BUFR/PrepBUFR User’s Guide

Version 1.0 Draft

Developmental Testbed Center

December, 2011

Foreword

BUFR (Binary Universal Form for the Representation of meteorological data) is Table
Driven Data Representation Forms approved by the World Meteorological Organization
(WMO) for operational use since 1988. Since then, it has been used for the representation
and exchange of observational data, as well as for archiving of all types of observational
data in operation centers, including National Center for Environmental Prediction (NCEP).

BUFR is a self-descriptive table driven code form that offers great advantages of flexibility
and expandability compared with the traditional alphanumeric code form as well as
packing to reduce message sizes.

As one of the operation centers, NCEP converts and archives all observational data
received into a BUFR tank and provides several kinds of BUFR files for its global and
regional numerical weather forecast systems. These BUFR files are used by the NCEP
operational data analysis system, Gridpoint Statistical Interpolation (GSI), as the standard
data sources. Therefore, it is one of DTC’s GSI user support tasks to provide suitable
documentation for community GSI users to acquire basic knowledge and skills to use
BUFR form.

This User’s Guide is designed with many simplified examples to help readers understand
important concepts in BUFR form and to master basic BUFR file processing skills. There
are five chapters to serve this purpose in different layers:

Chapter 1: Using two simple examples to discuss the steps of BUFR file processing and
the basic concepts of BUFR form.

Chapter 2: Using three examples to explain the structure and the functions of BUFR file
processing code, followed by seven examples to illustrate the processing of
BUFR/PrepBUFR files for GSI.

Chapter 3: A detailed explanation and illustration of how to understand a BUFR table.

Chapter 4: An introduction to the interface of GSI for ingesting observational data from
various BUFR files.

Chapter 5: An introduction to NCEP observation data processing procedures and NCEP
BUFR files.

For more information on BUFR/PrepBUFR, please visit the BUFR User’s Website at:
http://www.dtcenter.org/com-GSI/BUFR/index.php

Please send questions and comments to gsi_help@ucar.edu.

Contributors to this guide.: Ruifang Li, Ming Hu, Joe Olson
Acknowledgments:

We thank the HFIP project and the National Oceanic and Atmospheric
Administration for their support of this work.

i

Table of Contents

Table Of CONTENLES.... ..o e 3
Chapter 1 Introduction to BUFR form and its processingcuumsesmsesssssssanas 4
1.1 Basic BUFR encode and decode with a temperature observationccoociesseinaens 4
1.2 BUFR message structure and basic CONCEPLScccivmrmmmmmmsmsmsmssmsssmsssssssssssssssssssssssnsens 7
1.2.1 BUFR MESSAZE LAY OULS..coueruerreereesreemeesserssesssessessesssesesssesssesssesssesssssssesssssssssssssssssssssssssesssssssessanes 7

1.2.2 “self-descriptive” table driVen COUE.....mmeeeee s sessssessesssees 8

1.2.3 BUFR table d@SCTIPLOT e ercrreereesrerseesserssesssssssessesssesessseessesssesssesssssssesssssssesssesssssssssssssssssssssessaees 9
1.2.4 BUFR TADIES c.ocoeeeceeereereessesesseesseesseesssesssse s sssssssssesssess st sesssses s sssss s ssssssssssssessssasssssssssssses 10

1.2.5 Summary of Decoding Process with BUFR tables........comnnernenneneeesseesseesneenns 12
1.2.6 FUIther eXPloration .. sess s s sesssssssesens 13
Chapter 2 Process BUFR/PrepBUFR Files.......cccnmmmmmsssssssssssssssans 14
2.1 Encode, Decode, Append a simple BUFR file......ccccconinnnnnssns 16
2.1.1 Decoding/reading data from a simple BUFR file ... 16
2.1.2 Encoding/writing data into a simple BUFR file ... 25
2.1.3 Appending data to a sSimple BUFR file ..o sesssessenseens 28

2.2 Encode, Decode, Append the PrepBUFR file ... 30
2.2.1 Decoding/reading data from a PrepBUFR file ... 30
2.2.2 Encoding/Writing surface data into a PrepBUFR file.......ccconenncnecnecneeeeneeseens 33
2.2.3 Encoding/Writing upper air data into a PrepBUFR file ... 35
2.2.4 Appending surface data into @ PrepBUFR file ... 38
2.2.5 Appending upper air data into a PrepBUFR file ... 39
2.2.6 Appending retrieve data into @ PrepBUFR file.....ccocnnnesenneneseeseeeesseessessessens 41

2.3 Decoding/reading radiance data.........ummmsmsmsmsmmsmmsssmssssssssssan 43
Chapter 3 DX BUFR tablecccvnnmnnnnnsssass 46
3.1 Description of DX BUFR tables ..o 46
3.1.1 WMO BUFR tables and DX BUFR table SECtiONSc.coucereermmerseemernsersseseeseesseesseessennns 46

3.1.2 WMO BUREF table A, B, D in DX BUFR Tablecccconenrenerneersrensseesseesssesseessesssssessessssessees 50
3.1.3 DX BUFR table SECTIONSccuerreereerreemeesseessenssesssessessesssssesssesssesssesssssssessssssssssssssssssessssssssssesssessas 52

3.2 Examples of the DX BUFR table’s application.......ccocoimimnnimmsmsmsnmmmsssssssssss 56
Chapter 4 GSI BUFR INterface......commmmssas 61
4.1 GSI observation data ingest and process procedurem————— 61
4.2 The BUFR decoding in GSI read files ... 66
Chapter 5 NCEP Observation Process and BUFR filesccoconinnnnssnsmsssnsnssnsnnnns 68
5.1 Observation Data Processing at NCEP ... 68
5.2 NCEP BUFR/PrepBUFR......ccosssssssss s sssssns 70
5.3 BUFR/PrepBUFR Data Resources for Community USersS......ccummmmmmsmssmsesssssssnns 75
Reference and Useful LINKS: ... sesssssssssssass 77
5 01 4 o G 78

Chapter 1: Introduction to BUFR form and its processing

BUFR file processing is no harder than any other popular data form. But the World
Meteorological Organization (WMO) only provides very detailed documentation on
the structure and definition of the BUFR and BUFR tables and leaves the operational
centers to write code to implement BUFR form in operation. NCEP NCO provides a
library called BUFRLIB to support the application of BUFR file processing. NCO also
has very good documentation explaining functions in the BUFRLIB, but lacks
training instructions and examples to help beginners to start processing BUFR files
smoothly. In this chapter, we will start from two simple examples with step-by-step
instructions on how to use BUFR files. After some practice with using BUFR files, we
will introduce the structure and several basic concepts of BUFR form to help users
better understand BUFR.

As a data form, BUFR files are used to save and exchange meteorological data. There
are mainly three actions involved in processing BUFR files:
1) Write the observations into a new BUFR file, which is also called ‘encode’,
because we do need to follow WMO defined BUFR format to save the data;
2) Read the observations from a BUFR file, which is also called ‘decode’;
3) Append the observations to an existing BUFR file.

Now let’s start from the most commonly used example for computer language learning:

“Hello Temperature”

1.1 Basic BUFR encode and decode with a temperature observation

This is an example to write one temperature observation value into a new BUFR file. The
15-line Fortran code to achieve this purpose is given below:

Line 01: program bufr encode temperature

Line 02: implicit none

Line 03: real (8) :: obs

Line 04: integer :: iret

Line 05: obs=10.15

Line 06:! encode

Line 07: open (20, file="bufrtable.txt")

Line 08: open (10, file="'t.bufr',action="'write', form="'unformatted')
Line 09: call openbf (10, 'OUT',20)

Line 10: call openmb (10, 'ADPUPA', 08120100)
Line 11: call ufbint(10,0bs,1,1,iret, "TOB")
Line 12: call writsb (10)

Line 13: call closmg(10)

Line 14: call closbf (10)

Line 15: end program

Based on our knowledge of Fortran code, we can see these 15 lines are to open a
binary file called “t.bufr” and write a temperature observation value 10.15 into it.
But here we didn’t see standard Fortran write command. Instead, a set of functions
are called to fulfill the write function to a BUFR file: openbf, openmb, ufbint, writsb,
closemg, and closbf. We will explain the usage of these functions in detail in Chapter
2. Here, we only need to know that these functions are from the BUFRLIB library, to
“write/encode” some information into a BUFR file.

After typing (or copying) the code into a file (let’s call it encode_temperature.f90),
the compile and link steps are the same as any other Fortran code:

$ ifort -c encode_temperature.fo0
$ ifort -0 encodeT.exe encode_temperature.o -L../lib -lbufr

Please note that the link step needs a BUFR library. If you have successfully
compiled a release version of GSI, this BUFR library exists under subdirectory ./lib.
For release version 3, the BUFR library is named as “libbufr_i4r8.a”, which has
integer and real variable accuracy tags. Basically, the only difference between
compiling a BUFR Fortran code and normal Fortran code is that you have to link to
the NCEP BUFRLIB library that has been compiled with the sample compiler.

Before running the executable encodeT.exe, we need to prepare a BUFR table and
put it in the same directory as the encodeT.exe file. BUFR is a table driven code that
requires a table outside the code (and data file) to help define the values inside the
BUFR data file. We will explain what “table driven” is later in this Chapter and will
explain how to read NCEP BUFR tables in greater details in Chapter 3 because
understanding BUFR tables is the key to processing a BUFR file. Here is a simplified
NCEP BUFR table for the purpose of running our first simple example:

| MNEMONIC | NUMBER | DESCRIPTION |
R |- | o m !
| ADPUPA | A48102 | UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS |
| TOB | 012245 | TEMPERATURE OBSERVATION

\

|
| ADPUPA | TOB |
| | |
|-————= = |
| MNEMONIC | SCAL | REFERENCE | BIT | UNITS [—mmm - ‘
|- [—————- |- [————- |- [—=mmm |
| TOB \ 1| -2732 | 14 | DEG C [—mmmmmmm |

The BUFR table is a text file. Please copy these content into a text file called
“bufrtable.txt” or download this BUFR table from our BUFR user’s page. When you
have the encode executable and the BUFR table in the same directory, you can run
the executable as:

$ encodeT.exe

and you will find a new file called “t.bufr” in the same directory. The file “t.bufr” is a
BUFR file that includes only one temperature observation, but the steps involved in
creating this file are the same for all BUFR encoding.

So far, we have learned how to encode data into a BUFR file. The following simple
example shows how to decode/read data from a BUFR file.

Line 01: program bufr decode temperature

Line 02: implicit none

Line 03: real (8) :: obs

Line 04: character (8) subset

Line 05: integer :: idate,iret

Line 06:! decode

Line 07: open (10, file=' t.bufr',action='read',6 form="'unformatted')
Line 08: call openbf (10, "IN',10)

Line 09: call readmg (10, subset,idate, iret)
Line 10: call ireadsb (10, iret)

Line 11: call ufbint (10,0bs,1,10,iret, '"TORBR")
Line 12: write(*,*) obs

Line 13: call closbf (10)

Line 14: end program

After typing or copying this code into a file called “decode_temperature.f90”, we can
use the same method as the encode example before to compile and link the code to
get an executable:

$ ifort -c decode_temperature.fo0
$ ifort -o decodeT.exe decode_temperature.o -L../lib -lbufr

Unlike the encode process that requires a BUFR table to run, the decode process can
get the BUFR table from the BUFR file and read the data from BUFR file without an
existing BUFR table. So we can run the executable:

$ decodeT.exe

and the temperature observation in the BUFR file “t.bufr” will show up on screen:

10.1000000000000

With a first taste of BUFR file encoding and decoding from these examples, we hope
you have an idea of the general steps involved in dealing with BUFR files and the
computer environmental requirements for working with BUFR files. Successful
completion of the above examples means you are ready to learn more details about
BUFR basic structure and concepts (if you have a day or two to learn about BUFR
more deeply) or to learn how to use the functions in BUFRLIB to solve BUFR file
processing problems in real work.

1.2 BUFR message structure and basic concepts

In this section, we will introduce BUFR message structure and some basic concepts
related to BUFR. The content of this section is designed for users who want to learn
more about the theory of BUFR form. This section will certainly help users to better
understand BUFR processing methods and BUFR tables but skipping this section
will not impact readers who want to directly use NCEP BUFRLIB functions in
Chapter 2 and NCEP BUFR tables (Chapter 3) to process BUFR files from NCEP.

1.2.1 BUFR message layouts

A BUFR file consists of one or many messages. The term "message" refers to BUFR
being used as a data transmission format. Each BUFR message consists of a continuous
binary stream comprising six sections.

CONTINUOUSBINARYSTREAM

Section Section Section Section Section Section

0 1 2 3 4

Section Name Contents

Number

0 Indicator "BUFR", length of message, BUFR edition number
Section

1 Identification Length of section, identification of the message
Section

2 Optional Length of section and any additional items for local use by data
Section processing centers

3 Data Length of section, number of data subsets, data category flag, data
Description compression flag, and a collection of data descriptors which define the
Section form and content of individual data elements

4 Data Section Length of section and binary data

5 End Section 777"

As a general user, we do not need to know the detailed contents in each section of
one BUFR message. We do not even need to remember the names of these six
sections. But a little knowledge of the message layout can help us understand the
concept of ‘self-description’. Right now, we can see that a BUFR message starts with
the 4 characters “BUFR” and ends with the 4 characters “7777”. When the NCEP
BUFRLIB function reads in a BUFR message, it will check if the first 4 characters in
the message are “BUFR”. If the first 4 characters are not “BUFR”, the code will stop
and give you an error message. In most cases, this error happens when we use a big
endian BUFR file in a little endian machine and forget to convert byte-order.

1.2.2 “self-descriptive” table driven code

The most important sections in a message are: section 3, data description section, and
section 4, data section, which reflects the concept of “self-descriptive” table driven code.
In a BUFR message, section 3 (Data Description Section) contains a sequence of data
descriptors, which describe the type of data contained in section 4 (Data Section) and the
order in which data appears in section 4. To make the data description section efficient,
the descriptors in this section are like a set of “pointers” towards elements in predefined
and international agreed tables (stored in the official WMO Manual on Codes). So, the
term "self- descriptive" means that the form and content of the data contained within a
BUFR message are described within the BUFR message itself.

From the example in this Chapter, the BUFR table is a predefined table:

| MNEMONIC | NUMBER | DESCRIPTION |
R |- e !
| ADPUPA | A48102 | UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS |
| TOB | 012245 | TEMPERATURE OBSERVATION

\

|
| ADPUPA | TOB |
| | |
|-————= = |
| MNEMONIC | SCAL | REFERENCE | BIT | UNITS [—mmm - ‘
|- [—————- |- [————- |- [——mmmmm |
| TOB | 1] -2732 | 14 | DEG C | m——mmmmmmmm e |

In this table, we can see number 012245 is a descriptor that points to a set of information
about temperature observation, such as MNEMONIC, SCALE, REFRENCE, BIT and
UNITS. When encoding this temperature value into the BUFR file “t.bufr”, the data
description information (012245) is written into section 3 and observation value (10.1) is

written into section 4:
Section 3 (Data Description): 012245
Section 4 (Data): 101

When decoding the BUFR file “t.buft”, both data descriptor (012245) and data (101) are
read in memory and the BUFR function will find the REFRENCE, BIT and UNITS
associated with descriptor 012245 in the predefined table and then decode the data value
101 based on the information in this table as temperature observation 10.1 °C.

Please note, the BUFR table we used here as an example is an NCEP BUFR table. The
NCEP BUFR is built upon standard WOM BUFR tables but includes a new column
named MNEMONIC, which is an easy mnemonic for WMO descriptor. From the above
example, we can see one of the WMO descriptors for temperature observation is 012245,
which is very hard to remember, but we should know that it is actually a pointer to a

temperature observation definition in the BUFR table. While in the NCEP BUFR table,
012245 1s given a MNEMONIC name “TOB”, which is easy to remember.
Understanding the NCEP BUFR table is the key to mastering NCEP BUFR file
processing because the functions in the NCEP BUFR library are using MNEMONIC as a
pointer to link both the WMO descriptor and the table definition (see bold lines in
example BUFR table above). Before discuss NCEP BUFR tables in detail in Chapter 3,
we will briefly introduce WMO BUFR tables and their descriptors to help users better
understand NCEP BUFR tables later.

1.2.3 BUFR table descriptor

BUEFR Descriptors

A BUFR descriptor is a set of 16 bits, or two octets. The 16 bits are not to be treated as a
16 bit numeric value, but rather as 16 bits divided into 3 parts F, X, and Y, where the
parts (F, X and Y) themselves are 2, 6 and 8 bits, respectively. It is the F X Y descriptors
in BUFR Section 3 that refer to data represented in Section 4.

Schematically, a BUFR descriptor can be visualized as follows:

F denotes the type of descriptor. With 2 bits, there are 4 possible values for F: 0, 1, 2 and
3. The four values have the following meanings:

0 =>» Element descriptor (Table B entry)
1 =>» Replication operator

=2 =» Operator descriptor (Table C entry)
3 =>» Sequence descriptor (Table D entry)

X (6 bits: 00-63) indicates the class or category of descriptor.
Y (8 bits: range from 00-255) indicates the entry within a class X.

In the example before, 012245 is a temperature descriptor, which can be treated as:

F
0

X
12

Y
245

This tells us that it is 245 entry in class 12 (temperature class) of BUFR table B

1.2.4 BUFR tables

BUFR employs 3 types of tables: content definition tables, code tables and flag tables.
The BUFR content definition tables contain information to describe, classify and define
the contents of a BUFR message. There are 4 such tables defined: Tables A, B, C and D.

All these tables are available on-line from WMO website:

http://www.wmo.int/pages/prog/www/WMOCodes/TDCFtables.htmI#TDCFtables

Here we will introduce these tables briefly:

Table A subdivides data into a number of discrete categories [e.g. Surface data -
land, Surface data - sea, Vertical soundings (other than satellite), Vertical soundings
(satellite), etc.]. While not technically essential for BUFR encoding/decoding
systems, the data categories in Table A are useful for telecommunications purposes
and for storage of data in and retrieval of data from a data base.

Table B describes how individual parameters, or elements, are to be encoded and
decoded in BUFR. For each element, the table lists the reference number (or element
descriptor number, which is used in the description section of the code like a
"pointer”, as explained earlier), the element name, and the information needed to
encode or decode the element. The data items transmitted in a report will have their
descriptor numbers listed in the Data Description Section. As an example, extracts
of BUFR Table B for Temperature are given below.

Class 12 - Temperature

TABLE BUFR
REFERENCE TABLE
ELEMENT NAME
REFERENC DATA WIDTH
UNIT SCALE E VALUE (Bits)
F X Y
0 12 001 | Temperature/dry-bulb temperature K 1 0 12
0 12 002 | Wet-bulb temperature K 1 0 12
0 12 003 | Dew-point temperature K 1 0 12
0 12 004 | Dry-bulb temperature at 2 m K 1 0 12
0 12 005 | Wet-bulb temperature at 2 m K 1 0 12
0 12 006 [Dew-point temperature at 2 m K 1 0 12
0 12 007 | Virtual temperature K 1 0 12
0 12 011 | Maximum temperature, at height and K 1 0 12
over period specified
0 12 012 | Minimum temperature, at height and K 1 0 12
over period specified

Table B is fundamental to encoding and decoding in BUFR.

10

The relation between the coded value and the actual value is given by the formula:
coded_value = original_value * 10”scale - reference_value

Scale is used to multiply decimal numbers into integer values (scale > 0) or to
reduce precision of large values (scale < 0). Thus, in a way, scale tells the length of
the decimal fraction used.

Reference value is used to ensure that the encoded value is always positive.

Reference value (together with scale) defines the smallest possible value for the
parameter, while data width (together with scale and reference value) defines the
largest possible value.

TABLE C defines a number of operations that can be applied to the elements. Each
such operation is assigned an operator descriptor.

