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ABSTRACT 

Atmospheric particles exhibit various sizes and nonspherical shapes, which are 

factors that primarily determine the physical–optical properties of particles.  The “sizes” 

of nonspherical particles can be specified based on various size descriptors, such as those 

defined with respect to a volume-equivalent spherical radius, projected-area-equivalent 

spherical radius, geometric radius, or effective radius.  Microphysical and radiative 

transfer simulations as well as remote sensing implementations often require the 

conversions of particle size distributions (PSDs) in terms of the number concentration, 

projected area, and volume.  The various size descriptors cause ambiguity in the PSD 

interconversion, and thereby result in potentially misleading quantification of the 

physical–optical properties of atmospheric nonspherical particles.   

The present study aims to provide a generalized formula for interconversions of 

PSDs in terms of physical variables and size descriptors for arbitrary nonspherical 

particles with log-normal and gamma distributions.  In contrast to previous studies, no 

empirical parameters are included, allowing intrinsic understanding of the nonspherical 

particle effects on the PSD interconversion.  In addition, we investigate the impact of 

different size descriptors on the single-scattering properties of nonspherical particles. 

Consistent single-scattering properties among different nonspherical particles with the 

same size parameter are found when the size descriptor is the effective radius, whereby 

their mechanisms are suggested based on a modified anomalous diffraction theory.   

The overarching goal of this work is to eliminate the ambiguity associated with a 

choice of the size descriptor of nonspherical particles for Earth-atmosphere system 

models, cloud–aerosol remote sensing, and analyses of in-situ measured atmospheric 

particles.   

SIGNIFICANCE STATEMENT 

Atmospheric dust and ice crystals have various sizes and mostly nonspherical 

shapes.  Different definitions of these particle sizes and shapes causes uncertainties and 

even results in misleading solutions in the numerical modeling and remote sensing of 

atmospheric properties.  We derived generalized analytical formulas to rigorously treat 
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the sizes and shapes of particles in the atmosphere, and also investigated the importance 

of the treatment of particle sizes on the particle properties essential to the Earth-

atmospheric climate system.  This study aims to eliminate the ambiguity associated with 

particle sizes and shapes in atmospheric research.  

1. Introduction

Nonspherical particles, such as ice crystals, dust aerosols, and volcanic ash 

particles, are ubiquitous in the atmosphere, as confirmed by in-situ measurements (e.g., 

Volten et al., 2001; Reid et al., 2003a; Lawson et al., 2019; Magee et al., 2021).  A single 

atmospheric particle exhibits various geometric characteristics such as particle habit or 

shape, aspect ratio, and microscopic irregularity or surface roughness (Kolorev and Issac, 

2003; Um et al., 2015; Lindqvist et al., 2014).  From a macroscopic view, these 

atmospheric particles are associated with a particle size distribution (PSD) that can span 

several orders of magnitude.  These particle shape characteristics and PSDs are the 

critical factors in determining the physical (e.g., total volume and projected area of 

particles) and optical properties (e.g., the bulk extinction coefficient and phase matrix) of 

these atmospheric particles (Takano and Liou, 1989; Dubovik et al., 2006).  Therefore, 

these characteristics must be realistically represented in atmospheric research 

applications such as Earth-atmosphere system models, cloud–aerosol remote sensing, and 

analyses of in-situ measured atmospheric particles.    

Depending on the context, a preferred particle physical variable is chosen to 

depict the PSD of atmospheric particles, such as the number concentration 𝑑𝑁 𝑑𝑟⁄ , the 

projected area distribution 𝑑𝐴 𝑑𝑟⁄ , or the volume distribution 𝑑𝑉 𝑑𝑟⁄ , where 𝑟 is particle 

radius.  The former two variables are essential to cloud-aerosol microphysics studies and 

radiative transfer computations, and the latter is often used for numerical model 

simulations of cloud and atmospheric aerosol fields.  These PSDs are analytically 

convertible among the physical variables as derived by Hansen and Travis (1974) 

(hereinafter referred to as HT74) for spherical particles and have been widely used.  

However, PSD conversions for nonspherical particles involve uncertainties due to the 

ambiguity in defining the size of a nonspherical particle. 
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Unlike a spherical particle, multiple particle sizes can be defined for an arbitrary 

nonspherical particle by using different size descriptors, such as the volume-equivalent 

spherical radius 𝑟v, projected area-equivalent spherical radius 𝑟a, geometric radius 𝑟g, or 

effective radius of a single particle 𝑟e.  Petty and Huang (2011) (hereinafter referred to as 

PH11) elaborate on the analytical relationship of PSDs among various size descriptors for 

the modified gamma distribution of nonspherical particles.  Ham et al. (2017) also 

discuss such analytical relations of PSDs for different nonspherical particles from the 

active-sensor remote sensing perspective.  Although these previous studies have 

substantially elevated the level of understanding of nonspherical PSDs, the derived 

analytical relationships involve empirical parameters of nonspherical geometric 

characteristics, such as a coefficient in a volume–diameter relation that does not depict 

particle shapes explicitly. This hinders a more intuitive understanding of how the 

nonspherical geometric properties affect these analytical PSD interconversions.   

