS which does not suffer from this deficiency. Unlike
restricted versions of the CRPS, the threshold-weighted CRPS is well able to cor-
rectly distinguish the predictive performance of various forecasting models. Again,
the variance estimation procedure proposed by Gneiting and Ranjan (2011b) ap-
peared to be more suitable than the variance estimator proposed by Diks et al.
(2011).

Whenever ensemble predictions are available, it might be of interest to assess
the predictive performance of competing forecasting procedures in the situation of
extreme ensemble predictions. Within the framework developed in Chapter 2, we
demonstrated that unlike conditioning on extreme events, conditioning on extreme
ensemble predictions does not result in the use of improper evaluation procedures.
For our example of gust speed forecasts, the NGR forecasting procedure clearly
outperforms any competing forecasting procedure in the situation of extreme me-
dian ensemble predictions and still produces relatively calibrated and sharp fore-
casts except for very large thresholds. Based on this observations, we develope
a simple regime-switching forecasting procedure for wind speed which combines
the NGR model with GEV models based on results from extreme value theory.
This novel approach to wind speed forecasting was able to significantly improve
the NGR approach of Thorarinsdottir and Gneiting (2010), a state-of-the-art en-
semble postprocessing technique.

The results presented in this thesis can be related to strands of work from vari-
ous scientific disciplines such as the theory of forecast evaluation for binary events,
economics and social psychology. In Chapter 5, we discussed connections to the
forecast verification for binary predictions of extreme events and concluded that
state-of-the-art summary measures for contingency tables do not suffice to correctly
assess the predictive performance of probabilistic forecasts for extreme events. The
forecast evaluation based on summary measures for contingency tables suffers from
a further drawback. By allowing a large class of admissible weight functions, the
weighted proper scoring rules can be easily extended to more complex situations.
If, for example, very small and very large values of the observations are of interest,
admissible weight functions emphasizing the tails of the distributions can easily be
found. By contrast, generalizations of summary measures based on contingency
tables require the development of summary measures for multidimensional contin-
gency tables (Gandin and Murphy, 1992; Agresti, 2002; Livezey, 2003). Similar
problems associated with the generalization of the region of interest arise for other
approaches to forecast verification for binary predictions and events such as the
use of the Relative Operating Characteristic (ROC) which is based on signal detec-
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tion theory and is widely used in medical diagnostics and experimental psychology
(Mason, 2003; Livezey, 2003). A condensed summary of the ROC approach can
be found in Swets (1988).

We now turn to connections to work from other scientific disciplines. In eco-
nomics, Denrell and Fang (2010) discuss an observation similar to the forecaster’s
dilemma. Performance evaluation in economics often focuses on extreme events.
Managers and entrepreneurs are assessed by their ability to judge the success of
new products, and those economists who were able to predict that something was
to become ”the next big thing” are seen as better forecasters. Furthermore, study-
ing business success in the economic literature and the press is mostly based on
case studies of mainly extreme events by focusing on entrepreneurs who became
successful by predicting new trends. The fact that a product becomes successful
can be seen as an extreme event since this is only accomplished by a small number
of new products.

Exploiting the basic idea that due to the rarity of extreme events, managers
who take all available information into account are less likely to predict extreme
events, Denrell and Fang (2010) argue that accurately forecasting a rare and ex-
treme event actually is a sign of poor judgment. They illustrate this observation
using data from two lab experiments and from the Wall Street Journal Survey of
Economic Forecasts. For the lab experiments, the mean squared error (MSE) of
the participants is modeled as a function of the distance and quadratic distance be-
tween the predictions and the observations using a simple linear regression model.
For the Wall Street Journal data, the absolute percentage deviation was used be-
cause of the different scales of the forecasted economic variables (gross domestic
product, unemployment rate, consumer price index, Treasury bill rates and ex-
change rates). The absolute percentage deviation between the prediction pt and
the actual outcome yt is given by |pt − yt|/yt. The average absolute percentage
deviation is used as a performance measure and modeled as a function of the per-
centage deviation from the actual value, Devt = (pt − yt)/yt and the same value
squared, Dev2

t , using a simple linear regression model. Extreme events are iden-
tified as threshold-exceedances of the known underlying model (lab experiments)
and as observations which are at least 20% larger than the average value of the
corresponding predictions (Wall Street Journal Survey data), respectively.