TABLE D defines groups of elements that are always transmitted together (like a
regular SYNOP or TEMP report) in what is called a common sequence. By using a
common sequence descriptor, the individual element descriptors will not need to be
listed each time in the data description section. This will reduce the amount of
space required for a BUFR message. An example of BUFR Table D is shown below.

Sequence descriptors, although not essential for BUFR encoding and decoding, are
useful in decreasing the space requirements for BUFR messages.

Table D example: the descriptor 3 01 025 expands to 3 01 023, 0 04 003 and 3 01 012.
However, 3 01 023 itself expands to 0 05 002 and 0 06 002, and 3 01 012 expands to 0
04 004 and 0 04 005. Thus, the single Table D descriptor 3 01 025 expands to a total of
5 separate Table B entries.

+ 0 05 002 ---Latitude
+ 3 01 023----}
! + 0 06 002 ---Longitude
3 01 025----- 10 04 003-—————————————————— Day
! + 0 04 004 ---Hour
+ 3 01 012----
+ 0 04 005 ---Minute

The order of the data in Section 4 would then be according to the following sequence of
Table B entries: 0 05 002, 0 06 002, 0 04 003, 0 04 004, and 0 04 005

11

Code and Flag Tables: An element based on a code (e.g., Cloud Type) or a set of
conditions defined by flags (bits set to 0 or 1) will have an associated Code Table or
Flag Table. In this case, "Code Table" or "Flag Table" will appear in the Unit column
of Table B. An example of a Code Table and a Flag Table is listed below:

BUFR table B:
Class 20 - Observed phenomena
TABLE BUFR
REFERENCE TABLE
ELEMENT NAME
REFERENC DATA WIDTH
UNIT SCALE E VALUE (Bits)
F X Y
0 20 024 | Intensity of phenomena Code table 0 0 3

"

Code table: 020 024

1.2.5 Summary of Decoding Process with BUFR tables

"

Code figure
0

—

=W N

5-6

Intensity of phenomena

No phenomena

Light
Moderate
Heavy
Violent
Reserved
Missing value

BUFR decoding software needs to keep the Tables in memory. The decoding process is
depicted in figure 1 and summarized below:
* The decoder identifies the successive descriptors in the Data Description Section. If

a descriptor is an element descriptor, the decoder looks up the characteristics of
the element (units, scale, reference value, data width) in Table B. If a descriptor is
a sequence descriptor, the decoder looks up the sequence in Table D. If the
sequence in Table D contains only element descriptors, the decoder looks up the
characteristics of the elements in Table B and proceeds on to the next descriptor
in the Data Description Section. However, if the sequence in Table D contains
other sequence descriptors, it looks these up in Table D, repeating this process
until only element descriptors remain. The decoder then looks up the
characteristics of these elements in Table B and proceeds on to the next descriptor
in the Data Description Section. Once the decoder has found the characteristics
of all the elements referred to in the Data Description Section, it can decode the

values from the Data Section.

12

* Ifin Table B, the unit column of the element descriptor contains "Code table" or
"Flag table", the interpreter of the decoded data will have to examine the
corresponding code table or flag table to understand the meaning of the coded
value. The interpreter could be a human or, in some cases, an automatic process
that acts depending on the value of the code form or the flags.

List of Common Sequences: List of descriptors
Group of descriptors of —> o —— Code and
elements TABEL D TABEL B Flag Tables

Figure 1. BUFR tables

1.2.6 Further exploration

For more details of BUFR code, users can read the following documents in WMO
website:

http://www.wmo.int/pages/prog/www/WMOCodes/Guides/BUFRCREXPreface en.html

Chapter 2 Process BUFR/PrepBUFR Files

In this Chapter, a set of simple example programs is employed to explain how to
process BUFR/PrepBUFR files. The PrepBUFR is the NCEP term for “prepared” or
QC’d data in BUFR format (NCEP convention/standard). These examples are Fortran
codes and are available in the community GSI release version 3 package under
directory ./util/bufr_tools/. Through these examples, users can easily understand
the usage of several commonly used BUFRLIB subroutines, and how these
subroutines, together with DX BUFR table, are worked together to encode, decode,
append BUFR/PrepBUFR files. These examples can also serve as a starting point for
users to solve their specific BUFR file processing problems.

The examples used in this Chapter include:

« bufr_encode_sample.f90
Write one temperature observation with location and time into a BUFR file.

* bufr_decode_sample.f90

Read one temperature observation with location and time out from the BUFR file.

« bufr_append_sample.f90

Append one temperature observation with location and time into an existing BUFR file.

« prepbufr_encode_surface.f90
Write a surface observation into a PrepBUFR file.

« prepbufr_encode_upperair.f90
Write an upper air observation into the PrepBUFR file.

« prepbufr_decode_all.f90
Read all observations and BUFR table out from a PrepBUFR file.

« prepbufr_append_surface.f90

Append a surface observation into an existing PrepBUFR file.

« prepbufr_append_upperair.f90

Append an upper air observation into an existing repBUFR file.

« prepbufr_append_retrieve.f90
Append a retrieved data into an existing PrepBUFR file.

« bufr_decode_radiance.f90
Read TOVS 1B radiance observations and BUFR table out from the radiance BUFR file.

Please note that all these examples are based on the NCEP BUFRLIB. The BUFRLIB
software is a library containing close to 250 different FORTRAN and C subroutines

14

and functions; however, a typical user will never directly call more than 10-20 of
them. The rest are lower-level routines that the software uses to accomplish various
underlying tasks and which can therefore be safely treated as "black box" from a
user perspective. For more information about BUFRLIB, please refer to

http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB /toc/.

The DX BUFR table defines the report structure for each observation type and is
embedded at the top of BUFR/PrepBUFR files. We will introduce the DX BUFR table
in Chapter 3.

In this Chapter, we will use examples to introduce commonly used BUFRLIB
subroutines and functions and the code structure of BUFR processing.

BUFR/PrepBUFR file structure

We introduced BUFR code structure in Chapter 1 but from a practical view, BUFR
file structure should be described as: “A BUFR message contains one or more BUFR
data subsets. Each data subset contains the data for a single report from a particular
observing site at a particular time and location, in addition to time and location
information. Typically each data subset contains data values such as pressure,
temperature, wind direction and speed, humidity, etc. for that particular
observation. Finally, BUFR messages themselves are typically stored in files
containing many other BUFR messages of similar content.” Therefore, if we
summarize in a top-down fashion, we would say:

“A BUFR file contains one or more BUFR messages,
each message containing one or more BUFR data subsets,

each subset containing one or more BUFR data values. “

We can also represent the BUFR/PrepBUFR file structure using the following figure.

Ob/Subset 1
Latitude
Longitude

T obs

15

2.1 Encode, Decode, Append a simple BUFR file

2.1.1 Decoding/reading data from a simple BUFR file

The following is from the code bufr_decode_sample.f90, which shows how to read
specific observation values (among a large variety) out from a BUFR file.

program bufr decode sample
|

! example of reading observations from bufr
|

implicit none

character (80) :: hdstr='XOB YOB DHR'
character (80) :: obstr='TOB'

real (8) :: hdr(3),obs(1,10)

integer :: ireadmg, ireadsb

character (8) subset

integer :: unit in=10

integer :: idate,iret,num message,num subset
! decode

open (unit in,file='sample.bufr',action='read',6K form='unformatted"')
call openbf (unit in, 'IN',unit_in)
call datelen(10)
num message=0
msg report: do while (ireadmg(unit in, subset,idate) == 0)
num message=num message+l
num subset = 0
write(*,'(I10,I4,al0)"') idate,num message, subset
sb_report: do while (ireadsb(unit in) == 0)
num subset = num subset+l
call ufbint(unit in,hdr,3,1 ,iret,hdstr)
call ufbint(unit _in,obs,1,10,iret, obstr)
write(*, ' (2I5,4£8.1)") num subset,iret,hdr,obs(1,1)
enddo sb_report
enddo msg_ report
call closbf(unit in)

end program

Specifically, this example will read all temperature observation values with
observation location and time from a BUFR file named sample.bufr.

The structure of the above FORTRAN BUFR decoding code matches the top-down

hierarchy of a BUFR file. To better illustrate this structure, the code is divided into
four different levels:

16

open(unit_in,file='sample.bufr',action="'read',6 form='unformatted')
call openbf (unit_in, 'IN',unit in)

msg_report: do while (ireadmg(unit_in,subset,idate) == 0)

sb_report: do while (ireadsb(unit_in) == 0)
call ufbint(unit_in,hdr,3,1 ,iret, hdstr)
call ufbint(unit_in,obs,1,10,iret,obstr)

enddo sb_report

enddo msg_report

call closbf(unit_in)

e The 1st Level: the three RED lines are the first level (file level) statements,
which open/close a BUFR file for decoding.

e The 2nd Level: the two BLUE lines are the second level (message level)
statements, which read in BUFR messages from the BUFR file. Each loop
reads in one message until the last message in the file is reached.

e The 3 Level: the two GREEN lines are the third level (subset level)
statements, which read in BUFR data subsets from a BUFR message. Each
loop reads in one subset until the last subset in the message is reached.

e The 4t Level: The BLACK lines are the fourth level (data level) statements,
which read in user picked data values into user defined arrays from each
BUFR subset.

All BUFR encode, decode, and append programs have the same structure as listed
here. The message loop (msg report) and subsetloop (sb report) are needed
only if there are multiple messages in a file and multiple subsets in a message, which
is the case for most types of observations.

There are several commonly used BUFRLIB subroutines/functions in the code. We
will explain the usage of each of them in detail based on the NCO BUFRLIB
document. Users are encouraged to read the explanations carefully in parallel to the
example code to understand the usage of each function. Understanding the usage of
these functions and BUFR file structure are key to successfully processing all NCEP
BUFR files.

17

1stlevel (file level): open a BUFR file

open(unit in, file='sample.bufr',action="'read',6 form="'unformatted')
call openbf (unit in, 'IN',unit in)

call glosbf(unitiin)
* The open command: Fortran command to link a BUFR file with a logical unit.

Here the action is ‘read’ because we want to decode (read) only. The form is
always “unformatted” because the BUFR file is a binary stream.

* openbf
CALL OPENBF (LUBFR, CIO, LUNDX)

Input arguments:

LUBFR INTEGER Logical unit for BUFR file

CIO CHAR* (*) '"IN' or 'OUT' or 'APX' (or NUL', 'NODX',
'"SEC3' or 'QUIET')

LUNDX INTEGER Logical unit for BUFR tables

This subroutine identifies to the BUFRLIB software a BUFR file that is
connected to logical unit LUBFR. The argument CIO is a character string
describing how the file will be used, e.g. 'IN" is used to access an existing file
of BUFR messages for reading/decoding BUFR, and 'OUT' is used to access a
new file for writing/encoding BUFR. An option 'APX' behaves like 'OUT,
except that output is then appended to an existing BUFR file rather than
creating a new one from scratch, and there are also some additional options
'NUL', 'NODX', 'SEC3', 'QUIET". It will be sufficient to further consider only
the 'IN', 'OUT', 'APX' cases for the purposes of this discussion. The third
argument LUNDX identifies the logical unit of DX BUFR table. Except when
CIO="SEC3', every BUFR file that is presented to the BUFRLIB software must
have a DX BUFR tables file associated with it, and these tables may be defined
within a separate ASCII text file or, in the case of an existing BUFR file, may
be embedded within the first few BUFR messages of the file itself, and in
which case the user needs to set LUNDX to the same value as LUBFR. In any
case, note that LUBFR and LUNDX are logical unit numbers; therefore, the
user must have already associated these logical unit numbers with actual
filenames on the local system, typically via a FORTRAN "OPEN" statement.
Currently, as many as 32 BUFR files can be simultaneously connected to the
BUFRLIB software for processing. Of course, each one must have a unique
LUBFR number and be defined to the software via a separate call to
subroutine OPENBEF.

18

In this example, LUBFR=LUNDX= unit_in since BUFR table is already
embedded within the BUFR messages of the file itself. CIO uses ‘IN’ for
reading BUFR file.

e closbf:
Since OPENBEF is used to initiate access to a BUFR file, CLOSBF would be used
to terminate this access:

CALL CLOSBF (LUBFR)

Input argument:
LUBFR INTEGER Logical unit for BUFR file

This subroutine severs the connection between logical unit LUBFR and the
BUFRLIB software. It is always good to call CLOSBF for every LUBFR that was
identified via OPENBF; CLOSBF will actually execute a FORTRAN "CLOSE" on
logical unit LUBFR before returning, whereas OPENBF did not itself handle
the FORTRAN "OPEN" of the same LUBFR.

Now that we have covered the library subroutines that operate on the BUFR file
level, and recalling the BUFR file structure that was previously discussed, it is now
time to continue on to the BUFR message level:

2nd Jevel (message level): read in messages
msg_report: do while (ireadmg(unit in, subset,idate) == 0)

enddo msg report

e Function ireadmg:

IRET = IREADMG (LUBFR, CSUBSET, IDATE)

Input argument:
LUBFR INTEGER Logical unit for BUFR file

Output arguments:

CSUBSET CHAR* (*) Table A mnemonic (name/type) for BUFR message
IDATE INTEGER Section 1 date-time for BUFR message
IRET INTEGER Return code:

0
-1

normal return
no more BUFR messages in LUBFR

Subroutine IREADMG reads the next BUFR message from the given BUFR file
pointed to by LUBFR, returns IRET as its function value. It reads the next BUFR
message into internal arrays within the BUFRLIB software (from where it can
be easily manipulated or further parsed) rather than passed back to the
application program directly. If the return code IRET contains the value -1,
then there are no more BUFR messages within the given BUFR file, and the file
will be automatically disconnected from the BUFRLIB software via an internal

19

call to subroutine CLOSBF. Otherwise, if IRET returns with the value 0, then the
character argument CSUBSET will contain the Table A mnemonic which
describes a type of data subset, and the integer argument IDATE will contain
the date-time in format of YYMMDDHH or YYYYMMDDHH determined by
subroutine DATELEN.

In this example, the loop meg_report will use ireadmg function to read all
message in from the BUFR file until getting a none-zero return value (IRET=-
1).

After IREADMG reads a BUFR message into the internal arrays, we can get into the
3rd Jevel of the code to read a data subset from that internal message:

3rd Jevel (subset level): read in data subsets
sb report: do while (ireadsb(unit in) == 0)
enddo gbireport
e Function ireadsb:

IRET = IREADSB (LUBFR)

Input argument:

LUBFR INTEGER Logical unit for BUFR file
Output arguments:
IRET INTEGER Return code:

0
-1

normal return
no more BUFR data subsets in
current BUFR message

Function IREADSB reads a data subset from the internal arrays. A return code
value of -1 within IRET indicates that there are no more data subsets within
the given BUFR message.

Again, in this example, the loop sb_report will use ireadsb function to read all
subset in from the internal array until getting a none-zero return value
(IRET=-1).

Once a subset has been successfully read with IRET=0, then we are ready to call the
data-level subroutines in order to retrieve actual data values from this subset:

4th Jevel (data level): read in picked data values

This is the level where observation values are read into user-defined arrays. To
understand how to read in observations from a BUFR subset, the following two
questions need to be addressed:

1) How do I know what kind of data are included in the subset (or a BUFR
file)?

20

This question can be answered by checking the content of a BUFR table and
mnemonics. The BUFR table and mnemonics will be discussed in detail by Chapter 3.
Here we illustrate how to use the BUFR table to solve the problem directly. As an
example, an excerpt from the BUFR table in samp1e.bufr for the message type
appupa is shown below. We will use this table information to illustrate how to track
observation variables in aprura (the upper level data type):

[= m e m |
| MNEMONIC | NUMBER | DESCRIPTION

| == | -=—————- R S !
ADPUPA	A48102	UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS
ATRCAR	A48103	MDCRS ACARS ATRCRAFT REPORTS
MNEMONIC	SEQUENCE	
==	!	
ADPUPA	HEADR SIRC {PRSLEVEL} <SST INFO> <PREWXSEQ> {CLOUDSEQ}	
ADPUPA	<CLOU2SEQ> <SWINDSEQ> <AFIC SEQ> <TURB3SEQ>	
HEADR	SID XOB YOB DHR ELV TYP T29 TSB ITP SQN PROCN RPT	
HEADR	TCOR <RSRD SEQ>	
T ————— !		
MNEMONIC	NUMBER	DESCRIPTION

| == | -——————- | = !
| SID | 001194 | STATION IDENTIFICATI

XOB	006240	LONGITUDE
YOB	005002	LATITUDE
DHR	004215	OBSERVATION TIME MINUS CYCLE TI
ELV	010199	STATION ELEVATION
TYP	055007	PREPBUFR REPORT TYP
!		
MNEMONIC	SCAL	REFERENCE
==	-——-—-	==
!		
SID	0	0
XOB	2	-18000
YOB	2	-9000
DHR	3 -24000	16
ELV	0	-1000
TYP	0	0

The four color boxes here are used to separate the different parts of the BUFR table,
which can also be marked as Part 1 (red), Part 2 (blue), Part 3 (yellow), and Part 4
(green) in the order they are listed above.

As discussed before, IREADMG reads in a message with three output arguments. The
first output argument is:

CSUBSET Table A mnemonic for BUFR message

21

[t returns the message type (also called data type). This message type is the starting
point to learn what types of observations are included in this message. The
description of message types can be found in the first section of a BUFR table, for
example, Part 1 (red) in the sample BUFR table.

Here, if csurseT has the value of aprura, the contents of this message or all subsets
(third level) are upper air reports (like rawinsonde). A search of abrura in the BUFR
table returns the first two lines of Part 2 (blue), in which aprura is followed by a
sequence of items like: HEADR STRC {PRSLEVEL}... If we then search for HEADR in
the same file, we can find the last two lines in Part 2 (blue), in which seapr leads the
sequence containing stb X0B YOB DHR ELV TYP ...

If we then search for stp xoB YoB DHR ELV TYPin the same file, we can find
the definition of these items in Part 3 (yellow). Clearly, the message type aprura
includes variables like station ID, observation location (longitude, latitude),
observation time, etc. These are important variables to describe an observation. If
we keep searching for other items under aprura, we can also find lots of observation
variables are included in apreura. Please note that a complete list of all variables in a
message type could be very long and complex, but we don’t need to learn about all
of them - we only need to know what we need for our specific application.

The last part of the BUFR table (Part 4, green) includes useful unit information for a
variable; for example, the unit of xoB is bEG (degree) and the unit of DHR is HOURS
(hours). Users will not likely need to make use of the scale, reference, and bit
information.

There are lots of other details on BUFR tables, but the above information should be
sufficient for now to learn about BUFR file processing applications using the NCEP
BUFRLIB software with the examples in this Chapter.

2). How do I tell BUFRLIB to only read in specific data information?

From the BUFR table discussion above, we can see a message or a subset could
include lots of information. In this example, we only wants to read in temperature
observation, along with its longitude, latitude, and observation time. Here we will
use this example to illustrate how to solve this question. From the BUFR table, for
the message type nprura, the name of longitude, latitude, and time in the BUFR table
are 'xos voe pHR' within the sequence reaper. Similarly, the name of the
temperature observation can be found as 'tos' in the sequence (rrsieveEL} (not
shown in the example BUFR table). Actually, most conventional message types
contain such observation information.