From the optics perspective, a particle size is characterized with the size 

parameter 𝑘𝑟, defined as 2𝜋 times the ratio of a particle “radius” 𝑟 to the incident 

radiation wavelength 𝜆, where 𝑘 = 2𝜋 𝜆⁄ .  The use of different size descriptors to define 

the size parameters may cause ambiguity in the computed optical properties of 

atmospheric nonspherical particles for size parameters beyond the Rayleigh scattering 

regime.  Previous studies have chosen a variety of size descriptors (Takano and Liou, 

1989; Chylék and Videen, 1994; Yang et al., 2013), which have made it difficult to 

perform a straightforward comparison of the single-scattering properties of nonspherical 

particles using different size descriptors.  The effective radius 𝑟e was suggested by 

Grenfell and Warren (1999) (hereinafter referred to as GW99) as an optimal choice of the 

size descriptor for a nonspherical particle, but the theoretical rationale behind this 

approach has not yet been clarified.  Therefore, it is essential to bridge the gap in 

understanding the potential impacts of a choice of the size descriptor on the optical 

property simulations involving nonspherical particles.  

This work is inspired by the previous studies (HT74, GW99, and PH11) and is 

aimed to fill the remaining gap in the understanding of the impacts of a choice of the size 

descriptor on the physical and optical properties of arbitrary atmospheric nonspherical 

particles without ambiguity.  In particular, the analytical formulation in this paper will 
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not use empirical parameters but physically rational parameters related to the 

nonspherical geometric characteristics.  Important definitions of particle sizes and shapes 

are described in Section 2.  Section 3 briefly reviews the concept of PSD and its 

interconversion for spherical particles.  Analytical formulas for the PSD interconversions 

of nonspherical particles are derived in Section 4.  Section 5 discusses the impacts of a 

choice of the size descriptor on the optical properties of nonspherical particles.  Section 6 

summarizes and discusses the significance of our findings in atmospheric science 

applications. 

2. Size and Shape Definitions

a. Size descriptors for nonspherical particles

As mentioned above, the four primary types of the size descriptor of a single 

nonspherical particle are volume-equivalent spherical radius 𝑟v, projected area-equivalent 

spherical radius 𝑟a, geometric radius 𝑟g, and effective radius 𝑟e.  Here we do not discuss 

other potential size descriptors including particle mass (Petty and Huang, 2010) or 

aerodynamic size (Hinds, 1999).   

For a single particle with volume 𝑣 and average projected area 𝑎 under the 

random orientation condition, these four particle size descriptors are 

𝑟v = (
3𝑣

4𝜋
)

1

3
, (1) 

𝑟a = (
𝑎

𝜋
)

1

2
, (2) 

𝑟e =
3𝑣

4𝑎
, (3) 

𝑟g = (half of the maximum length of a particle), (4) 

where the maximum length of a particle is either the diameter of the smallest 

circumscribed sphere of an irregularly shaped particle (e.g., Saito et al., 2021) or the 

maximum dimension of a regular nonspherical particle (e.g., Yang et al., 2013).  For 

simplicity, we define 𝑟g as the radius of the smallest circumscribed sphere of a particle 

throughout this paper.   

b. Shape descriptors for nonspherical particles
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The present definition of the macroscopic particle shape is based on the geometric 

characteristics that primarily determine the 𝑣 and 𝑎 of a particle.  The degree of 

sphericity Ψ is a dimensionless parameter describing the resemblance of the particle 

shape to a sphere.  It is determined by 𝑣 and the surface area 𝑠 of a particle (Wadell, 

1935).  However, for complex concave particles, 𝑠 cannot be easily quantified.  Saito and 

Yang (2021) defined the degree of effective sphericity through expanding Ψ by 

substituting 𝑠 = 4𝑎 based on the random orientation assumption for a convex particle 

(Vouk, 1948) as 

Ψe =
𝜋

1
3(6𝑣)

2
3

4𝑎
, (5) 

where it satisfies Ψe = Ψ for convex particles.  For simplicity, we omit subscript e in the 

following text, and therefore Ψ should be regarded as the degree of effective sphericity.   

Other parameters that describe the geometric properties of nonspherical particles 

are the volume ratio 𝑉r and area ratio 𝐴r (Heymsfield and Miloshevich, 2003) relative to 

those of the smallest circumscribed sphere of a particle and the smallest circle of an 

average projected particle, respectively, as follows: 

𝑉r =
3𝑣

4𝜋𝑟g
3, (6) 

𝐴r =
𝑎

𝜋𝑟g
2, (7) 

where Eq. (6) is often multiplied by the solid ice density and used as the effective ice 

density (Heymsfield et al., 2004). 

c. Theoretical relationship among size descriptors

A dimensionless coefficient can convert a particle size among the four size 

descriptors for nonspherical particles.  From Eqs. (1–7), the conversion of the particle 

size from one size descriptor 𝑝 to another 𝑞 for an arbitrary nonspherical particle is 

obtained through 

𝑞 = 𝛼pq𝑝,         (8) 

where a set of coefficients 𝛼pq for all conversions is tabulated in Table 1.  