If only these extreme outcomes are considered, accurate predictions (low values
of the distances and the percentage deviations, respectively) are associated with
high values of the negatively oriented performance measures (MSE and average
absolute percentage deviation, respectively) and therefore interpreted as a sign of
poor (general) forecasting ability. The authors conclude that forecasting ability
should be determined based on all observations, not on subsets of extreme events.
Potential issues with this approach are that the general assumptions of linear
regression are not fulfilled and that the verification procedures are not in line with
the theoretical foundations described in Gneiting (2011).

The work discussed in this thesis generalizes the work of Denrell and Fang (2010)
in two ways. Here, more general probabilistic forecasts are investigated and per-
formance measures for extreme events are presented. These proper scoring rules
allow for assessing the predictive ability if the interest lies in extreme events in a
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mathematically sound way. Furthermore, we discussed approaches to the forecast
evaluation in case of extreme ensemble predictions and demonstrated that the ob-
servation of the forecaster’s dilemma is not only restricted to economics, but also
often occurs when forecast evaluation in the media or public takes place.

Consider, next, connections to social psychology and political forecasts. Tetlock
(2005) analyzes the forecast quality of probabilistic political forecasts over the last
three decades. The author develops measures of forecast quality tailored to the
specific format of these forecasts, which is particularly difficult due to the problem
of determining what actually happened. In contrast to meteorology or economics,
the outcome cannot be readily observed and political discussions are shaped by
subjective interpretations of historical events. Tetlock (2005) finds that human ex-
perts are hardly able to outperform simple statistical extrapolation algorithms and
perform slightly better than the simple approach of assigning equal probabilities
to all possible outcomes. The forecast quality appears to be mainly independent
of the political world views of the human competitors, but is determined by the
way how forecasters think. Based on an essay by Isaiah Berlin published in 1953
(Berlin, 2009), Tetlock (2005) distinguishes between two types of forecasters. De-
pendent on their tendency to state extreme predictions, the experts are classified
as ’hedgehogs’ and ’foxes’. While the ’hedgehogs’ who ”know one big thing” (Tet-
lock, 2005, page 2) tend to state more extreme predictions, the ’foxes’ who ”know
many little things” (Tetlock, 2005, page 2) tend to state more careful predictions.

The findings of Denrell and Fang (2010) are consistent with those of Tetlock
(2005) in that the ’foxes’ significantly outperform the ’hedgehogs’. Furthermore,
Tetlock (2005) finds an inverse relationship between the media attention received
by the human experts and the accuracy of their predictions. In addition to our
observation that the media attention is focused on the performance evaluation for
extreme events (see Chapter 1), it is also focused on forecasters with strong convic-
tions stating extreme predictions. Tetlock (2005) offers psychological explanations
for the attractiveness of extreme prediction for forecast consumers, the tendency
of many forecasters to state extreme predictions, and the tendency of the media
attention to restrict the performance evaluation to subsets of extreme observations.

Note that both Denrell and Fang (2010) and Tetlock (2005) focus on general pre-
dictive performance while the work discussed in this thesis focuses on performance
evaluation if the interest lies in extreme events. The conditioning on extreme pre-
dictions in the public and media attention observed by Tetlock (2005) differs from
the conditioning on extreme ensemble predictions discussed in Chapter 4. The
ensemble predictions and forecasting procedures can be seen as ’neutral’ physical
models without any psychological tendency towards extreme predictions.