In the example code, the first several lines define the information we want to read:

character (80) :: hdstr='XOB YOB DHR'
character (80) :: obstr='TOB'
real (8) :: hdr(3),obs(1,10)

22

hdstr is a string of blank-separated names (mnemonics) associated with array hdr,
while obstr is another string associated with array obs. Please note that arrays (hdr
and obs) have to be defined as REAL*8 arrays. Now let’s first learn the usage of
subroutine ufbint which is called in the following two lines.

call ufbint(unit in,hdr,3,1 ,iret,hdstr)
call ufbint(unit in,obs,1,10,iret, obstr)

e ufbint
CALL UFBINT (LUBFR, R8ARR, MXMN, MXLV, NLV, CMNSTR)

Input arguments:

LUBFR INTEGER Logical unit for BUFR file

CMNSTR CHAR* (*) String of blank-separated mnemonics
associated with R8ARR

MXMN INTEGER Size of first dimension of R8ARR

MXLV INTEGER Size of second dimension of R8ARR

OR number of levels of data values
to be written to data subset

Input or output argument (depending on context of LUBFR) :
R8ARR (*, *) REAL*S8 Data values written/read to/from
data subset

Output argument:
NLV INTEGER Number of levels of data values
written/read to/from data subset

Subroutine UFBINT writes or reads specified values to or from the current
BUFR data subset within the internal arrays, with the direction of the data
transfer being determined by the context of LUBFR, if LUBFR points to a
BUFR file that is open for input (i.e. reading/decoding BUFR), then data
values are read from the internal data subset; otherwise, data values are
written to the internal data subset. The actual data transfer occurs through
the use of the two-dimensional REAL*8 array RBARR whose actual first
dimension MXMN must always be passed in. The call argument MXLV, on the
other hand, contains the actual second dimension of R8ARR only when
LUBFR points to a BUFR file that is open for input (i.e. reading/decoding
BUFR); otherwise, whenever LUBFR points to a BUFR file that is open for
output (i.e. writing/encoding BUFR), MXLV instead contains the actual
number of levels of data values that are to be written to the data subset (and
where this number must be less than or equal to the actual second dimension
of R8ARR). In either case, the input character string CMNSTR always contains
a blank-separated list of "mnemonics" which correspond to the REAL*8
values contained within the first dimension of R8ARR, and the output
argument NLV always denotes the actual number of levels of those values
that were written/read to/from the second dimension of RSBARR, where each
such level represents a repetition of the mnemonics within CMNSTR. Note
that, when LUBFR points to a BUFR file that is open for output (i.e.

23

writing/encoding BUFR), we would certainly expect that the output value
NLV is equal to the value of MXLV that was input, and indeed this is the case
unless some type of error occurred in storing one or more of the data levels.

In this case, after we run the two BUFRLIB subroutines, longitude (xog), latitude
(voB), and observation time (pur) will be read into array hdr and temperature
observations (Tog) is read into array obs. The array contents should be:

hdr(1) - longitude

hdr(2) - latitude

hdr(3) -time

obs(1,1) -temperature observation in 1st level (single level)

obs(1,2) -temperature observation in 2nd level for multi-level
observation
e 0bs(1,3) -temperature observation in 3rd level for multi-level
observation

Because these two lines are inside the message and subset loops, we can get
temperature observation with location and time from all observations in the BUFR
file. If data subsets contain some missing data, the data values in the array are
assigned as 10.0E10.

Now, only one BUFRLIB subroutine datelen left in the code needs to be explained:

e datelen:
CALL DATELEN (LEN)
Input argument:
LEN INTEGER Length of Section 1 date-time values to

be output by message-reading subroutines
such as READMG, READERME, etc.
8 YYMMDDHH (i.e. 2-digit year)
10 YYYYMMDDHH (i.e. 4-digit year)

This subroutine allows the user to specify the format for the 1pATE output argument
that is returned by rREADMG.

24

2.1.2 Encoding/writing data into a simple BUFR file

The following is from the program bufr_encode_sample.f90, which shows how to
write a few observation variables into a new BUFR file.

program bufr encode sample
|

! example of writing one value into a bufr file
|

implicit none

character (80) :: hdstr='XOB YOB DHR'
character (80) :: obstr='TOB'
real (8) :: hdr(3),obs(1,1)

character (8) subset
integer :: unit out=10,unit table=20
integer :: idate,iret

set data values
hdr (1)=75.;hdr (2)=30.;hdr (3)=-0.1
obs(1,1)=287.15

idate=2008120100 ! YYYYMMDDHH
subset="ADPUPA' ! upper-air reports
! encode

open (unit_table,file='table prepbufr.txt')
open (unit out, file='sample.bufr',action="write' &
, form="unformatted"')
call datelen(10)
call openbf (unit out, 'OUT',unit_table)
call openmb (unit_out, subset,idate)
call ufbint (unit out,hdr,3,1,iret,hdstr)
call ufbint(unit out,obs,1,1,iret,obstr)
call writsb(unit_out)
call closmg(unit out)
call closbf (unit out)

end program

Specifically, this example will write one temperature observation value with
observation location and time to a BUFR file named as sample.bufr.

Here, we can see the BUFR encode procedure has the same structure as the decode
procedure: file level, message level, subset level, which are marked in the same color

25

as the decode example in Section 2.1.1. The major difference between encode and
decode are highlighted in bold in the code and explained below:

® open(unit_table,file='table prepbufr.txt')

To encode some observation values into a new BUFR file, a pre-existing BUFR
table file is necessary and needs to be opened.

® open(unit out,file='sample.bufr',action='write', form="unformatted")

The action in Fortran open command has to be “write”.

® call openbf (unit out, 'OUT',unit table)
The second input parameter is set to “OUT” to access a new file for writing.
The third parameter is the logical unit of BUFR table file so that BUFR table
will be written into BUFR file. Please check the detailed explanation for
openbfin section 2.1.1.

® call openmb(unit_out,subset,idate)

CALL OPENMB (LUBFR, CSUBSET, IDATE)

Input arguments:

LUBFR INTEGER Logical unit for BUFR file

CSUBSET CHARX* (*) Table A mnemonic for type of BUFR
message to be opened

IDATE INTEGER Date-time to be stored within

Section 1 of BUFR message

This function opens and initializes a new BUFR message for eventual output
to LUBFR, using the arguments CSUBSET and IDATE to indicate the type and
time of message to be encoded. It only opens a new message if either
CSUBSET or IDATE has changed, and otherwise will simply return while
leaving the existing internal message unchanged, so that subsequent data
subsets can be stored within the same internal message. For this reason,
OPENMB allows for the storage of an increased number of data subsets
within each BUFR message and therefore improves overall encoding
efficiency. Regardless, whenever a new BUFR message is opened and
initialized, the existing internal BUFR message (if any) will be automatically
closed and written to output via an internal call to the following subroutine:

® call closmg(unit out)

CALL CLOSEMG (LUBFR)
Input arguments:
LUBFR INTEGER Logical unit for BUFR file

Furthermore, since, in the case of a BUFR file that was opened for input, each
subsequent call to subroutine IREADMG will likewise automatically clear an
existing message from the internal arrays before reading in the new one, for

26

this reason, it is rare to ever see subroutine CLOSMG called directly from
within an application program!

call writsb(unit_out)

CALL WRITSB (LUBFR)

Input argument:
LUBFR INTEGER Logical unit for BUFR file

This subroutine is called to indicate to the BUFRLIB software that all
necessary data values for this subset have been stored and thus that the
subset is ready to be encoded and packed into the current message for the
BUFR file associated with logical unit LUBFR. However, we should note that
the BUFRLIB software will not allow any single BUFR message to grow larger
than a certain size (usually 10000 bytes, although this can be increased via a
call to subroutine MAXOUT);

Before this subroutine, we can see two consecutive calls to the subroutine
ufbint, which is the same as in the decode example. However, this time, the
strings hdstr tells the BUFR subroutine ufbint thatthe array ndr holds
longitude, latitude and observation time, the string obstr tells ufbint that
the array obs holds temperature observations. The data subset is ready and
written into the BUFR file via call writsb.

27

2.1.3 Appending data to a simple BUFR file

The following is from the program bufr_append_sample.f90, which shows how to
append a new observation variable into an existing BUFR file.

program
! sample of appending one observation into bufr file
implicit none

character (80) :: hdstr='XOB YOB DHR'
character (80) :: obstr='TOB'
real (8) :: hdr(3),obs(1,1)

character (8) subset
integer :: unit out=10,unit table=20
integer :: idate,iret

! set data wvalues

hdr (1)=85.0;hdr (2)=50.0;hdr (3)=0.2

obs (1,1)=300.0

idate=2008120101 ! YYYYMMDDHH
subset="ADPSFC' ! surface land reports

! get bufr table from existing bufr file
open(unit_table,file='table prepbufr app.txt')

open(unit out, file='sample.bufr',status="'old',6 form="unformatted')
call openbf (unit_out, 'IN',unit out)

call dxdump (unit_out,unit_table)

call closbf (unit_out)

! append

open(unit out, file='sample.bufr',status='old',6 form="'unformatted")
call datelen(10)
call openbf (unit out, 'APN',unit table)
call openmb (unit out, subset, idate)
call ufbint (unit out,hdr,3,1,iret,hdstr)
call ufbint (unit out,obs,1,1,iret,obstr)
call writsb (unit out)
call closmg(unit out)
call closbf (unit out)

end program

Specifically, this example will append one temperature observation value with
observation location and time to an existing BUFR file named as sample.bufr.

28

If we compare this code with the example code for encoding, we can find the code
structure and BUFRLIB functions used are very similar in two codes. But there is a
key point that needs special attention for appending:

e Appending has to use the exact same BUFR table as the existing BUFR file.

To ensure this, we add the following three lines to the code in order to
extract the BUFR table from the existing BUFR file:

call openbf (unit out, "IN',unit out)
call dxdump (unit out,unit table)
call closbf (unit out)

Let’s learn subroutine dxdump.

CALL DXDUMP (LUBFR, LDXOT)

Input arguments:
LUBFR INTEGER Logical unit for BUFR file
LDXOT INTEGER Logical unit for output BUFR tables file

This subroutine provides a handy way to view the BUFR table information
that is embedded in the first few messages of a BUFR file. The user needs
only to have identified the file to the BUFRLIB software via a prior call to
subroutine OPENBF, and then a subsequent call to subroutine DXDUMP will
unpack the embedded tables information and write it out to the file pointed
to by logical unit LDXOT. The output file is written with ASCII-text table
format. Subroutine DXDUMP can be most useful for learning the contents of
archive BUFR files.

In this example, the BUFR table embedded in the BUFR file sample.bufr will be read
in and written into a text file called table prepbufr app.txt.

Comparing with the encode example again, there are two more slight differences in
setups, which are highlighted in the code as Bold and explained below:

e In the Fortran open command, the status has to be set as ‘old’ because
appending requires an existing BUFR file.

e In the subroutine openbf, the existing BUFR file and dumped BUFR table are
connected to BUFRLIB, the second input parameter has to be set as ‘APN’.

29

2.2 Encode, Decode, Append the PrepBUFR file

In last section, we use three simplified examples to illustrate the code structure of
the BUFR file process (read, write and append) and explained commonly used
BUFRLIB functions in the example code. In this section, we will learn how to use the
skills we learned in previous sections to process a PrepBUFR file, which is one of
major BUFR files used in GSI for all conventional observations and retrieved
standard observations.

2.2.1 Decoding/reading data from a PrepBUFR file

The following is from the code prepbufr_decode_all.f90, which reads all major
conventional observations and BUFR table out from a PrepBUFR file.

program prepbufr decode all
|

! read all observations out from prepbufr.
! read bufr table from prepbufr file
|

implicit none

integer, parameter :: mxmn=35, mxlv=250

character (80) :: hdstr='SID XOB YOB DHR TYP ELV SAID T29'
character (80) :: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'
character (80) :: gcstr='PQOM QOM TQOM ZQM WQM NUL PWQ '
character (80) :: oestr='POE QOE TOE NUL WOE NUL PWE !

Compared to the mnemonic list used in the examples in 2.1, a clear difference here is
that more BUFR table mnemonics are involved because we want to read all major
observations, such as temperature (TOB), moisture (QOB), Pressure(POB), Height
(ZOB), wind (UOB and VOB). Also, we want to read the quality flags and observation
errors with these observations at the same time. Here is a list of content in these
mnemonics strings:

* hdstr: defines report header information including the station ID, longitude,
latitude, time, report type, elevation, satellite ID, data dump report type.

* obstr: defines observation for pressure, specific humidity, temperature,
height, u and v component of wind, total precipitable water, data level
category, surface pressure.

* gcstr: defines the quality markers for each of observation variables listed
in the string obstr.

* oestr: defines the observation error for each of observation variables listed
in the string obstr.

30

More detailed information on these mnemonics can be found from the BUFR table
named with “prepobs_prep.bufrtable”, which is a text file dumped out during the
decoding process.

real (8) :: hdr (mxmn),obs (mxmn,mxlv),gcf (mxmn,mx1v),oer (mxmn,mx1v)

The associated arrays are defined to hold the data values of mnemonics specified in
hdstr, obstr, gcstr, oestr.Note, mxmn=35, mx1v=250, which make the array can
hold up to 250 levels of observations with up to 35 mnemonics in each level.

INTEGER :: ireadmg, ireadsb

character (8) :: subset

integer :: unit in=10,unit table=24,idate,nmsg,ntb
character (8) :: c_sid

real (8) :: rstation_id

equivalence (rstation id,c_sid)

From our earlier discussions, it was noted that data values are normally read from
or written to BUFR subsets using REAL*8 arrays via subroutine. The character
values are read and written in the same way using a REAL*8 variable. Here,
rstation idisreal(8); ¢ sidis character(8); then FORTRAN EQUIVALENCE is used
to covert the station ID from REAL*8 to string that can be easily read by humans.

integer :: 1,k,iret

open(unit table, file='prepobs prep.bufrtable')
Fortran open command to link BUFR table with a logical unit, unit table.

open(unit in, file='prepbufr', form="unformatted',6 status='old")
Fortran open command to link a PrepBUFR file with a logical unit, unit_in.

call openbf (unit in, 'IN',unit in)
Connect the PrepBUFR file to BUFRLIB. Since BUFR table is embedded in the
PrepBUFR file, the third argument is the same as first argument in this call.

call dxdump (unit in,unit table)

Dump BUFR table out from the existing PrepBUFR file and write to a ASCII file
named “prepobs_prep.bufrtable” through unit unit table.

call datelen(10)
Specifies the date format as YYYYMMDDHH.

31

nmsg=0

msg_report: do while (ireadmg(unit in, subset,idate) == 0)
nmsg=nmsg+1
ntb = 0
write (*,*)
write(*,'(3a,i10)"') 'subset=',subset,' cycle time =',6idate

sb_report: do while (ireadsb(unit in) == 0)

The msg_report loop reads each of messages until reaching the end of file. The
sb_report loop reads each of data subsets within the current message until the end
of the message.

ntb = ntb+l

call ufbint (unit in, hdr,mxmn, 1 ,iret,hdstr)
call ufbint (unit_in, obs,mxmn,mxlv,iret, obstr)
call ufbint (unit_ in, oer,mxmn,mxlv,iret, oestr)
call ufbint (unit_in, gcf,mxmn,mxlv,iret,gcstr)

Calling rhe subroutine ufbint to read data based on mnemonics defined in hdstr,
obstr, oestr, gcstr from asubsetand write to corresponding arrays hdr, obs,
oer, gcf. The iret is the actual returned number of pressure levels which have be
read in even though nx1v=250.

rstation id=hdr (1)
write (*,*)
write(*,'(2I110,al14,8f14.1)") ntb,iret,c_sid,(hdr(i),i=2,8)

DO k=1, iret

write (*,'(i3,a10,9f14.1)") k,'obs="', (obs(i,k),i=1,9)

write (*,'(i3,al0,9f14.1)"') k, 'oer="', (cer (i, k),i=1,7)

write (*,'(i3,a10,9f14.1)") k,'qgcf=", (qcf (i, k),i=1,7)
ENDDO

enddo sb_report
enddo msg report

call closbf (unit in)
end program

From this PrepBUFR decoding example, we can see that the code structure and
functions used are the same as the simple decoding example in section 2.1. But this
example defines more mnemonics and larger dimensions of the REAL*8 arrays to
read all major observation elements from the PrepBUFR file, including observation
values, quality markers, and observation errors.

32

2.2.2 Encoding/Writing surface data into a PrepBUFR file

The following is from the code prepbufr_encode_surface.f90, which writes a surface
observation into a PrepBUFR file. Let’s focus only on the differences compared with
prepbufr_decode_all.f90.

program prepbufr encode surface
|

! write a surface observation into prepbufr file
|

implicit none

integer, parameter :: mxmn=35, mxlv=1

character (80) :: hdstr='SID XOB YOB DHR TYP ELV SAID T29'
character (80) :: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'
character (80) :: gcstr='PQOM QOM TQOM ZQM WQM NUL PWQ '
character (80) :: ocestr='POE QOE TOE NUL WOE NUL PWE '

real (8) :: hdr (mxmn),obs (mxmn,mx1lv),gcf (mxmn,mx1lv),oer (mxmn,mx1v)

The level parameter nx1v=1 since surface observation is single level data.

character (8) :: subset

integer :: unit out=10,unit table=20,idate,iret
character(8) :: c_sid

real (8) :: rstation_id

equivalence (rstation id,c_sid)

! write observation into prepbufr file
|

open(unit table, file='prepobs prep.bufrtable',action="read"')
open (unit out, file='prepbufr',action="'write', form="unformatted"')
call datelen(10)

call openbf (unit out, 'OUT',unit table)

Connect the unit out and unit table to BUFRLIB. Here, the BUFR table is needed
because of encoding and will be written into the PrepBUFR file. The parameter 'out"
tells BUFRLIB to access a new file for writing.

1date=2010050700 ! cycle time: YYYYMMDDHH
subset="ADPSFC' ! surface land (SYNOPTIC, METAR) reports
call openmb (unit out, subset, idate)

Opens and initializes a new BUFR message for writing to the PrepBUFR file, using

“ADPSFC” and “2010050700” as message type and analysis time. “ADPSFC” is the
surface land report.

! set headers
hdr=10.0el10

33

Initialize report header array. 10.0e10 is the missing value in the PrepBUFR file.

c_sid="'KTKI'; hdr(l)=rstation_ id
hdr (2)=263.4; hdr(3)=33.2; hdr(4)=-0.1; hdr(6)=179.0

! set obs, gcf, oer for wind
hdr (5)=287 ! report type

Set up report header values. hdr (5) =287 in which 287 is one of surface wind report
types for surface message type “ADPSFC”.

obs=10.0el10;gcf=10.0el10;0er=10.0el0

obs (1,1)=985.2; obs(5,1)=-2.8; obs(6,1)=-7.7; obs(8,1)=6.0
qgcf(1,1)=2.0 ; qgcf(5,1)=2.0

oer(5,1)=1.6

Assign observation values, quality markers, and errors for this wind report.

! encode wind obs
call ufbint (unit out,hdr,mxmn, 1 ,iret,hdstr
call ufbint (unit out, obs,mxmn,mxlv,iret, obstr
call ufbint (unit out,ocer,mxmn,mxlv,iret, oestr

(

(

)
)
)
call ufbint (unit out,gcf,mxmn,mxlv,iret,gcstr)
call writsb (unit out)

Using writsb to tell BUFRLIB that data subset is ready and can be written to the
PrepBUFR file. Here, we had written a wind surface observation into the PrepBUFR
file. Next, let’s write a surface mass observation (temperature, moisture ...):

! set obs, qgqcf, oer for temperature and moisture
hdr (5)=187 ! report type

hdr (5)=187 in which 187 is one of the surface mass report type for surface message
“ADPSFC”. Here we can see NCEP classifies observations into many observation
types with unique numbers for each observation type. Also, NCEP use number 100-
199 for mass observations and 200-299 for wind observations. For the observations
from the same station, the mass observations go to 100-199, for example 187 in this
example, while the wind observations from the same station go to 200-299 with the
same last 2 digital number, for example, 287 here.

obs=10.0el10;gcf=10.0el10;0er=10.0el0
obs (1,1)=985.2;0bs (2,1)=12968.0;0bs (3,1)=31.3

(
obs(4,1)=179.0;0bs (8,1)=0.0
gcf(l,1)=2.0 ;qcf(2,1)=2.0 ;gcf(3,1)=2.0 ;qgcf(4,1)=2.0
oer(1,1)=0.5 ;oer(2,1)=0.6 ;oer(3,1)=2.3

Assign mass report observation, quality markers and error.

34

! encode temperature and moisture
call ufbint (unit out,hdr,mxmn, 1 ,iret,hdstr
call ufbint (unit out, obs,mxmn,mxlv,iret, obstr
call ufbint (unit out,ocer,mxmn,mxlv,iret, oestr
call ufbint (unit out,gcf,mxmn,mxlv,iret,gcstr
call writsb (unit out)

)
)
)
)

Again, write the mass observations into a subset to the PrepBUFR file.

call closmg(unit out)

Close the current message and write the current message into the PrepBUFR file.

call closbf (unit out)

end program

2.2.3 Encoding/Writing upper air data into a PrepBUFR file

The following is from the code prepbufr_encode_upperair.f90, which writes an upper

air observation into PrepBUFR file. Let’s look at the differences compared with
prepbufr_encode_surface.f90.

program prepbufr encode upperair
! write a upper air observation into prepbufr file
implicit none

integer, parameter :: mxmn=35, mxlv=200

character (80) :: hdstr='SID XOB YOB DHR TYP ELV SAID T29'
character (80) :: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'
character (80) :: gcstr='PQOM QOM TQOM ZQM WQM NUL PWQ '
character (80) :: oestr='POE QOE TOE NUL WOE NUL PWE !
real (8) :: hdr (mxmn),obs (mxmn,mx1lv),gcf (mxmn,mxlv),oer (mxmn,mx1v)
real (8) :: hdr (mxmn),obs (mxmn,mx1lv),gcf (mxmn,mxlv),oer (mxmn,mx1v)

These arrays are defined with second dimension mx1v=200 to hold multiple level
upper air data subsets.

character (8) :: subset

integer :: unit out=10,unit table=20,idate,iret,nlvl
character(8) :: c_sid

real (8) :: rstation_id

equivalence (rstation id,c_sid)

35

! write observation into prepbufr file
open(unit table, file='prepobs prep.bufrtable',action="read')

open (unit out, file='prepbufr',action="'write', form="unformatted"')

call datelen(10)
call openbf (unit out, 'OUT',unit table)

1idate=2010050700 ! cycle time: YYYYMMDDHH
subset="'ADPUPA' ! upper-air (raob, drops) reports
call openmb (unit out, subset, idate)

Opens and initializes a new BUFR message for writing to PrepBUFR file with
message type “ADPUPA”, which is upper air report.

! set headers
hdr=10.0el10
c si1id="'72293"; hdr(l)=rstation _id; hdr(2)=242.9; hdr(3)=32.9
hdr (4)=0.0; hdr(6)=134.0

! set obs, gcf, ocer for wind
hdr (5)=220 ! report type: sounding

Wind report type for message “ADPUPA” is 220, which is soundings.

obs=10.0el0; gcf=10.0el0; o0er=10.0el0

obs (1,1)=998.0; obs(5,1)=4.6 ; obs(6,1)=2.2; o0bs(8,1)=3.0;
gcf(l,1)=2.0; gcf(5,1)=2.0;

oer (5,1)=2.3

)=2.0 ; obs(6,2)=-1.7;0bs (8,2)=1.0;
2.0;

.0; obs(5,3)=12.1;0bs(6,3)=-4.4;0bs(8,3)=1.0;

Assign wind report observation values, quality markers, and errors for three
pressure levels: 998.0, 850.0,700.0.

nlvl=3
! encode wind obs
call ufbint (unit out,hdr,mxmn, 1 ,iret,hdstr

)

call ufbint (unit_ out,obs,mxmn,nlvl,iret,obstr)
call ufbint (unit out,ocer,mxmn,nlvl,iret,ocestr)
call ufbint (unit out,gcf,mxmn,nlvl,iret,gcstr)
call writsb (unit out)

Write wind report data subset to the PrepBUFR file. Note n1v1=3 which is the actual

number of pressure levels and represents three repetition of the mnemonics
defined in obstr, oestr, gcstr.

36

So far, we have dealt with the wind observations. Now we start with mass observations

from the same station below:

! set obs, qgqcf, oer for temperature and moisture
hdr (5)=120 ! report type: sounding

Set up mass report type for message “ADPUPA” as 120.

obs=10.0el10; gcf=10.0el0; oer=10.0el0

obs(1,1)=998.0; obs(2,1)=8112.0; obs(3,1)=22.3; obs(4,1)=134.0; obs(8,1)

qgcf(1,1)=2.0; gcf(2,1)=2.0; gcf(3,1)=2.0;
oer(1,1)=0.7; ocer(2,1)=0.7; oer(3,1)=1.4
obs(1,2)=925.0;

qcf(1,2)=2.0; gcf(2,2)=2.0; gcf(3,2)=2.0;
oer(2,2)=0.9; ocer(3,2)=1.5

o .Q ~

cf(2,3)=2.0; gcf(3,3)=2.0;
oer(2,3)= ; oer(3,3)=1.4
obs (1,4)=700.0;
qgcf(1,4)=2.0; qgcf(2,4)=2.0; qgcf(3,4)=2.0;
oer(2,4)=1.4; oer(3,4)=1.0;

obs (2,3)=2161.0; obs(3,3)=14.8; obs(4,3)=1493.; obs(8,3)

0.0
qcf(4,1)=2.0;

obs (2,2)=6312.0; obs(3,2)=14.1; obs(4,2)=779.0; obs(8,2)=1.0

qcf(4,2)=2.0;

1.0
qcf(4,3)=2.0;

obs(2,4)=2131.0; obs(3,4)=9.2; obs(4,4)=3118.; obs(8,4)=1.0

gcf(4,4)=2.0;

Assign mass report observation values, quality markers, and errors for four
pressure levels: 998.0, 925.0, 850.0, 700.0. Only the lowest pressure level has
observation error denoted by oer (1,1)=0.7. For the others, missing value 10.0e10
for pressure observation error are filled in the PrepBUFR file. Please note that
missing pressure observation error in level 2-4 will not impact the regional data
analysis because the observation errors in regional GSI analysis are from the error

table read in from a fixed file directory.

nlvl=4

! encode temperature and moisture

call ufbint (unit out,hdr,mxmn, 1
unit out,obs,mxmn,nlvl,iret,obstr
unit out,ocer,mxmn,nlvl,iret,cestr
unit out,gcf,mxmn,nlvl,iret,gcstr

call ufbint
call ufbint
call ufbint
call writsb

unit out)

,1iret, hdstr)
)
)
)

Write mass report data subset to PrepBUFR file. Note n1vi=4.

call closmg(unit out)
call closbf (unit out)
end program

37

2.2.4 Appending surface data into a PrepBUFR file

The following is from the code prepbufr_append_surface.f90, which appends a
surface observation into an existing PrepBUFR file. Let’s again look at the
differences compared with prepbufr_encode_surface.f90.

program prepbufr append surface

append a surface observation

implicit none

integer, parameter mxmn=35,
character (80) :: hdstr='SID XOB
character (80) :: obstr='POB QOB
character (80) :: gcstr="'PQM QQM
character (80) :: oestr='POE QOE
real (8)

character (8) subset

integer

character (8)
real (8)

c_sid

rstation_id
equivalence (rstation id,c_sid)

into prepbufr file

mxlv=1

YOB DHR TYP ELV
TOB ZOB UOB VOB
TOM ZQOM WQM NUL
TOE NUL WOE NUL

get bufr table from existing bufr file
open(unit table, file='prepobs prep app.bufrtable')

open(unit out, file='prepbufr', status='old', form="unformatted"')

call openbf (unit out, "IN',unit out)
call dxdump (unit out,unit table)

call closbf (unit out)

SAID T29'
PWO CAT PRSS'
PWO !
PWE !

:: hdr (mxmn) , obs (mxmn, mx1lv),gcf (mxmn, mxlv) ,ocer (mxmn, mx1v)

unit out=10,unit table=20,idate, iret

Dump BUFR table out from the PrepBUFR file and write the table to a text file
specified by unit table. This BUFR table will be used later in this example to

append the surface observation. This step is to make sure the BUFR table used in

appending is the same BUFR table as the existing BUFR file. Please refer to the
appending case in section 2.1 for more details of the BUFR table requirement for the
appending.

write observation into prepbufr file

open(unit out, file='prepbufr', status='old', form="unformatted"')

call datelen(10)

call openbf (unit out, "APN',unit table)

Connect the same BUFR table dumped from the existing PrepBUFR file to BUFRLIB.

The 'apn' tells BUFRLIB to append the data subset into the existing PrepBUFR file.

38

The rest of the code has the same logic as prepbufr_encode_surface.f90 so we will not
explain them anymore.

obs (1,

end program

idate=2010050700 ! cycle time: YYYYMMDDHH
subset="ADPSFC' ! surface land (SYNOPTIC, METAR
call openmb (unit out, subset,idate)

set headers
hdr=10.0el0

)

c sid='72408"; hdr(l)=rstation id

hdr (2)=284.8; hdr(3)=39.9; hdr(4)=-0.1; hdr(6)
set obs, qgqcf, oer for wind
hdr (5)=281 ! report type
obs=10.0e10;gcf=10.0el10;0er=10.0el0
obs (1,1)=1008.6; obs(5,1)=4.0; obs(6,1)=-4.7;
gcf(1,1)=2.0; qcf (5,1)=2.0
oer(5,1)=1.6
encode wind obs
call ufbint (unit out,hdr,mxmn,1 ,iret,hdstr)
call ufbint (unit out, obs,mxmn,mxlv,iret, obstr)
call ufbint (unit out, cer,mxmn,mxlv,iret, oestr)
call ufbint (unit out, gcf,mxmn,mxlv,iret,gcstr)
call writsb(unit out)
set obs, qgcf, oer for temperature and moisture

hdr (5)=181 ! report type
obs=10.0e10;9gcf=10.0el10;0er=10.0el0

gcf(1,1)=2.0; qgqcf(2,1)=2.0; gcf(3,1)=2.0;
oer(1,1)=0.5; oer(2,1)=0.6; oer(3,1)=1.5
encode temperature and moisture

call
call
call
call
call

ufbint (unit out, hdr,mxmn, 1 ,iret,hdstr
ufbint (unit out, obs,mxmn,mxlv,iret, obstr
ufbint (unit out, cer,mxmn,mxlv,iret, cestr
ufbint (unit out, gcf,mxmn,mxlv,iret, gcstr
writsb (unit out)

call closmg(unit out)
call closbf (unit out)

2.2.5 Appending upper air data into a PrepBUFR file

1)=1008.6;0bs(2,1)=4925.0;0bs (3,1)=25.1;0bs (4,

)
)
)
)

reports

=9.0

obs(8,1)=6.0

1)=9.0;0bs(8,1)=0.0
gcf(4,1)=2.0

The following is from the code prepbufr_append_upperair.f90, which appends an
upper air observation into an existing PrepBUFR file. Let’s once again focus on the
differences compared with prepbufr_encode_upperair.f90.

program prepbufr append upperair

append a upper air observation into prepbufr file

implicit

integer,

none

parameter :: mxmn=35, mxlv=200

39

character (80) : hdstr='SID XOB YOB DHR TYP ELV SAID T29'
character (80) :: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'
character (80) :: gcstr='PQOM QOM TQOM ZQM WQM NUL PWQ '
character (80) :: oestr='POE QOE TOE NUL WOE NUL PWE '
real (8) :: hdr (mxmn),obs (mxmn,mx1lv),gcf (mxmn,mxlv),oer (mxmn,mx1v)
character (8) :: subset

integer :: unit out=10,unit table=20,idate,iret,nlvl
character(8) :: c_sid

real (8) :: rstation_id

equivalence (rstation id,c_sid)

get bufr table from existing bufr file

open(unit table, file='prepobs prep app.bufrtable')
open(unit out, file='prepbufr',status='old', form="unformatted"')

call openbf (unit out, "IN',unit out)
call dxdump (unit out,unit table)
call closbf (unit out)

These arrays are defined with second dimension mx1v=200 to hold multiple level
upper air data subsets. Same as previous example, dump BUFR table out from the
PrepBUFR file and write the table to file specified by unit tabie.

write observation into prepbufr file

open(unit out, file='prepbufr',status='old', form="unformatted"')

call datelen(10)
call openbf (unit out, "APN',unit table)

Connect the same table dumped from the existing PrepBUFR file to BUFRLIB. The
'apn' tells BUFRLIB to append the data subset into the existing PrepBUFR file.

The rest of the code has the same logic as prepbufr_encode_upperair.f90 so we will
not explain then anymore.

idate=2010050700 ! cycle time: YYYYMMDDHH

subset="ADPUPA' ! upper-air (raob, drops) reports

call openmb (unit out, subset,idate)

set headers
hdr=10.0el0
c sid='71823"; hdr(l)=rstation id

hdr (2)=286.3; hdr(3)=53.8; hdr(4)=0.0; hdr(6)=307.0

set obs, qgqcf, oer for wind
hdr (5)=220 ! report type: sounding
obs=10.0el10; gcf=10.0el0; oer=10.0el0

obs(1,1)=500.0; obs(5,1)=-2.0; obs(6,1)=0.7; obs(8,1)=1.0

gcf(1,1)=2.0; gcf (5,1)=2.0
oer(5,1)=2.5

obs(1,2)=432.5; obs(4,2)=6401; obs(5,2)=-7.1; obs(6,2)=-1

qgqcf(1,2)=2.0; qgcf(4,2)=2.0; qgcf(5,2)= 2.0
oer(5,2)=2.6

.2; obs(8,2)=4.0

40

nlvl
! encode
call
call
call
call
call

! set obs,
hdr (
obs=
obs (
gcf (

=2
wind obs

ufbint (unit out, hdr,mxmn, 1

,iret,hdstr

ufbint (unit out, obs,mxmn,nlvl,iret, obstr

ufbint (unit out,gcf,mxmn,nlvl,iret,gcstr

(
(
ufbint (unit out,ocer,mxmn,nlvl,iret, cestr
(
(

writsb (unit out)

qcf, oer for

5)=120

10.0e10; gcf=10.0el0;
obs(2,1)=3672.0;
qgcf(2,1)=2.0;
oer(2,1)=1.2;

1,1)=825.0;
1,1)=2.0;

obs (1,2)=700.0;0bs (2,2)

qcf(1,2)=2.

obs (
qcf (

nlvl

! encode temperature and moisture
ufbint (unit out, hdr,mxmn, 1
unit out, obs,mxmn,nlvl,iret, obstr
unit out, ocer,mxmn,nlvl,iret, cestr
unit out,gcf,mxmn,nlvl,iret,gcstr
unit out)

call
call
call
call
call

call closmg(unit out)

call clos

end progra

0; gcf(2,2)
oer (2,2)

1,3)=623.0;
1,3)=2.0;

=3

ufbint
ufbint
ufbint
writsb

bf (unit out)

m

7.0;0bs (3,2)

oer(3,2)=1

obs (2,3)=254.0;
qcf(2,3)=2.0;
oer(2,3)=1.5;

temperature and moisture
report type: sounding
oer=10.0el0

obs (3,1)

qcf(3,1)=2.0;
=1

oer (3,1) .3

.0
.0

,iret,hdstr

0.8;

)
)
)
)

’

’

obs (3,3)=-12.9;
gcf(3,3)=2.0
oer(3,3)=1.0

)
)
)
)

obs(8,1)=2.0

7.3;0bs(4,2)=2841.;0bs(8,2)=1.0
; gqcf(4,2)=2.0

obs(8,3)=2.0

The data type is 220 for wind and 120 for mass observation for upper air data type.

2.2.6 Appending retrieve data into a PrepBUFR file

The following is from the code prepbufr_append._retrieve.f90, which appends a

retrieved data into an existing PrepBUFR file. Compared with

prepbufr_append_surface.f90, this example is simpler since it appends only the wind
report into the existing PrepBUFR file. Let’s examine only the differences.

program prepbufr append retrieve

! append a retrieved data into prepbufr file

implicit

integer,

character
character
character

none

parameter
(80) :: hdstr='SID XOB
(80) :: obstr='POB QOB
(80) :: gcstr='PQOM QQM

mx1v=200
YOB DHR TYP ELV SAID T29'

TOB ZOB UOB VOB PWO CAT PRSS'
TOM ZOM WQOM NUL PWQ

v

41

character (80) :: oestr='POE QOE TOE NUL WOE NUL PWE '

real (8) :: hdr (mxmn),obs (mxmn,mx1lv),gcf (mxmn,mxlv),oer (mxmn,mx1v)
character (8) :: subset

integer :: unit out=10,unit table=20,idate,iret,nlvl
character (8) :: c sid

real (8) :: rstation id

equivalence (rstation id,c sid)

get bufr table from existing bufr file
open (unit table,file='prepobs prep app.bufrtable')
open (unit out, file='prepbufr',6 status='old',6 form="unformatted")
call openbf (unit out, "IN',unit out)
call dxdump (unit out,unit table)
call closbf (unit out)

write observation into prepbufr file

open (unit out, file='prepbufr',6 status='old',6 form="unformatted")
call datelen (10)
call openbf (unit out, '"APN',unit table)

idate=2010050700 ! cycle time: YYYYMMDDHH
subset="'SATWND' ! upper-air (raob, drops) reports

Message type “SATWND” is the satellite-derived wind reports. For this reason, only
wind report is appended in this example.

call openmb (unit out, subset,idate)

! set headers
hdr=10.0el10
c sid='A1144247'; hdr(l)=rstation id
hdr (2)=199.6; hdr(3)=13.9; hdr(4)=-1.0; hdr(6)=934.0; hdr(7)=255.0

! set obs, gcf, oer for wind
hdr (5) =251 ! report type: NESDIS VISIBLE CLOUD DRIFT
! (ALL LEVELS) (GOES) - u, v

Wind report type for “SATWND” is 251.

obs=10.0e10;9gcf=10.0el10;0er=10.0el0
obs (1,1)=906.0;0bs(4,1)=934.0;0bs (5,1)=-11.4;0bs(6,1)=-
3.3;0bs(8,1)=6.0
qcf(l,1)=2.0 ;qgqcf(4,1)=2.0 ;qgcf(5,1)=1.0
oer(5,1)=3.8
nlvl=1
! encode wind obs
call ufbint (unit out,hdr,mxmn,1 ,iret,hdstr)
call ufbint (unit out, obs,mxmn,nlvl,iret, obstr)
call ufbint (unit out,ocer,mxmn,nlvl,iret, cestr)
call ufbint (unit out,gcf,mxmn,nlvl,iret,gcstr)
call writsb(unit out)

call closmg(unit out)
call closbf (unit out)

end program

42

2.3 Decoding/reading radiance data

The following is from the code bufr_decode_radiance.f90, which read TOVS 1b
radiance observations from radiance BUFR files. Compared with
prepbufr_decode_all.f90, radiance report header and observation information are
different from the conventional PrepBUFR report. This example also introduces the
new subroutine ufbrep and code to inventory satellite type information.

program bufr decode radiance

! read all radaince observations out from bufr.
! read bufr table from prepbufr file

implicit none

integer, parameter :: mxmn=35, mxlv=250
character (80) :: hdstr= &
'"SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HOLS'
character (80) :: hdr2b='SAZA SOZA BEARAZ SOLAZI'
character (80) :: obstr='TMBR'

Two strings (hdstr, hdr2b) are used to define report header information. The
detailed information for these header mnemonics can be found in the dumped BUFR
table for radiance. The obstr defines observation “‘TMBR’ which is the brightness
temperature.

real (8) :: hdr (mxmn),hdr2 (mxmn),obs (mx1v)

INTEGER :: ireadmg, ireadsb

character (8) :: subset

integer :: unit in=10,unit table=24,idate,nmsg,ntb
integer,parameter:: max_ sat type=20

integer :: nsat type(max sat type),nsat num(max sat type)
integer :: i,k,iret,ksatid,nchanl,num sat type,ii
nchanl=15

nsat num=0
nsat type=0

open (unit table, file='radiance.bufrtable')

open(unit in, file='lbamua', form="unformatted',6 status='old")
call openbf (unit in, 'IN',unit in)

call dxdump (unit in,unit table)

call datelen(10)

nmsg=0

ntb = 0

num sat type = 0

msg_report: do while (ireadmg(unit in, subset,idate) == 0)

nmsg=nmsg+1
write (*,*)
write(*,'(3a,i10)"') 'subset="',subset,' cycle time =',6idate

43

sb_report: do while (ireadsb(unit in) == 0)
ntb = ntb+l
call ufbint(unit _in,hdr ,mxmn,1 ,iret,hdstr)
call ufbint(unit in,hdr2,mxmn,1 ,iret,hdr2b)

The same structure is used here as in all other decoding code, using ireadmg and
ireadsb to read all messages and all subsets in a message out. Two ufbint calls get
the report header information and write to array hdr and hdr2.

call ufbrep(unit in,obs ,1 ,nchanl, iret, obstr)

Call ufbrep to get brightness temperature and write to array obs. Here ufbrep is a
new function and is explained below:

* ufbrep

UFBREP (LUBFR, R8ARR, MXMN, MXLV, NLV, CMNSTR)

Input arguments:

LUBFR INTEGER Logical unit for BUFR file

CMNSTR CHAR* (*) String of blank-separated mnemonics
associated with R8ARR

MXMN INTEGER Size of first dimension of R8ARR

MXLV INTEGER Size of second dimension of R8ARR

OR number of levels of data values
to be written to data subset

Input or output argument (depending on context of LUBFR) :
RBARR(*,*) REAL*8 Data values written/read to/from
data subset

Output argument:
NLV INTEGER Number of levels of data values
written/read to/from data subset

ufbrep and ufbint are similar. We only specify the difference here. UFBINT is
used for writing/reading data values corresponding to mnemonics, which
are part of a delayed-replication sequence, or for which there is no
replication at all. As such, it is the most commonly-used for many basic
applications. UFBREP, on the other hand, must be used for mnemonics which
are part of a regular (i.e. non-delayed) replication sequence or for those
which are replicated via being directly listed more than once within an
overall subset definition rather than by being included within a replication
sequence.