The thesis at hand suggests various starting points for further research. Thus
far, we have only regarded forecasts for a single variable at a single location and
a single look-ahead time. In high-impact weather situations, spatial, temporal
and inter-variable coherence is of critical importance. Therefore, mathematically
justifiable forecast evaluation procedures and calibration checks for these situations
have to be developed. The pre-rank approach of Gneiting et al. (2008) is a first
step in this direction. The proper scoring rules for extreme events discussed in
this thesis might prove helpful to develop verification procedures that retain the
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critical property of maximizing the sharpness subject to calibration.
Furthermore, the results of this thesis might help to develop new approaches to

the forecast verification for deterministic predictions and observations of extreme
events. Using the proper scoring rules for extreme events discussed in this thesis,
new insights into the forecast evaluation based on contingency tables or the quality
of economic forecasts provided by the Wall Street Journal Survey of Economic
Forecasts might be gained.

The simple regime-switching combination of the NGR model and forecasting
procedures based on EVT discussed in Chapter 4 might lead to further improve-
ments of state-of-the-art ensemble postprocessing techniques. For a larger coher-
ence between the ensemble predictions and the observations, even more significant
improvements can be expected. The questions of how to find optimal thresholds
and parameter estimates for the models based on EVT, and how to generalize this
approach to other variables as temperature or pressure remain open.

To conclude this thesis, we point to the important task of communicating the
findings of Gneiting and Ranjan (2011b), Diks et al. (2011) and this thesis to the
scientific community and all forecast users. We call for a shift in the current forecast
verification mechanisms in the ”media-driven marketplace of ideas” (Tetlock, 2005,
page 232). The observation that forecast verification of probabilistic forecasts for
rare and extreme events should not be carried out by restricting the attention to
subsets of extreme observations is relevant for all consumers of forecasts. In this
thesis, we demonstrated that there are proper scoring rules for extreme events
providing verification procedures that are well suited to this task.
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List of symbols and abbreviations

Symbols

(Ω,A,Q) Global space consisting of a set Ω, a σ-algebra A on Ω and a prob-
ability measure Q on the measurable space (Ω,A)

P Class of probability measures

L(Y |A) Conditional distribution of the random variable Y given the σ-
Algebra A

B Borel-σ-algebra on R

Φµ,σ2 Cumulative distribution function of a normal distribution with mean
value µ and variance σ2

1(C) Indicator function with condition C

S(P, ω) Value of a scoring rule S for the probabilistic forecast P if ω is
observed

S(P,Q) Expected score of the probabilistic forecast P under the true dis-
tribution Q

EQY Expected value of the random variable Y under distribution Q, i.e.∫
XdQ

ϕµ,σ2 Density function of a normal distribution with mean value µ and
variance σ2

N[l,u)(µ, σ
2) Truncated normal distribution with mean value µ and variance σ2

restricted to the interval [l, u)

4α(x) Triangular quantile weight function which has a peak of height 1 at
α and decays to 0 at x = 0 and x = 1

tn Test statistic of the Diebold-Mariano-type test of equal performance

σ2
n Estimator of the asymptotic variance of the score difference for the

Diebold-Marino-type test of equal performance
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Abbreviations

ASOS North American Automated Surface Observation System

BMA Bayesian Model Averaging

CDF Cumulative Distribution Function

CL Conditional Likelihood

CRPS Continuous Ranked Probability Score

CRPSq Quantile-weighted verison of the CRPS

CRPSt Threshold-weighted version of the CRPS

CSL Censored Likelihood

EDI Extremal Dependence Index

EVT Extreme Value Theory

F False Alarm Rate

GEV Generalized Extreme Value (distribution)

GP Generalized Pareto (distribution)

H Hit Rate

KLIC Kullback-Leibler Information Criterion

kt Knots

LinS Linear Score

LogS Logarithmic Score

MAE Mean Absolute Error

ML Maximum Likelihood

MSE Mean Squared Error

NGR Nonhomogeneous Gaussian Regression

NWP Numerical Weather Prediction

PIT Probability Integral Transform

PseudoS Pseudospherical Score

QSα Quantile Score

QuadrS Quadratic Score
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