From the BUFR table, we can see the mnemonic 'TMBR' is regular replication

seqgeence. We will explain the definition of replication sequence in detail in
Chapter 3.

44

ksatid=nint (hdr (1))
write (*,*)

write(*,'(2I10,I14,13f8.1,)"') ntb,iret,ksatid, (hdr(i),i=3,10),hdr(13), &
(hdr2 (i) ,1i=1,4)
write(*,'(al0,15£7.1)"') 'obs=', (obs(i),i=1,iret)

One TOVS 1b radiance BUFR file could include observations from many satellite.
The following chunk of code illustrates how to find which satellite observations are
available in the file and the number of the observations:

! satellite type inventory
if (num sat type ==) then
num sat type=1
nsat type (num sat type)=ksatid

nsat num(num sat type)= 1
else
1i=0
DO i=1,num sat type
if (nsat_type (i) == ksatid) ii=i
ENDDO

if(i1 > 0 .and. ii <=num _sat type) then
nsat num(ii)=nsat num(ii) + 1

else
num sat type=num sat type+l
if (num sat type > max sat type) then

write(*,*) 'Error: too many satellite types'
write(*,*) 'Need to increase max_sat type'
stop 1234

endif

nsat type (num sat type)=ksatid
nsat num(num sat type)=1
endif
endif

This if ... else ...endif calculates the satellite inventory information which includes
the satellite types (nsat_type), the number of satellites in the file (nun_sat_type), the
number of data subsets (nsat_num) for each of satellite. It is helpful for us to know
what observations are saved in the radiance BUFR file.

enddo sb_report
enddo msg_ report
call closbf(unit in)

write(*,*) 'message=',6nmsqg,"' subset="',ntb
DO i=1,num sat type

write(*,'(1i4,2110) ") i,nsat type(i),nsat num(i)
ENDDO

end program

45

Chapter 3 DX BUFR table

BUFR is a Self-descriptive Table Driving Form in which BUFR table plays a central
role in the BUFR file processing. It is difficult to see how the data and their
descriptors (pointer to the BUFR table elements) are saved in the BUFR file as a
stream of binary, but we can easily read the BUFR table to find the content of a
BUFR file and pick the elements in the BUFR file to encode/decode the data in/out
of the file. For NCEP BUFR, The following link gives a very good description of NCEP
BUFR table, which is called DX BUFR table (DX stands for dictionary):

http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/toc/dfbftab/

Users can read the above link to learn DX BUFR table and create their own table file.
Again, in this Chapter, we will use several simplified examples to introduce the DX
BUFR table based on the descriptions of the above NCEP website.

3.1 Description of DX BUFR tables

As noted during the discussion of subroutine OPENBF, every BUFR file that is
presented to the BUFRLIB software must have DX BUFR tables associated with it,
unless the 'SEC3' decoding option is specified during the call to OPENBF. In the case
of an existing BUFR file, the DX table information may be embedded within the first
few BUFR messages of the file itself. Otherwise, a separate ASCII text file containing
the necessary DX table information must be supplied.

To understand the contents of a DX BUFR table, it is better that we start from a
simplified DX BUFR table example. In Chapter 2, the NCEP DX BUFR table named as
“prepobs_prep.bufrtable”, which is located in the released GSI version 3 package
under ./util/bufr_tools directory, is used in many code examples. In Figure 3.1, we
provide a simplified DX BUFR table to help us explain the concepts of BUFR table.

3.1.1 WMO BUFR tables and DX BUFR table sections

In the section 2 of Chapter 1, we introduced WMO BUFR tables A, B, C, and D, as well
as the flag table, code table, and the BUFR table descriptor. As illustrated in the
figure 3.1, a DX BUFR table includes WMO BUFR table A, B, and D and consists of
three distinct sections. In the first section, all Table A, B and D mnemonics are
initially declared, assigned a unique FXY number (descriptor), and given a short
free-form text description. Then, in the second section, all previously declared Table
A and Table D mnemonics are actually defined as a sequence of one or more Table B
(or other Table D!) mnemonics. Finally, in the third section, all previously declared
Table B mnemonics are defined in terms of their scale factor, reference value, bit
width, and units.

46

———————————— USER DEFINITIONS FOR TABLE-A TABLE-B TABLE D ——————————
MNEMONIC | NUMBER | DESCRIPTION
__________ ‘________‘___ —— e —
ADPUPA | A48102 | UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS able A
ADPSFC | A48109 | SURFACE LAND (SYNOPTIC, METAR) REPORTS
\ \
HEADR | 348001 | REPORT HEADER SEQUENCE
PRSLEVEL | 348002 | PRESSURE LEVEL SEQUENCE (ALL TYPES EXCEPT GOES Dﬁ‘
T INFO | 348143 | TEMPERATURE INFORMATION able D
T EVENT | 348173 | TEMPERATURE EVENT SEQUENCE
T BACKG | 348193 | TEMPERATURE BACKGROUND SEQUENCE
\ \
SID | 001194 | STATION IDENTIFICATION
DHR | 004215 | OBSERVATION TIME MINUS CYCLE TIME
YOB | 005002 | LATITUDE
XOB | 006240 | LONGITUDE
ELV | 010199 | STATION ELEVATION Table B
TYP | 055007 | PREPBUFR REPORT TYPE
.DTH | 004031 | DURATION OF TIME IN HOURS RELATED TO FOLLOWINGI VALUE
TOB | 012245 | TEMPERATURE OBSERVATION
TOM | 012246 | TEMPERATURE (QUALITY) MARKER
TOE | 012250 | TEMPERATURE OBSERVATION ERROR
MNEMONIC | SEQUENCE
__________ ‘___
\
ADPUPA | HEADR SIRC {PRSLEVEL} <SST INFO> <PREWXSEQ> {CLOUDSEQ}
ADPUPA | <CLOU2SEQ> <SWINDSEQ> <AFIC SEQ> <TURB3SEQ>
\
AIRCAR | HEADR ACID {PRSLEVLA}
\
HEADR | SID XOB YOB DHR ELV TYP T29 TSB ITP SON PROCN RPT
HEADR | TCOR <RSRD_SEQ>
\
PRSLEVEL | CAT <P INFO> <Q INFO> <T INFO> <Z INFO> <W INFO>
PRSLEVEL | <DRFTINFO>
\
T INFO | [T _EVENT] TVO <T BACKG> <T__POSTP>
\
T EVENT | TOB TQM TPC TRC
\
T BACKG | TOE TFC <TFC__ MSQ>
\
MNEMONIC | SCAL | REFERENCE | BIT | UNITS |=mmmmm e
—————————— e e Bt A ittt
\ \ \ \ [—=———m -
SID \ 0 | 0 | 64 | CCITT IA5S |=—=———————————
DHR \ 5 | -2400000 | 23 | HOURS |mmmmmmmm
YOB \ 2 -9000 | 15 | DEG N |mmmmmmmm
XOB \ 2 -18000 | 16 | DEGE |mmmmmmmm
ELV \ 0 | -1000 | 17 | METER e
TYP \ 0 | 0| 10 | CODE TABLE | ==—=—=————————r
.DTH \ 0 | 0 | 8 | HOURS |=mmmmmmmmm
YDR \ 2 -9000 | 15 | DEG N fmmmmmmmm
XDR \ 2 -18000 | 16 | DEGE |mmmmmmmm
CAT \ 0 | 0 | 6 | CODE TABLE | =————————————
.RE \ 0 | 0 | 3 | CODE TABLE |==———————————
ZOB \ 0 | -1000 | 17 | METER e
PRSS \ -1 | 0 | 14 | PASCALS |mmmmmmm—m—— o
TOB \ 1 -2732 | 14 | DEG C e
TOM \ 0 | 0 | 5 | CODE TABLE | ==———————————
TOE \ 1 0| 10 | DEGC |mmmmmmmmm————
\ \ \ \

Figure 3.1. Sample of the DX BUFE table and its sections

ection 1

ection 2

Section 3
Table B

47

It may be difficult, at this moment, to understand the above DX BUFR table structure
and its relation with the WMO BUFR tables if users skipped section 2 of Chapter 1.
Here, we will explain several important BUFR concepts that were introduced in
Chapter 1 to help users better understand the DX BUFR table.

In Section 1 of DX BUFR table, the 2nd column defines a NUMBER for each element.
This number calls FXY number or Descriptor. In BUFR file, it is this number that is
saved in the Data Description Section (BUFR file Section 3) to describe what kind of
data is saved in the Data Section (BUFR file Section 4) of the BUFR file. In the WMO
BUFR table, the FXY number (or Descriptor) is used as a pointer to link the data to
their BUFR table descriptions defined in tables B and D. But in DX BUFR table and
the BUFRLIB code, the mnemonic has the same function of FXY number. So it is
important to first understand the BUFR Descriptors and Mnemonic to better
understand BUFR tables:

BUFR Descriptors

A BUFR descriptor is a set of 16 bits, or two octets. The 16 bits are not to be treated as a
16 bit numeric value, but rather as 16 bits divided into 3 parts F, X, and Y, where the
parts (F, X and Y) themselves are 2, 6 and 8 bits, respectively. It is the F X Y descriptors
in BUFR Section 3 that refer to the data represented in Section 4 of a BUFR file.

Schematically, a BUFR descriptor can be visualized as follows:

F denotes the type of descriptor. With 2 bits, there are 4 possible values for F: 0,
1, 2 and 3. The four values have the following meanings:
F=0 =>» Element descriptor (Table B entry)
F=1 =» Replication operator
F=2 =>» Operator descriptor (Table C entry)
F=3 =» Sequence descriptor (Table D entry)

X (6 bits: 00-63) indicates the class or category of a descriptor.

Y (8 bits: range from 00-255) indicates the entry within a class X.

DX BUFR table mnemonic

The mnemonic has already appeared many times before and has been used to help
explain the examples in Chapter 2. In short, a mnemonic is simply a descriptive,

48

alphanumeric name for a data value. The mnemonic is listed in the first column of

the DX BUFR table. In the context of the BUFR table, at the highest level, we have a

Table A mnemonic which completely describes a specific type of data subset (e.g.

rawinsonde, wind profiler, etc.), and this Table A mnemonic is defined as a sequence

of one or more Table B or Table D mnemonics, where each Table D mnemonic is
likewise defined as a sequence of one or more Table B or Table D mnemonics, and

so on until the entire data subset can be equivalently described as a sequence of one

or more Table B mnemonics which, again, all correspond to basic data types (e.g.
pressure, temperature, humidity, etc.). In this way, the entire sequence of data
values that constitute a particular type of data subset is fully and unambiguously
defined, both for purposes of reading/decoding or writing/encoding of reports.

As an example, we will expand the message type “ADPUPA” in figure 3.1, which is a

simplified version of “prepobs_prep.bufrtable” as an example.

Section 1: TABLE A MNEMONIC for “ADPUPA”:

| MNEMONIC | NUMBER | DESCRIPTION

| ADPUPA | A48102 | UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS
\

Section 2: Table B, D MNEMONIC making up SEQUENCE of “ADPUPA” and its sub-

SEQUENCE of HEADER and PRSLEVEL:
| MNEMONIC | SEQUENCE

| ADPUPA | HEADR SIRC {PRSLEVEL} <SST_INFO> <PREWXSEQ> {CLOUDSEQ}
| ADPUPA | <CLOU2SEQ> <SWINDSEQ> <AFIC_SEQ> <TURB3SEQ>
HEADR SID XOB YOB DHR ELV TYP T29 TSB ITP SON PROCN RPT

|
HEADR | TCOR <RSRD_SEQ>
|
PRSLEVEL | CAT <P__ INFO> <Q INFO> <T __ INFO> <% __ INFO> <W___ INFO>
PRSLEVEL | <DRFTINFO>
Section 1: Table D MNEMONIC to descript SEQUENCE “HEADER” and “PRSLEVEL”:

| MNEMONIC | NUMBER | DESCRIPTION

| HEADR | 348001 | REPORT HEADER SEQUENCE
| PRSLEVEL | 348002 | PRESSURE LEVEL SEQUENCE (ALL TYPES EXCEPT "GOESND",
"AIRCFT" and "AIRCAR")

Section 1: TABLE B MNEMONIC to descript variable SID, XOB, ... and their descriptors:

| SID | 001194 | STATION IDENTIFICATI

| XOB | 006240 | LONGITUDE

| YOB | 005002 | LATITUDE

| DHR | 004215 | OBSERVATION TIME MINUS CYCLE TI
| ELV | 010199 | STATION ELEVATION

| TYP | 055007 | PREPBUFR REPORT TYP

49

Section 3: TABLE B MNEMONIC to define SCALE, REFRENCE, BIT and UNITS of an
element like SID, XOB, ... :

| MNEMONIC | SCAL | REFERENCE | BIT | UNITS [|
| == |------ | =mmmm oo |-~ | == mm - | ==mmmmmm - !
	\ \ \	———mm— o		
SID	0	0	64	CCITT IA5 [
XOB	2	-18000	16	DEG E R
YOB	2	-9000	15	DEG N [
DHR	3 -24000	16	HOURS .	
ELV	0	-1000	17	METER [
TYP	0	0	9	CODE TABL [mmmmmmmmm e
\

Fully expanding all the sequences, even if you need to do it by hand, will help you
better understand exactly what is contained within the report; for example, the
report “ADPUPA” is expanded here:

| MNEMONIC | SEQUENCE |
| === e s e it |
ADPUPA	HEADR SIRC {PRSLEVEL} <SST INFO> <PREWXSEQ> {CLOUDSEQ}
ADPUPA	<CLOU2SEQ> <SWINDSEQ> <AFIC SEQ> <TURB3SEQ>
HEADR	SID XOB YOB DHR ELV TYP T29 TSB ITP SON
HEADR	PROCN RPT TCOR <RSRD SEQ>
PRSLEVEL	CAT <P INFO> <Q INFO> <T INFO> <z INFO> <W INFO>
PRSLEVEL	<DRFTINFO>
P INFO	[P _EVENT] <P BACKG> <P__ POSTP>
Q INFO	[Q EVENT] TDO <Q BACKG> <Q POSTP>
T INFO	[T EVENT] TVO <T BACKG> <T POSTP>
Z INFO	[Z EVENT] <Z_BACKG> <Z__POSTP>
P EVENT	POB PQM PPC PRC \
O EVENT	QOB oM QPC ORC \
T EVENT	TOB TQM TPC TRC \
Z EVENT	ZOB ZQM ZPC ZRC \
P BACKG	POE PFC <PFC__ MSQ> \
Q BACKG	QOE QFC <QFC_ MSQ> \
T BACKG	TOE TFC <TFC__ MSQ> \
Z BACKG	ZFC <ZFC__ MSQ> \
P__POSTP	PAN <PCLIMATO> POETU PVWIG PVWTA \
Q POSTP	QAN <QCLIMATO> QOETU QVWTG QVWTA ESBAK \
T POSTP	TAN <TCLIMATO> TOETU TVWIG TVWTA \
Z POSTP	ZAN <ZCLIMATO>

3.1.2 WMO BUREF table A, B, D in DX BUFR Table

WMO BUFR employs 3 types of tables: content definition tables, code tables and flag
tables. The BUFR content definition tables contain information to describe, classify and
define the contents of a BUFR message. There are 4 such tables defined: Tables A, B, C
and D.

50

Note: All these tables are available on-line from WMO website:

http://www.wmo.int/pages/prog/www/WMOCodes/TDCFtables.htmI#TDCFtables

Here we will introduce these tables briefly:

Table A subdivides data into a number of discrete categories, for example
“ADPUPA” and “ADPSFC”.

Table B describes how individual parameters, or elements, are to be
encoded and decoded in BUFR. As an example, extracts of BUFR Table B for
Temperature is given below.

Class 12 - Temperature

TABLE BUFR
REFERENCE TABLE
ELEMENT NAME
REFERENC DATA WIDTH
UNIT SCALE E VALUE (Bits)
F X Y
0 12 001 | Temperature/dry-bulb temperature K 1 0 12
0 12 002 | Wet-bulb temperature K 1 0 12
0 12 245 | Temperature C 1 -2732 14

The following is the Table B from the DX BUFR table for element “TOB”

In section 1 of the DX BUFR table:

| TOB | 012245 | TEMPERATURE OBSERVATION

In Section 3 of the DX BUFR table:

| TOB \ 1| -2732 | 14 | DEG C mmmmmmmm -

We can see the WMO table B has been divided into two parts that are
distributed in DX BUFR Table section 1 and 3. These two parts of Table B for

the same element are linked with a common name “TOB”, which is called
MNEMONIC.

Table B is fundamental to encoding and decoding in BUFR.

TABLE C defines a number of operations that can be applied to the elements.
Each such operation is assigned an operator descriptor.

TABLE D defines groups of elements that are always transmitted together
(like a regular SYNOP or TEMP report) in what is called a common sequence.
By using a common sequence descriptor, the individual element descriptors
will not need to be listed each time in the data description section. This will

51

reduce the amount of space required for a BUFR message. An example of
BUFR Table D from DX BUFR table is shown below.

| T EVENT | 348173 | TEMPERATURE EVENT SEQUENCE |

| T EVENT | TOB TQM TPC TRC \

The flag and code tables will be introduced in the section 3.2 of this Chapter.

3.1.3 DX BUFR table sections

We have shown that a DX BUFR table file consists of three distinct sections. Here we
will introduce these three section in more details and repeat some description to
help user further understand the content of the DX BUFR table and its relation with
WMO BUFR tables.

Section 1

As previously mentioned, the first section of a BUFR tables file is where all Table A,

B, and D mnemonics are initially declared, assigned a unique FXY number, and given
a short free-form text description. In figure 3.1, TABLE A MNEMONIC, TABLE D MNEMONIC,
TaBLE B MNEMONIC are the examples for this section. Mnemonics may contain any
combination of uppercase letters and numbers (or, in certain special cases,a "."
character!) and up to a maximum total of 8 characters in length. A mnemonic may be
declared only once and must correspond to a unique FXY number, which itself
consists of 6 characters, where the first character (i.e. the "F" component) is an "A" if
the mnemonic is being declared as a Table A mnemonic, "3" if the mnemonic is being
declared as a Table D mnemonic, and "0" if the mnemonic is being declared as a
Table B mnemonic. Otherwise, the remainder of the FXY number must be all digits,
with the next 2 characters (i.e. the "X" component) as a number between 00 and 63,
and the final 3 characters (i.e. the "Y" component) as a number between 001 and
255. When the FXY number corresponding to a Table A mnemonic is actually
encoded into a BUFR message, then a "3" is encoded in place of the "A" which is used
in the tables file.

All Table A mnemonics are declared first, followed by all of the Table D mnemonics,
then followed by the Table B mnemonics.

Section 2

Now, let's move onto the second section of a BUFR tables file. As already stated, this
section is used to define the sequence of Table B (and possibly other Table D!) for

52

each Table A and Table D mnemonic that was previously declared in the first section.
See table A, D MNEMONIC MAKING UP sEQUENCE in figure 3.1 as an example.

At this point, readers may notice some punctuation characters and symbols included
within the sequence definitions of the second section. It is now time to address these
concerns by stating that these are replication indicators for the mnemonic(s) in
question:

Indicates that the enclosed mnemonic is replicated using 1-bit delayed

<7 replication (either 0 or 1 replications)

[} Indicates that the enclosed mnemonic is replicated using 8-bit delayed
replication (between 0 and 255 replications)

() Indicates that the enclosed mnemonic is replicated using 16-bit delayed
replication (between 0 and 65535 replications)

" Indicates that the enclosed mnemonic is replicated using regular (non-

delayed) replication, with a fixed replication factor of n

Examples of most of these cases are shown within the BUFR tables file. Here we

look at the Tabie a, D mMnEMONTC MAKRING UP sEQuENCE in figure 3.1 for message type
"ADPUPA".

1. rueapr", followed by

2. nvsirc, followed by

3. between 0 and 255 replications of "prsrever", followed by
4. either 0 or 1 replications of "sst_1nro", followed by

5. either 0 or 1 replications of "prewxseg", followed by

6. between 0 and 255 replications of "croupseg", followed by
7. either 0 or 1 replications of "crou2segn, followed by

8. either 0 or 1 replications of "swinpseg, followed by

9. either 0 or 1 replications of "ar1c_seqv, followed by

10. either 0 or 1 replications of "ture3seg", followed by

Where, e.g., the Table D mnemonic "PRSLEVEL" itself consists of the following
sequence:

wcat, followed by

either O or 1 replications of " 1nro", followed by
either O or 1 replications of "o 1nro", followed by
either O or 1 replications of " 1nro", followed by
either O or 1 replications of "z 1nro", followed by
either 0 or 1 replications of "w___1nro, followed by
either 0 or 1 replications of "preTINFO"

Nk wh e

53

And where, in turn, "p_1NFO", "Q INFO", "T INFO","Zz INFO","W INFO","DRFTINFO",
are also Table D mnemonics which can themselves be further resolved. Therfore, we
can nest certain replication sequences inside of other replication sequences via the
judicious use of the < > indicator, and even turn on/off entire sequences of data
values simply and efficiently. An example of this is the "prrr1nF0 " (i.. "PROFILE
LEVEL TIME/LOCATION INFORMATION ") sequence. In this case, enclosing the
entire sequence within a < > indicator allows the lack of such data within a report by
the use of a single bit set to "0" (i.e. 0 replications), rather than having to store the
appropriate "missing" value for each constituent data value. This can add up to
significant encoding efficiency and, in turn, the use of less required storage space
per BUFR message.

We notice that Table D mnemonics such as "seapr" is used within all data subset
types. rueapr" is constituted with Table B mnemonics such as:

SID XOB YOB DHR ELV TYP T29 TSB ITP SON ...

This brings up a good point: that by logically grouping certain Table B mnemonics
together within Table D sequence mnemonics, such mnemonics can be easily and
efficiently re-used within different Table A mnemonic definitions within the same
BUFR tables file. In fact, when using the BUFRLIB software, Table D sequence
mnemonics are the only types of mnemonics upon which any type of replication
may be directly performed. Thus, in particular, if we wish to effect the replication of
a single, particular Table B mnemonic, then we must do so by defining a Table D
sequence mnemonic whose only constituent is that particular Table B mnemonic
and then replicate the sequence mnemonic.

In prepobs_prep.bufrtable, let’s search sequence of Table D mnemonic "rrTEVENT"
(RAIN RATE EVENT SEQUENCE):

| RRTEVENT | 202130 201134 REQV 201000 202000 RRTQM RRTPC RRTRC |

Notice 201YYY indicator precedes "regv". This indicator is called an operator, the
effect of this operator is that, for each Table B mnemonic which follows it within the
current sequence and continuing up until the point in the sequence where a
corresponding 201000 operator is reached (and which turns off the effect), (YYY -
128) bits should be added to the bit width that is defined for that Table B mnemonic
within the third section of the BUFR tables file. The net effect is to change the
number of bits occupied by the data value corresponding to that mnemonic within
the overall data subset. In this example, the sequence:

| 201134 | REQV 201000 |

Indicates that (134 - 128) = 6 bits should be added to the data width that was
defined for mnemonic reov within the third section of the BUFR tables file; therefore,
for regv, the corresponding data value will occupy (12 + 6) = 18 bits.

54

Other than 201YYY, the BUFRLIB software also supports the similar use of the
202YYY (change scale), 204YYY (add associated field), 205YYY (add character data),
206YYY (define data width for local descriptor), 207YYY (increase scale, reference
value and data width) and 208YYY (change data width for CCITT IA5 descriptor)
operators from BUFR Table C.

Finally, take a look at the definitions of the Table D sequence mnemonics "torc_seo"
(TOTAL PRECIPITATION/TOTAL WATER EQUIVALENT SEQUENCE)

| TOPC SEQ | .DTHTOPC TOPC |

There is reference to mnemonics ".orarorc” which was not previously-declared
within the first section of the table. However, notice that there does exist a
declarations for mnemonics ".ptH. ...". So, what exactly is going on here? The
answer is that each of these is a special mnemonic known as a following-value
mnemonic, meaning that, when it is used within a sequence definition, it implies a
special relationship with the mnemonic that immediately follows it within the
sequence. In fact, this relationship is so special that, when a following-value
mnemonic is used within a sequence definition, the "...." portion of the mnemonic is
replaced with the mnemonic that immediately follows it! For example, when
".DTH. ..." is used within the definition of the Table D sequence mnemonic

"ToPC SEQ", itappears as ".praTorc” because it appears immediately before the
mnemonics "toec". However, in the definition of "TmxvnsEQ",

(MAXIMUM /MINIMUM TEMPERATURE SEQUENCE)

| TMXMNSEQ | .DTHMXTM MXTM .DTHMITM MITM |

It appears as " .pravxTM" since it immediately precedes "vxTv" within that sequence!
To be precise, a following-value mnemonic is declared with a "." as the first
character, followed by no more than 3 alphanumeric characters as an identifier,
followed by 4 more "." characters, which must then be replaced with the mnemonic
that immediately follows it whenever and wherever it is used within a sequence

definition.

Section 3

It is now time to move on to the third section of a BUFR tables file. As we
mentioned earlier, this section is used to define the scale factor, reference value,
data width, and units for all of the Table B mnemonics. See TABLE B MNEMONIC UNIT
in figure 3.1 as an example. In particular, the reader may recall that the units
definition for each Table B mnemonic in turn determines how data values
corresponding to that mnemonic are read/written from/to the REAL*8 array
“R8ARR” within the BUFRLIB subroutines UFBINT and UFBREP. Note that any
mnemonic whose corresponding data values are to be treated as character data
must have its units listed as "CCITT IA5", which is just a formal synonym for ASCIL.

55

3.2 Examples of the DX BUFR table’s application

From the examples in chapter 2, we know BUFR table is required when a user
reads/writes data subset from/into BUFR and PrepBUFR file. After learning the DX
BUFR tables content in section 3.1 of this Chapter, we can review the mnemonics
used in this example code again to see how a BUFR table can be applied in the user’s
own application.

Application for PrepBUFR decoding

In Chapter 2, we first used three basic examples to illustrate the code structure and
the BUFRLIB functions used in the NCEP BUFR file processing (decoding, encoding,
and appending). Then, we gave 6 examples of PrepBUFR file processing for surface,
upper level and retrieved observations. Users may already notice that the major
differences of these PrepBUFR examples from the basic examples are the
mnemonics and the size of data arrays. In chapter 2 PrepBUFR processing examples,
the mnemonics look like the following:

character (80) :: hdstr='SID XOB YOB DHR TYP ELV SAID T29'
character (80) :: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'
character (80) :: gcstr='PQOM QOM TOM ZQM WQM NUL PWQ !
character (80) :: ocestr='POE QOE TOE NUL WOE NUL PWE '

The Strings hdstr, obstr, gestr, oestr define the Table B mnemonic. These
mnemonic are contained in the PrepBUFR file, and either need to be read out or
written into the file.

When we see these lists of the mnemonics, one question we ask may be: what are
exactly meanings of these mnemonics? Obviously, the answer is to check the BUFR
table, which already provides enough information for us to understand them. Here,
we can use prepobs_prep.bufrtable in GSI directory ./util/bufr_tools as the default
BUFR table unless the users have created their own table. The following are some
examples of how to search the DX BUFR table for the meanings of a certain
mnemonic:

1) mnemonic "SID":

When we look at the table and search for the appearances of "stp", We found three
lines of the table including "stp" :

| MNEMONIC | NUMBER | DESCRIPTION

| == | -=—-—-—- | == !
| SID | 001194 | STATION IDENTIFICATION

This line is in the BUFR table section 1. The "s1p" appears as the table B mnemonic,
since F is 0 in the FXY number. Here, we also know it is “Station Identification”.

56

| MNEMONIC | SEQUENCE |

| == | = !
| HEADR | SID XOB YOB DHR ELV TYP T29 TSB ITP SQN PROCN RPT

This line is in the BUFR table section 2. The "s1p" appears in the sequence of Table D
mnemonic "HEADR" .

This line is in the BUFR table section 3. It shows the scale, reference, bit, and units of
element "s1tp". Here, the bit is 64, which means "s1p" is saved in 64 bits in the binary
file. cctrr 125 is the fancy name for ASCII, and it shows "s1p" is character string.
Usually the unit is most often used in user’s application.

2) mnemonic "POB":

A search for "ror" also shows three lines in the BUFR table:

| POB | 007245 | PRESSURE OBSERVATION

This line is in the BUFR table section 1, "ros" appears as the table B mnemonic and
means “pressure observation”

| P_EVENT | POB POM PPC PRC

This line is in the BUFR table section 2, "ros" appears in the sequence of Table D
mnemonic "p_EVENT".

| POB | 1 0| 14 | MB
And finally, this line is in the BUFR table section 3. It shows "ros" uses MB as its unit.
3) mnemonic "PQOM":

Clearly, "pou» will have three lines:
| POM | 007246 | PRESSURE (QUALITY) MARKER

| P_EVENT | POB POM PPC PRC

| POM | 0 | 0 | 5 | CODE TABLE
These three lines are in the BUFR table section 1, 2, and 3 respectably. They tell us

that PQM is the quality marker for the pressure observation and it appears in the
sequence of Table D mnemonic "p_event" . The unit for "poum is “cobe tasre”. If we

57

keep searching the prepobs_prep.bufrtable, users may notice that cope TaBLE
appears quit frequently as the Table B mnemonic unit. What does it mean? From the
previous introduction to the BUFR tables, we learned that, other than Table A, B, C,
and D, the BUFR tables also include flag and code tables, which are used for the
element based on a code (e.g., Cloud Type) or a set of conditions defined by flags
(bits set to 0 or 1). From practical point of view, the following link of NCEP BUFR
table is very helpful for us to find the content of code and flag table:

http://www.emc.ncep.noaa.gov/mmb/data processing/prepbufr.doc/table 1.htm

This document not only contains Table A, B, D mnemonic information in
prepobs_prep.bufrtable, but also includes other useful information, e.g. what is cooe
taBLE for "pomr? Click the above link and search for "pou" in the table until you find
the line:

POM 007246 PRESSURE (QUALITY) MARKER 0 0 5 CODE TABLE

Then, click link under copr TaBrE, it will lead you to see NCEP quality marker value
for "pom.

Another example is to search "eec. You will find the following line:
PPC 007247 PRESSURE EVENT PROGRAM CODE 0 0 5 CODE TABLE

Then, click cope tasLE link, which leads you to the page of “NCEP code/flag tables
associated with BUFR table B (includes code/flag tables awaiting validation by the
WMO)”. You can find out the code value for "pec" from there.

From above examples, we can see it is quite straightforward to find the meaning of a
BUFR table B element listed in the mnemonic list for the PrepBUFR file process. But
a more difficult question is how to get the mnemonic list used in the previous
example code. Especially, if users want to decode/encode the observation variables
no included in the list. The lists used in the PrepBUFR processing examples are from
the GSI BUFR ingest interface subroutine. We will discuss how to find these
mnemonics from GSI code in Chapter 4. Here we will follow the general method of
expanding the message type that was introduced in section 3.1 of this Chapter.

In the decoding examples of Chapter 2, the following code is used to read in a
message:

msg report: do while (ireadmg(unit in, subset,idate) == 0)

After call function ireadmg, a message type will be returned in variable “subset”.
Starting from the message type in “subset”, we can find the complete contents inside
the message. Here, we will use the message type “ADPUPA” as an example. From the
DX BUFR table example of figure 3.1, we can expand the message “ADPUPA” based
on section 2 of the table:

58

First, we can see that “HEADER” and “PRSLEVEL” is in the Sequence of ADPUPA:

| MNEMONIC | SEQUENCE
| == | o m !

ADPUPA | HEADR SIRC ({PRSLEVEL} <SST INFO> <PREWXSEQ> {CLOUDSEQ}
ADPUPA | <CLOUZSEQ> <SWINDSEQ> <AFIC SEQ> <TURB3SEQ>
\

\
\
\
\

Then, by checking the sequence of “HEADER”, we can find information related to the

observation station, such as the observation station ID, location, time, etc.

| HEADR | SID XOB YOB DHR ELV TYP T29 TSB ITP SON PROCN RPT |
| HEADR | TCOR <RSRD SEQ>

Next, if we check the sequence of “PRSLEVEL”, we can see “PRSLEVEL” includes
several sequences related to the observation elements such as pressure (P INF0),
moisture (0 INF0), temperature (T 1NF0), height (z_ 1nF0), and wind

(w__ 1NFO) Observations:

\ \ !

| PRSLEVEL | CAT <P INFO> <Q INFO> <T INFO> <Z INFO> <W INFO> |
| PRSLEVEL | <DRFTINFO>

If we keep checking the sequence for each of the observation elements, for example,
temperature (T 1nNF0), we will see the temperature observation mnemonic (ToB),
temperature observation quality marker mnemonic (Tom), and temperature
observation error mnemonic (ToE):

\ \ !

| T INFO | [T__EVENT] TVO <T BACKG> <T POSTP>

\ \ !

| T EVENT | TOB TQM TPC TRC

\ \ \

\ !

\ !

T BACKG | TOE TFC <TFC_ MSQO>
\

In the PrepBUFR decoding example, TOB, TQM, and TOE are listed in the mnemonics
that will be read in by the code. We can certainly add TVO or TPC to the mnemonic
list to let the code know that we want to know these two values too.

Application for Radiance observation decoding

On the other side, the example bufir decode radiance.f90 in section 2.3 of Chapter 2
introduces the code to read TOVS 1b radiance observations from a radiance BUFR file.
The mnemonics listed in this example are quit different from ones in the PrepBUFR
examples:

hdstr='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HOLS'
hdr2b='SAZA SOZA BEARAZ SOLAZI'
obstr="'TMBR'

59

To get to know what the exactly meanings of these mnemonics are and what other
mnemonics could be included in this list for more observation information, we need to
check the BUFR DX table for radiance. The best way to get the DX BUFR table for a
certain BUFR file is to extract the BUFR table embedded in the BUFR file using the
BUFRLIB function: dxdump. In the example code bufr decode radiance.f90, after each
run, we will find the DX BUFR table file for the radiance named as
'radiance.bufrtable' in the running directory. Based on this BUFR table and the
message type information from BUFRLIB function ireadmg, we can use the same
method to expand the message and get all available radiance observation variables out of
the radiance BUFR file.

Please follow the instructions in this section for practice and please feel free to forward
your questions and comments to our GSI help desk.

60

Chapter 4 GSI BUFR interface

GSI has a set of code to ingest and process observation data from BUFR/PrepBUFR
files for the analysis. This Chapter will first explain the procedure of observation
ingest and process within the GSI system. Then, we provide 4 examples from GSI
observation ingesting subroutines to illustrate how GSI interfaces with the BUFR
files.

4.1 GSI observation data ingest and process procedure

As an important component of any data analysis system, observation data ingesting
and processing is a key part of the GSI system. The data types that can be used in the
GSI analysis and the corresponding subroutines that read in these data types are
listed in the section 6.2.3 of the GSI User’s Guide for the release version 3. But there
are more details that users should know in order to be able to handle the
observation data in GSI with confidence and flexibility. This section introduces the
complete structure of GSI observation data ingesting and processing step-by step,
including run scripts and namelist setup, data ingesting driver routine, read
subroutines, observation data partition, and innovation calculation.

» Step 1: Link BUFR/PrepBUFR file to GSI recognized names in GSI run scripts

In the GSI run script, there is a section to link the BUFR/PrepBUFR files to GSI
recognized file names in the GSI run directory. The script looks like:

Link to the prepbufr data
1n -s ${PREPBUFR} ./prepbufr

Link to the radiance data

In -s ${OBS ROOT}/gdasl.tl2z.lbamua.tm00.bufr d amsuabufr
In -s ${OBS ROOT}/gdasl.tl2z.lbhrs4.tm00.bufr d hirsd4bufr
In -s ${OBS_ROOT}/gdasl.tl2z.lbmhs.tm00.bufr d mhsbufr

e

Clearly, the PrepBUFR file: gdas!.t12z.prepbufr.nr, which is the file pointed by
${PREPBUFR}, and the BUFR files: gdas!.t12z. 1bamua.tm00.bufr d and

gdasl.t12z. 1bhrs4.tm00.bufr d are the files we downloaded from NCEP data hub. The
names of these files are determined by NCEP based on the operation systems that use the
files. Please see more details on the NCEP BUFR files in Chapter 5. The BUFR files used
in GSI can also be the observation files generated by users and named by users. But GSI
itself doesn’t recognize the names of these files. So, in the GSI run scripts, these files
must be linked to the GSI run directory with a name that GSI knows. In the section 3.1 of
the GSI User’s Guider Version 3.0, we gave a table that lists all the GSI recognized data
file names at the left column, the contents of the data files at the middle column, and the
sample GDAS BUFR/PrepBUFR file names at the left column. The following is a sample
of the table.

61

GSI Name | Content Example file names
prepbufr Conventional observations, including ps, t, q, pw, gdas1.t12z.prepbufr
uv, spd, dw, sst, from observation platforms such
as METAR, sounding, et al.
amsuabufr | AMSU-A 1b radiance (brightness temperatures) from gdas1.t12z.1bamua.tm00.bufr_d
satellites NOAA-15,16,17,18, 19 and METOP-A
amsubbufr | AMSU-B 1b radiance (brightness temperatures) gdas1.t12z.1bamub.tm00.bufr_d
from satellites NOAA15, 16,17
radarbufr Radar radial velocity Level 2.5 data ndas.t12z. radwnd. tm12.bufr_d
gpsrobufr | GPS radio occultation observation gdas1.t12z.gpsro.tm00.bufr_d
ssmirrbufr | Precipitation rate observations fromSSM/I gdas1.t12z.spssmi.tm00.bufr_d
hirs4bufr HIRS4 1b radiance observation from satellite gdas1.t12z.1bhrs4.tm00.bufr_d
NOAA 18,19 and METOP-A
msubufr MSU observation from satgellite NOAA 14 gdas1.t12z.1bmsu.tm00.bufr_d

So, in the GSI run script, the files in the right column are linked to the run directory

with a new name at the left column. As a matter of fact, the file names in the left
column can be changed if users prefer to do so and know how to change them in the
GSI namelist data file setup section. But we recommend to leave the file names as is
because the current names in the left column are a good indication of the contents of
the corresponding BUFR observation files and are used by many the GSI
applications.

* Step 2: GSI Namelist data configuration section: &OBS_INPUT

In the GSI namelist, section &0BS_INOUT is used to setup data usage such as the
links between data types and data files, data time window, and satellite data
thinning. The following is a sample of the namelist section &OBS_INOUT:

&OBS_INPUT

dmesh (1)=120.0, dmesh (2) =60.0, dmesh (3) =60.0, dmesh (4) =60.0, dmesh (5)=120, time window max=1.5,
dfile(01)="prepbufr’, dtype(0l)='ps', dplat (01)=" ", dsis(01)="ps', dval (01)=1.0, dthin(01)=0,
dfile (02)="prepbufr' dtype (02)="t", dplat (02)=" "', dsis(02)="t", dval (02)=1.0, dthin(02)=0,
dfile (03)="prepbufr', dtype(03)='qg"', dplat (03)=" "', dsis(03)="q", dval (03)=1.0, dthin(03)=0,
dfile (04)="prepbufr', dtype (04)="uv', dplat (04)=" ", dsis (04)="uv"', dval (04)=1.0, dthin(04)=0,
dfile (27)="msubufr', dtype (27)="msu', dplat (27)='nl4', dsis(27)='msu nl4', dval (27)=2.0, dthin(27)=2,
dfile (28)="amsuabufr', dtype(28)='amsua', dplat(28)='nl5', dsis(28)='amsua nl5’, dval(28)=10.0, dthin(28)=2,
dfile (29)="amsuabufr’, dtype(29)='amsua', dplat(29)='nl6', dsis(29)='amsua nl6’, dval(29)=0.0, dthin(29)=2,

Users may notice that the first column, dfile, is the GSI recognized file names listed in
the section 3.1 of the GSI User’s Guider Version 3.0. The 2™ column, dtype, is the
observation type. The 3" column, dplat, is satellite platform ID. And the 4™ column, dsis,
is the data type from convinfo file or Sensor/instrument/satellite flag from satinfo file.

In the GSI data ingesting driver, it is the data type, dtype, that is used to decide which
routine to call for reading the data from the corresponding input file defined by dfile. For
example, when the GSI reaches the code to read “t”, it will open file 'prepbufr’
(dfile (02)) to read temperature in. Or when the GSI reaches the point to read in
AMSU-A from NOAA 16, it will open file 'amsuabufr’ (dfile (29)) to read in the
data. From the namelist setup, it is possible that GSI reads in “#” from one PrepBUFR file

62

(dfile (02)) but reads in ‘g’ from another PrepBUFR file (dfile (03)), which gives
more flexibility to control the data used in the GSI analysis.

* Step 3: GSI data ingest driver

In GSI, subroutine read_obs (inside read_obs.F90) is used to read, select, and
reformat observation data. It is the driver for routines that read different types of
the observational data. This routine loops through all data types listed in dtype and
checks the data usage and file availability. If the data file exists and the info files
indicate the use of the data type, one or several processors will be assigned to read
the data from the corresponding file setup in dfile. Please refer to the section 4.3 of
the GSI User’s Guide V3 for more information on using the info file to control data
usage. Here we give two chunks of the code from subroutine read_obs as examples
to illustrate how to find routines that read different observation data types.

Example 1: Process conventional (prepbufr) data

if(ditype (i) == 'conv')then
if (obstype == 't' .0r. obstype == 'uv' .or. &
obstype == 'q' .0or. obstype == 'ps' .or. &
obstype == 'pw' .or. obstype == 'spd'.or. &
obstype == 'mta cld' .or. obstype == 'gos ctp') then
call read prepbufr (nread,npuse,nouse,infile, obstype, lunout, twind, sis, &
prsl_full)

string='READ PREPBUFR'

From this chunk of the code, we can see the subroutine read_prepbufr will be used to
read the data type ‘t), ‘uv’, ‘q’, ‘ps’, pw’, ‘spd’, ‘mta_cld’, ‘gos_ctp’ from PrepBUFR file
saved in “infile”.

Example 2: Process TOVS 1b data

if (platid /= 'aqua' .and. (obstype == 'amsua' .or. &

obstype == 'amsub' .or. obstype == 'msu' .or. &
obstype == 'mhs' .0or. obstype == 'hirs4' .or. &
obstype == 'hirs3' .or. obstype == 'hirs2' .or. &
obstype == 'ssu')) then

11b=1

111=1

if ((obstype == 'amsua' .or. obstype == 'amsub' .or. obstype == 'mhs') .and. &

(platid /= 'metop-a' .or. platid /='metop-b' .or. platid /= 'metop-c'))1l1ll=2
call read bufrtovs (mype,val dat,ithin,isfcalc,rmesh,platid,gstime, &
infile, lunout, obstype, nread, npuse, nouse, twind, sis, &
mype root,mype sub (mml,i),npe sub(i),mpi comm sub(i),1llb,111)
string='READ BUFRTOVS'

From this chunk of the code, we can see the subroutine read_bufrtovs will be used to
read many kinds of radiance data such as ‘amsua’, ‘amsub’, ‘msu’, ‘mhs’, ‘hirs’, ‘ssu’
from radiance BUFR file saved in “infile”. But these radiance data are not observed

by AQUA.

63

Table 4.1: List of data types and subroutines of GSI observation 10

Data type Observation type Subroutine that reads File includes
(ditype) (obstype) data Subroutine
t, uv, q, ps, pw, spd, read_prepbufr read_prepbufr
mta_cld, gos_ctp
sst from mods read_modsbufr read_modsbufr
not from mods | read_prepbufr read_prepbufr
STwW read_superwinds read_superwinds
tcp read_tcps read_tcps
conv lag read_lag read_lag
I'W (radar winds Level-2) read_radar read_radar
dw (lidar winds) read_lidar read_lidar
rad_ref read_RadarRef_mosaic | read_RadarRef_mosaic
lghtn read_lightning read_lightning
larccld read_NASA_LaRC read_NASA_LaRC
pm2_5 read_anowbufr read_anowbufr
amsub
amsua
(platform) | msu
not AQUA | mhs read_bufrtovs read_bufrtovs
hirs4,3,2
ssu (TOVS 1b data) (TOVS 1b data)
(platform) | airs
AQUA amsua read_airs read_airs
hsb (airs data) (airs data)
rad iasi read_iasi read_iasi
(sat_elhte sndr, sndrd1, sndrd2 | read_goesndr read_goesndr
radlances) sndrd3, sndrd4 (GOES sounder data) (GOES sounder data)
ssmi read_ssmi read_ssmi
amsre_low,
amsre_mid read_amsre read_amsre
amsre_hig
ssmis, ssmis* read_ssmis read_ssmis
goes_img read_goesimg read_goesimg
seviri read_seviri read_seviri
avhrr_navy read_avhrr_navy read_avhrr_navy
avhrr read_avhrr read_avhrr
ozone subuv2, omi, gome, read_ozone read_ozone
o3lev
co mopitt read_co read_co
pcp pcp_ssmi, pcp_tmi, read_pcp read_pcp
pcp_amsu,pcp_stage3
gps gps_ref, gps_bnd read_gps read_gps
aero modis read_aerosol read_aerosol

64

In the subroutine read_obs, users can find similar portion of the code deciding which
subroutine is used to read in the data for certain data type. For each subroutine, the
input variables always includes parameters like:

infile = dfile of the namelist section &OBS_INOUT
obstype = dtype of the namelist section &OBS_INOUT
sis = dsis of the namelist section &OBS_INOUT

* Step 4: Read in observations and initial check of the observations

The data types and the corresponding GSI subroutines that read in these data types
are listed in the table 4.1. From the table, we can see there are 28 subroutines
employed by GSI to read in different kinds of BUFR/PrepBUFR files. Also from the
table, we can easily find the GSI subroutine that actually reads in the certain
observations from the BUFR/PrepBUFR files. In the same subroutine, the quality
control to the observation data, data thinning, and checks to insure that the data are
in the analysis domain and time window.

These read_* subroutines listed in the table 4.1 are the GSI interface to the
BUFR/PrepBUFR that users should check when trying to analyze their own data
using the GSI system. We will discuss how to check the structure of these read_*
subroutines in section 4.2 of this Chapter.

After we read in the observations for each element, such as “t”, “q”, “wind”, GSI will
write out observations for certain element in the analysis domain and time to one
binary file, which will be read in again by the next step for data partitioning into
sub-domains (if run with multiple processors).

* Step 5: sub-domain partition

When GSI runs in parallel mode, both the background and the observation data need
to be partitioned into sub-domains. This step is done after the observation data
have been read in and saved in the internal format. The code to assign and distribute
observations to sub-domains is call “obs_para”, which is a subroutine inside the file
“obs_para.f90”. Please note that after this step, the observations from all observation
elements are saved in the same binary file for each processor.

* Step 6: innovation calculation

As an important step of the data analysis system, observation innovation calculation
also involves lots of code. The section 6.2.4 of the GSI User’s Guide version 3
provides a table to list innovation calculations for the different kinds of observation
elements. We will not introduce these calculations in this document but would like
to remind users that innovation calculation is also a key component in the use of
observation data in the analysis.

65

4.2 The BUFR decoding in GSI read files

From the previous section, we can see that there are many steps involved in the GSI
system to ingest and process the observation data from BUFR/PrepBUFR files for
the final analysis. To encode new data for the GSI, the best way to start is reading the
related GSI code for BUFR/PrepBUFR data ingesting and checking the mnemonics
used in the code to figure out the data needed in the GSI. In section 4.1, we have
provided a complete list of GSI subroutines for the observation data ingesting. Here
we will give 2 examples to illustrate how to extract the GSI BUFR interface from the
GSI read_* subroutines and delete other functions that are not related to the BUFR
decoding from the subroutine, such as observation location and time checking, data
thinning, and quality control checking, etc.

Example 1: read prebufr.f90

The file read prepbufr.f90 is in GSI source code directory (./src/main) and it reads
conventional data from the PrepBUFR file. Specific observation types read by this
routine include surface pressure, temperature, winds (components and speeds), moisture,
total precipitable water, and cloud and weather. This file has 1375 lines and most of the
code are not related to the PrepBUFR decoding. Here, as an example, we deleted all the
code that are not for PrepBUFR decoding and shortened the file down to 197 lines. The
full code is listed in the Appendix and can be downloaded from the Examples Page of the
BUFR website. Here we will only show the mnemonics used by the GSI PrepBUFR
decoding to get an idea what are the GSI expected variables from the PrepBUFR file.

data hdstr /'SID XOB YOB DHR TYP ELV SAID T29'/
data hdstr2 /'TYP SAID T29 SID'/
data obstr /'POB QOB TOB ZOB UOB VOB PWO CAT PRSS' /

data drift /'XDR YDR HRDR v/
data sststr /'MSST DBSS SST1 SSTQM SSTOE v/
data gcstr /'PQM QQOM TQM ZQM WQM NUL PWQ v/
data oestr /'POE QOE TOE NUL WOE NUL PWE v/

data satgcstr /'QIEN'/
data prvstr /'PRVSTG'/
data sprvstr /'SPRVSTG'/
data levstr /'POB'/

data metarcldstr /'CLAM HOCB'/ ! cloud amount and cloud base height
data metarwthstr /'PRWE'/ ! present weather
data metarvisstr /'HOVI'/ ! visibility

data geoscldstr /'CDTP TOCC GCDTT CDTP_QM'/

Compared to the PrepBUFR processing examples we provided in the Chapter 2, we can
see that there is more information expected by the GSI PrepBUFR interface. Please note
that not all the variables listed in the above mnemonics are needed for a GSI run. Some
are for certain special GSI applications only, such as the cloud observations, which are
used in the Rapid Refresh system only. So, if users only want to generate a PrepBUFR
file that contains a part of the observations expected by these mnemonics, the GSI still
can run successfully and use the observation data to get a final analysis. But from the
previous introduction to the GSI observation data processing procedure, users can see
that there are many steps involved in the data usage in the GSI analysis. A complete
picture of the data flow in GSI system will be very helpful for users who work on data

66

impact studies with GSI, especially when they need to generate the new PrepBUFR file
for their new data.

Example 2: read airs.f90:

The file read _airs.f90 is in GSI source code directory (./src/main) and it reads BUFR
format AQUA radiance (brightness temperature) observations. This file has 768 lines. To
simplify this example, we deleted all the code that is not related to the BUFR decoding
and shortened the file down to 82 lines. The full code is listed in the Appendix and can be
download from the Examples Page of the BUFR website. Again, we will only show the
lines that include mnemonics used by decoding to get an idea what variables are expected
by GSI from the AIRS BUFR file.

allspotlist='SIID YEAR MNTH DAYS HOUR MINU SECO CLATH CLONH SAZA BEARAZ FOVN'
call ufbrep (lnbufr,allchan,1,n totchan,iret, 'TMBR')
call ufbint (lnbufr,aquaspot,2,1,iret, 'SOZA SOLAZI')

Here, we highlight the mnemonics and we will leave then for users to find out the
exactly meaning of these mnemonics by checking the BUFR table.

Summary:

In the course of preparing this document and extending the BUFR/PrepBUFR support for
GSI, we outline portions of 4 GSI BUFR ingest interface files for users to reference:

read_prepbufr.f90
read_airs.f90
read_bufrtovs.f90
read gps.f90

Users can find these files in the Examples Page of the BUFR user’s website. There is

makefile provided with these files to help users properly compile the code. These files
can also be used to decode the corresponding NCEP operation PrepBUFR/BUFR files.

67

Chapter 5 NCEP Observation Process and BUFR files

5.1 Observation Data Processing at NCEP

Here is a brief outline of the current procedure for processing observations that
arrive at NCEP.

1. NCEP receives the majority of its data from the Global Telecommunications
System (GTS) and the National Environmental Satellite, Data, and
Information Service (NESDIS).

2. The various NCEP networks access the observational database at a set time
every day (i.e., the data cutoff time) and perform a time-windowed dump of
requested observations. Observations of a similar type [e.g., satellite-derived
winds ("satwnd"), surface land reports ("adpsfc")] are dumped into
individual BUFR files which maintain the original structure of reports,
although some interactive quality control is applied, duplicate reports are
removed, and upper-air report "parts” are merged.

3. The final step in preparing most of the observational data for assimilation
involves the execution of a series of programs which read in the observations
from the various dump files, add forecast ("first guess") background and
observation error information, perform automated quality control, and
finally output the observations in a monolithic BUFR file known as
"PREPBUFR".

4. The PREPBUFR file is read by the Global Statistical Interpolation (GSI)
analysis.

The figure depicts the data processing system at NCEP is in the next page and the
naming convention used in the figure is listed here:

GTS = Global Telecommunications System
Gathers world wide data, sends data to NWSTG/TOC or the “Gateway”

NWSTG/TOC = NWS Telecommunication Gateway/Telecommunication Operations Center
Intercepts GTS messages, sends data to NCO via TNC (TOC to NCEP Communications) line and LDM
(Local Data Manager)

GSD = NOAA/ESRL/GSD
Provides Mesonet data to NCO via LDM several times hourly

Radar/ROC = NOAA Radar Operations Center
Provides the radial wind and reflectivity data from 158 NEXRAD radar stations.

NESDIS = National Environmental Satellite, Data, and Information Service Servers
Serves up POES data (operational/test), GOES data, winds, radiances, SST, (operational/test)

NCO = NCEP Central Operations

68

PMB = Production Management Branch

Pulls data from the outside, interacts w/ the “Gateway”, LDM, ROC, etc ..., retrieves data continuously,
gathers all the data then pass it off to SIB for decoding.

Code is running 24/7, implements changes.

SIB = Systems Integration Branch

Decodes data from native format to NCEP BUFR and stores data to tanks. Decoders include: ACARS,
Aircraft, Aviation Weather (METAR), Bathymetry, Drifting Buoy, Land surface, Marine surface, NeXRAD
Wind, Profiler, Rawinsonde, Satellite Wind, Supplementary Climatology, Tide Gauge.

EMC = Environmental Modeling Center

Runs SMS jobs to periodically query the NESDIS servers for new data. Compares latest available data
against a local history file to determine if data is new. Retrieves new data via FTP. Converts native data
to NCEP BUFR and stores them in the tanks.

Outside NCEP : Inside NCEP
I
i I
I
—q GTS p— |
I
I o
. ' { Dump Fil
1 trangd J Dump Files
I EMC & /| (BUFR format)
NYVSTG,TOC Satallite mgest scripts §/ =
Gateway” . Watz” seripts E
[3 &
| z P
I f
LM ! §
L
GSD ; ;
! 3
Radar : ‘ { Analysis
ROC } $
| 2
I .
| 3
NESDIS | |
N FTP
I
I
: ** Diagram criginally developed by Shelley Melchior **

Figure 5.1 data processing system at NCEP

69

5.2 NCEP BUFR/PrepBUFR

NCEP saves most of the observation data in WMO BUFR format. PrepBUFR is the
final step in preparing most of the observations for data assimilation, the NCEP term
for “prepared” or QC’d data in BUFR format (NCEP convention/standard). Please
note that a PrepBUFR file is still a BUFR file, but has more QC information. NCEP
uses PrepBUFR files to organize conventional observations and satellite retrievals as
well as other related information (such as quality marks) into single files. The
BUFRLIB software and BUFR table are needed for processing BUFR/PrepBUFR files.

NCEP generates different BUFR/PrepBUFR files for each of its operation systems.
The “PrepBUFR” includes the major conventional observations for assimilation into
the various NCEP analyses, including the North American Model (NAM) and NAM
Data Assimilation System (NDAS), unified grid-point statistical

interpolation analysis (GSI) (the "NAM" and "NDAS" networks), the Global Forecast
System and Global Data Assimilation System unified GSI (the "GFS" and "GDAS"
networks), the Climate Data Assimilation System SSI (the "CDAS" network), the
Rapid Update Cycle (the "RUC" network) and the Real Time Mesoscale Analysis (the
"RTMA" network).

In this section, we will briefly introduce several types of BUFR/ PrepBUFR files
mostly accessed by the research community to help users decide which one is the
best for their GSI applications. Each type of BUFR/PrepBUFR file has its own
coverage, data cut-off time, and quality control procedures, which result in different
quality marker values for the same observation in different files.

e File name convention:

The following is a list of example file names we collected from NCEP FTP site:

gdas1.t00z.prepbufr.nr
gfs.t00z.gpsro.tm00.bufr_d
ndas.t18z.1bamub.tm03.bufr_d
nam.t00z.aircar.tm00.bufr_d.nr
ndas.t18z.prepbufr.tm03.nr

These file names reflect information of the observations within the file. Let us
explain the meaning of the filenames, segment by segment, separated by
dots:

o The 1st section is the operation system name, indicating which
operation system this file is created/used for. For example: gdas1 is
for the Global Data Assimilation System (GDAS), gfs for the Global
Forecast System (GFS), ndas for the North American Data Assimilation

70

System (NDAS), nam for the North American Mesoscale (NAM)
forecast system.

o The second section is analysis hour, indicating which analysis hour
this file is used for. For example: t00z is for 00Z analysis, t18z for 18Z
analysis.

o The third section is data type, indicating what kinds of data are
included in the file. For example: prepbulfr is for conventional
observations, gpsro for GSPRO, 1bamub for AMSU-B, and aircar for
aircraft observations.

o From fourth section, there is different information for different
operational files:

m bufr_d tells us it is a BUFR format file. We may think prepbufr
as a special data “format” here.

m nr tells us that the file only includes non-restricted data (we
can only access non-restricted data).

m tmO00 and tm03, where the two digital number is hours. They
also indicate the time of the file used in the analysis. When the
number is 00, the file analysis time is the same as showed in
the second segment. When it is a number larger than 0, it
indicates the analysis time of the file is the time in the second
segment minus this number. For example: the analysis time for
ndas.t18z.1bamub.tm03.bufr_d is 15Z (18Z - 03h = 15Z). This
file is used in the catch up cycles during NDAS that have a
delayed analysis start time to wait for more observations.

e Data coverage and cut off time:

Each operational system requires different data types, data coverage, cut off
time, and quality control procedures. The details of these setups need a long
technical note to describe but here we can briefly introduce some major
features of each file:

o GDAS (gdas1) covers the global and has the latest cut off time (6
hours), which means it includes most of the available real-time
observation data.

o GFS (gfs) covers the global but has a shorter cut off time (2:45 hours)
compared to GDAS.

o NDAS(ndas) covers the North America and has a longer cut off time
than NAM, which means it includes more real-time data than NAM.

71

o NAM(nam) covers the North America but has a shorter cut off time
comparing to others.

o Data quality control processes for PrepBUFR files in each observation
system are different but their results are reflected as quality markers,
which can be easily checked by decoding the specific PrepBUFR file.

o For data types in each PrepBUFR file, please check the following
section.

e (Code table for PrepBUFR report types
The complete list of the conventional observation types (and their BUFR
codes) used by each NCEP operation system are documented at the following
links:

Global GFS and GDAS GSI analyses:

http://www.emc.ncep.noaa.gov/mmb/data processing/prepbufr.doc/table 2.htm

Global CDAS/reanalysis systems:

http://www.emc.ncep.noaa.gov/mmb/data processing/prepbufr.doc/table 3.htm

Regional NAM and NDAS GSI analyses:

http://www.emc.ncep.noaa.gov/mmb/data processing/prepbufr.doc/table 4.htm

Rapid Update Cycle (RUC) 3DVAR analysis:

http://www.emc.ncep.noaa.gov/mmb/data processing/prepbufr.doc/table 5.htm

Here we give a simplified table for the most commonly used data types:

72

Observation data used by GSI

Observation Type for T, g, Ps

Code is from 100 to 199

Rawinsonde+ Dropsonde 120+122

Synop+ METAR 181+187

Ship+BUOY 180

AIRCFT 130 AIREP and PIREP aircraft

ADPUPA 132 flight level reconnaissance and profile dropsonde

Observation Type for UV and
speed

Code is from 200 to 299

Rawinsonde 220

Profiler 223

VAD 224

AIRCFT 230: AIREP and PIREP aircraft flight level reconnaissance
and profile dropsonde

ADPUPA 232

SATWIND 245-NESDIS IR cloud drift
246-NESDIS imager water vapor

Ship+ BUOY 280

ATLAS BUOY 282

¢ Default observation file names used in GSI

GSI can analyze many types of observational data, including conventional data,
satellite observations (such as AIRS, IASI, GPSRO (bending angle or refractivity),
SBUV/2 ozone, GOME ozone, GOES sounder, GOES imager, AVHRR), and radar
data. For use with GSI, these observations are saved in the BUFR format (with
NCEP specified features). A list of the default observation file names used in GSI
and the corresponding observations included in the files is provided in the table
below:

73

GSI Name | Content Example file names
prepbufr Conventional observations, including ps, t, q, | gdasl.t12z.prepbufr
pw, uv, spd, dw, sst, from observation
platforms such as METAR, sounding, et al.
amsuabufr | AMSU-A 1b radiance (brightness gdas1.t12z.1bamua.tm00.bufr_d
temperatures) from satellites NOAA-15, 16,
17,18,19 and METOP-A
amsubbufr | AMSU-B 1b radiance (brightness gdas1.t12z.1bamub.tm00.bufr_d
temperatures) from satellites NOAA15, 16,17
radarbufr Radar radial velocity Level 2.5 data ndas1.t12z. radwnd. tm12.bufr_d
gpsrobufr | GPS radio occultation observation gdas1.t12z.gpsro.tm00.bufr_d
ssmirrbufr | Precipitation rate observations fromSSM/I gdas1.t12z.spssmi.tm00.bufr_d
tmirrbufr Precipitation rate observations from TMI gdas1.t12z.sptrmm.tm00.bufr_d
sbuvbufr SBUV/2 ozone observations from satellite gdas1.t12z.osbuv8.tm00.bufr_d
NOAA16,17,18,19
hirs2bufr HIRS2 1b radiance from satellite NOAA14 gdas1.t12z.1bhrs2.tm00.bufr_d
hirs3bufr HIRS3 1b radiance observations from gdas1.t12z.1bhrs3.tm00.bufr_d
satellite NOAA16, 17
hirs4bufr HIRS4 1b radiance observation from satellite | gdas1.t12z.1bhrs4.tm00.bufr_d
NOAA 18,19 and METOP-A
msubufr MSU observation from satgellite NOAA 14 gdas1.t12z.1bmsu.tm00.bufr_d
airsbufr AMSU-A and AIRS radiances from satellite gdas1.t12z.airsev.tm00.bufr_d
AQUA
mhsbufr Microwave Humidity Sounder observation gdas1.t12z.1bmhs.tm00.bufr_d
from NOAA 18 and METOP-A
ssmitbufr SSMI observation from satellite f13, f14, f15 gdas1.t12z.ssmit.tm00.bufr_d
amsrebufr | AMSR-E radiance from satellite AQUA gdas1.t12z.amsre.tm00.bufr_d
ssmisbufr | SSMIS radiances from satellite f16 gdas1.t12z.ssmis.tm00.bufr_d
gsnd1bufr | GOES sounder radiance (sndrd1, sndrd2, gdas1.t12z.goesfv.tm00.bufr_d
sndrd3 sndrd4) from GOES 11,12, 13.
12rwbufr NEXRAD Level 2 radial velocity ndas.t12z.nexrad. tm12.bufr_d
gsndrbufr | GOES sounder radiance from GOES11, 12 gdas1.t12z.goesnd.tm00.bufr_d
gimgrbufr | GOES imager radiance from GOES 11, 12 gdas1.t12z.7?7?777.tm00.bufr_d
omibufr Ozone Monitoring Instrument (OMI) gdas1.t12z.omi.tm00.bufr_d
observation NASA Aura
iasibufr Infrared Atmospheric Sounding Interfero- gdas1.t12z.mtiasi. tm00.bufr_d
meter sounder observations from METOP-A
gomebufr | The Global Ozone Monitoring Experiment gdas1.t12z.syndata.tcvitals.tm00
(GOME) ozone observation from METOP-A
mlsbufr Aura MLS stratospheric ozone data gdas1.t12z. mlsbufr.tm00.bufr_d
tevitl Synthetic Tropic Cyclone-MSLP observation gdas1.t12z.gome.tm00.bufr_d
modisbufr | MODIS aerosol total column AOD

observations from AQUA and TERRA

74

5.3 BUFR/PrepBUFR Data Resources for Community Users

There are several sources to get real-time and archived atmospheric observations
and model forecasts. Some of them provide NCEP operation BUFR/PrepBUFR files
for community. Below is a list we are aware of. Users are welcome to send us new
data source links to share with the community.

Data in BUFR format

e NCEP NOMADS Site:
o PrepBufr for GDAS (Global) - 1 month buffer:

http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs /prod/
o PrepBufr for NDAS (North America) - 1 month buffer:

http://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod

L

e NCEP FTP Site:
o PrepBufr for GDAS (Global) - 3 day buffer:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs /prod/
o PrepBufr for NDAS (North America) - 3 day buffer:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod/

e NCDC NOMADS Site:
o PrepBufr for GDAS (Global) - archive starting May 2007:
http://nomads.ncdc.noaa.gov/data/gdas

e NCAR Computational and Information Systems Laboratory (CISL) Research
Data Archive (RDA) Site:
o DS337.0: NCEP ADP Global Upper Air and Surface Observations
(PREPBUFR and NetCDF PB2NC Output) - archive starting May 1997:

http://dss.ucar.edu/datasets/ds337.0/
o DS337.0 Subset: Interactive tool for running PB2NC over a specified

time period and geographic region:
http://dss.ucar.edu/datasets/ds337.0/forms/337 subset.php

75

Data in other formats

e Unidata Program
http: //www.unidata.ucar.edu/data/

e National Environmental Satellite, Data, and Information Service (NESDIS)
http://www.nesdis.noaa.gov/

e National Climatic Data Center
http: //www.ncdc.noaa.gov/oa/ncdc.html

e MADIS Surface Data
http://www-frd.fsl.noaa.gov/mesonet/

e NCAR Mass Storage System (MSS)

Real-time and archived data are available to users who have UCAR
computer accounts.

76

Reference and Useful Links:

o WMO INTERNATIONAL CODES
http://www.wmo.int/pages/prog/www/WMOCodes.html

. Standard table from WMO: BUFR Table A, B, C, D
http://www.wmo.int/pages/prog/www/\WWMOCodes/TDCFtables.html#TDCFtables

d WMO BUFR guide:
http://www.wmo.int/pages/prog/www/WMOCodes/Guides/BUFRCREXPreface en.html

NCEP/NCO web to introduce BUFRLIB and how to decode and encode BUFR
files:
http://www.nco.ncep.noaa.gov/sib/decoders/BUFRLIB/

. BUFR documents also can be found in NCAR DSS:
http://dss.ucar.edu/docs/formats/bufr/

. PREPBUFR documents at NCEP:
http://www.emc.ncep.noaa.gov/mmb/data processing/prepbufr.doc/

. Observation data processing at NCEP (by Dennis Keyser):
http: //www.emc.ncep.noaa.gov/mmb/data processing/data processing/

77

Appendix

PrepBUFR decoding example for read repbufr.f90:

program read prepbufr
use kinds, only: r single,r kind,r double,i kind
implicit none
character (len=80) :: infile,obstype

! Declare local variables

character (40) drift,hdstr,gcstr,oestr,sststr,satqcstr,levstr,hdstr2
character (40) metarcldstr,geoscldstr,metarvisstr,metarwthstr
character (80) obstr

character (10) date

character (8) subset

character (8) prvstr,sprvstr

integer (i kind) ireadmg,ireadsb,icntpnt,icntpnt2,icount,iiout
integer (i kind) lunin,i,maxobs,j,idomsfc,itemp,it29
integer (i kind) metarcldlevs,metarwthlevs

integer (i kind) k,nmsg,kx, nreal,idate,iret,ncsave,levs
integer (i kind) ntb

real (r double) vtcd

real (r double),dimension(8):: hdr

real (r double),dimension(8,255):: drfdat,gcmark, obserr
real (r double),dimension(9,255) :: obsdat

real (r double),dimension(8,1):: sstdat

real (r _double),dimension(2,10):: metarcld

real (r double),dimension(1,10):: metarwth

real (r double),dimension(l,1) :: metarvis

real (r double),dimension(4,1) :: geoscld

real (r double),dimension(l):: satqgc

real (r _double),dimension(l,1):: r prvstg,r sprvstg
real (r double),dimension(1,255):: levdat

real (r _double),dimension (255,20):: tpc

real (r double),dimension(2,255,20):: tobaux

! data statements
data hdstr /'SID XOB YOB DHR TYP ELV SAID T29'/
data hdstr2 /'TYP SAID T29 SID'/
data obstr /'POB QOB TOB ZOB UOB VOB PWO CAT PRSS' /

data drift /'XDR YDR HRDR v/
data sststr /'MSST DBSS SST1 SSTQM SSTOE v/
data gcstr /'PQM QQM TQM ZQM WQM NUL PWQ v/
data oestr /'POE QOE TOE NUL WOE NUL PWE v/

data satgcstr /'QIEN'/
data prvstr /'PRVSTG'/
data sprvstr /'SPRVSTG'/
data levstr /'POB'/

data metarcldstr /'CLAM HOCB'/ ! cloud amount and cloud base height

data metarwthstr /'PRWE'/ ! present weather

data metarvisstr /'HOVI'/ ! visibility

data geoscldstr /'CDTP TOCC GCDTT CDTP OM'/ ! NESDIS cloud products: cloud top

pressure, temperature,amount
logical tob,gob,uvob, spdob, sstob, pwob, psob
logical metarcldobs, geosctpobs
logical driftl,convobs

data lunin / 13 /

! Initialize variables

78

infile='prepbufr'

nreal=0

satqc=0.0_r_ kind

obstype="t"

tob = obstype == 't'

uvob = obstype == 'uv'

spdob = obstype == 'spd'

psob = obstype == 'ps'

gob = obstype == 'q'

pwob = obstype == 'pw'

sstob = obstype == 'sst'
metarcldobs = obstype == 'mta cld'
geosctpobs = obstype == 'gos ctp'
convobs = tob .or. uvob .or. spdob .or. gob

! Open, then read date from bufr data
call closbf (lunin)
open (lunin, file=infile, form="unformatted')
call openbf (lunin, 'IN', lunin)
call datelen(10)

maxobs=0
nmsg=0
ntb = 0
msg report: do while (ireadmg(lunin, subset,idate) == 0)
Hmsg:nmsg+l
loop report: do while (ireadsb(lunin) == 0)
ntb = ntb+l

! Extract type information
call ufbint (lunin,hdr,4,1,iret,hdstr2)
kx=hdr (1)

! For the satellite wind to get quality information and check if it will be used

if(kx ==243 .or. kx == 253 .or. kx ==254) then

call ufbint (lunin,satqgc,1,1,iret,satqgcstr)

if (satgc(l) < 85.0 r double) cycle loop report ! QI w/o fcst (su's setup
endif

! Save information for next read

! Save information for next read
if (ncsave /= 0) then
call ufbint (lunin, levdat, 1,255, levs, levstr)
maxobs=maxobs+max (1, levs)
end 1if

end do loop report
enddo msg_ report
if (nmsg==0) goto 900
write (6, *) '"READ PREPBUFR: messages/reports = ',nmsg,'/', ntb

! Obtain program code (VTCD) associated with "VIRTMP" step
if(tob)call ufbgcd(lunin, '"VIRTMP',vtcd)

! loop over convinfo file entries; operate on matches
!DTC comment out the loop loop convinfo because we want to read all typies
!DTC loop convinfo: do nx=1, ntread

call closbf (lunin)

open (lunin, file=infile, form="unformatted')
call openbf (lunin, 'IN', lunin)

call datelen(10)

! Big loop over prepbufr file

ntb = 0

nmsg = 0

icntpnt=0

icntpnt2=0

loop msg: do while (ireadmg(lunin,subset,idate)== 0)

loop readsb: do while(ireadsb (lunin) == 0)

! use msg lookup table to decide which messages to skip

! use report id lookup table to only process matching reports
ntb = ntb+1l

! Extract type, date, and location information
call ufbint (lunin, hdr,8,1,iret,hdstr)

! Balloon drift information available for these data
IDTC driftl=kx==120.0r.kx==220.0r.kx==221

! Extract data information on levels
call ufbint (lunin, obsdat, 9,255, levs,obstr)
call ufbint (lunin,gcmark,8,255,levs,gcstr)
call ufbint (lunin, obserr, 8,255, levs,oestr)
if (sstob) then
sstdat=1.ell_r kind
call ufbint (lunin,sstdat,8,1,levs,sststr)
else if (metarcldobs) then
metarcld=1.ell r kind
metarwth=1.ell r kind
metarvis=1l.ell r kind
call ufbint (lunin,metarcld, 2,10,metarcldlevs,metarcldstr)
call ufbint (lunin,metarwth,1,10,metarwthlevs,metarwthstr)
call ufbint (lunin,metarvis,1,1,iret,metarvisstr)
if(levs /= 1) then
write(6,*) 'READ PREPBUFR: error in Metar observations, levs sould be 1 !!!"
stop 110
endif
else if(geosctpobs) then
geoscld=1l.ell r kind
call ufbint (lunin,geoscld, 4,1,levs,geoscldstr)
endif

If temperature ob, extract information regarding virtual
versus sensible temperature
if (tob) then
call ufbevn (lunin, tpc,1,255,20,1levs, '"TPC'")
if (.not. twodvar regional .or. .not.tsensible) then

else !peel back events to store sensible temp in case temp is virtual
call ufbevn (lunin, tobaux,2,255,20,1levs, '"TOB TQM')
end if
end if

end do loop readsb

! End of bufr read loop
enddo loop msg

! Close unit to bufr file
call closbf (lunin)

! Normal exit

!DTC enddo loop convinfo! loops over convinfo entry matches

900 continue
close (lunin)

end program read prepbufr

80

BUFR decoding example for read airs.f90:

program read airs
!
! subprogram: read airs read bufr format airs data

use kinds, only: r_kind,r double,i kind

! Number of channels for sensors in BUFR

integer (i_kind),parameter :: n_airschan = 281 !--- 281 subset ch out of
2378 ch for AIRS

integer (i kind),parameter :: n amsuchan = 15

integer (i kind),parameter :: n hsbchan = 4

integer (i kind),parameter :: n totchan = n_amsuchan+n airschan+n hsbchan+l

! BUFR file sequencial number

character (len=512) :: table file
integer (i kind) :: lnbufr = 10
integer (i kind) :: lnbufrtab = 11
integer (i kind) :: irec,isub, next

! Variables for BUFR IO

real (r _double),dimension(2) :: aquaspot

real (r double),dimension(12,3) :: allspot

real (r _double),dimension(n_totchan) :: allchan
character (len=8) :: subset

character (len=80) :: allspotlist

integer (i kind) :: iret, ireadmg,ireadsb
logical :: airstab

character (len=80) :: infile

infile='airsbufr'
allspotlist="'SIID YEAR MNTH DAYS HOUR MINU SECO CLATH CLONH SAZA BEARAZ FOVN'

! Open BUFR file
open (lnbufr,file=infile, form="unformatted')

! Open BUFR table
table file = 'airs bufr.table' ! make table file name
inquire(file=table file,exist=airstab)
if (airstab) then
open (lnbufrtab, file=trim(table file))

else

call openbf (1nbufr, "IN', Inbufr)
endif
call datelen(10)

! Big loop to read data file

next=0

do while (ireadmg (lnbufr, subset,idate)>=0)
next=next+1l
read loop: do while (ireadsb (lnbufr)==0)

! Read AIRSSPOT , AMSUSPOT and HSBSPOT
call ufbrep(lnbufr,allspot,12,3,iret,allspotlist)
if (iret /= 3) cycle read loop

! Check that number of airs channel equals n_airschan

81

! only done until they match for one record and ndata is updated
! Read AIRSCHAN or AMSUCHAN or HSBCHAN
call ufbrep(lnbufr,allchan,1,n totchan,iret, '"TMBR'")

if(iret /= n_totchan)then
write (6, *) '"READ AIRS: ### ERROR IN READING ', ' BUFR DATA:',
iret, ' CH DATA IS READ INSTEAD OF ',n totchan
cycle read loop
endif

! Read AQUASPOT
call ufbint (lnbufr,aquaspot,2,1,iret, 'SOZA SOLAZI')

enddo read loop
enddo

call closbf (1lnbufr) ! Close bufr file

end program read airs

&

82