Table 1. Coefficients 𝛼 for the conversion of a particle size from one size descriptor (column heading) 

to another (row heading) in Eq. (8), and physical variables (volume 𝑣 and projected area 𝑎) of a 

particle expressed with various size descriptors. 
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Conversion from 

Conversion to 𝑟v 𝑟a 𝑟g 𝑟e

𝑟v 1 Ψ
1
2 Ψ−1 (

𝑉r

𝐴r
) Ψ−1

𝑟a Ψ−
1
2 1 Ψ−

3
2 (

𝑉r

𝐴r
) Ψ−

3
2

𝑟g Ψ (
𝑉r

𝐴r
)

−1

Ψ
3
2 (

𝑉r

𝐴r
)

−1

1 (
𝑉r

𝐴r
)

−1

𝑟e Ψ Ψ
3
2 (

𝑉r

𝐴r
) 1 

𝑣 4

3
𝜋𝑟v

3
4

3
𝜋Ψ

3
2𝑟a

3
4

3
𝜋𝑉r𝑟g

3
4

3
𝜋Ψ−3𝑟e

3

𝑎 𝜋Ψ−1𝑟v
2 𝜋𝑟a

2 𝜋𝐴r𝑟g
2 𝜋Ψ−3𝑟e

2

The coefficients are mainly described by Ψ, which ranges from 0 < Ψ < 1 for 

nonspherical particles.  From Table 1 and the definition of 𝑟g, the size descriptors satisfy a 

relation of 𝑟e < 𝑟v < 𝑟a < 𝑟g, because Ψ𝑐 < 1 for any 𝑐 > 0 and vice versa.  In addition,

the analytical expressions of 𝑣 and 𝑎 for a nonspherical particle described with each size 

descriptor are similar to those for a sphere, but multiplied by a coefficient including Ψ, 𝑉r, 

or 𝐴r.    

3. A Brief Review of Size Distributions

a. General properties of size distributions

A PSD is defined as the total amount of a physical variable 𝑥 of particles per unit 

volume of the air 
𝑑𝑥(𝑝)

𝑑𝑝
𝑑𝑝 whose size 𝑝 falls within an infinitesimal range of particle size 

[𝑝, 𝑝 + 𝑑𝑝] (e.g., PH11). The particle size bin intervals can be logarithmic [ln 𝑝 , ln 𝑝 +

𝑑 ln 𝑝].  The physical variable of particles can be the number, projected area, or volume 

concentration.  Also, the particle size can be defined by particle radius, diameter, or 

anything that gives a unique size-descriptive quantity.  

PSDs in terms of the number, projected area, and volume concentrations with 

linear or logarithmic size intervals are interconvertible from the fact that 𝑑 ln 𝑝 =
1

𝑝
𝑑𝑝,

described (e.g., Dubovik et al., 2006) as 
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𝑑𝑁(𝑝)

𝑑𝑝
=

1

𝑝

𝑑𝑁(𝑝)

𝑑 ln 𝑝
, (9) 

𝑑𝐴(𝑝)

𝑑𝑝
=

1

𝑝

𝑑𝐴(𝑝)

𝑑 ln 𝑝
= 𝑎(𝑝)

𝑑𝑁(𝑝)

𝑑𝑝
, (10) 

𝑑𝑉(𝑝)

𝑑𝑝
=

1

𝑝

𝑑𝑉(𝑝)

𝑑 ln 𝑝
= 𝑣(𝑝)

𝑑𝑁(𝑝)

𝑑𝑝
. (11) 

The integrated physical quantities over a PSD are described as follows: 

𝑁T = ∫
𝑑𝑁(𝑝)

𝑑𝑝

∞

0
𝑑𝑝, (12) 

𝐴T = ∫ 𝑎(𝑝)
𝑑𝑁(𝑝)

𝑑𝑝

∞

0
𝑑𝑝, (13) 

𝑉T = ∫ 𝑣(𝑝)
𝑑𝑁(𝑝)

𝑑𝑝

∞

0
𝑑𝑝, (14) 

𝑀𝑖 = ∫ 𝑝𝑖 𝑑𝑁(𝑝)

𝑑𝑝

∞

0
𝑑𝑝, (15) 

where 𝑁T, 𝐴T, and 𝑉T are the total number, total projected area, and total volume 

concentration, respectively; and 𝑀𝑖 is the i-th moment of a given PSD in terms of the 

number concentration.   

b. Common size distributions for spherical particles

A PSD formula for spherical particles originated from HT74, which was 

motivated to minimize the number of governing parameters of PSD to facilitate 

inversions of scattering measurements.  One of the two essential PSD parameters is the 

effective radius 〈𝑅eff〉 (angle brackets are used to avoid confusion with the effective

radius of a single particle 𝑟e), defined as a particle radius weighted with the particle 

projected area over a PSD, because the amount of the scattered light by a particle is 

nearly proportional to the projected area of a particle for size parameters far beyond the 

Rayleigh scattering regime (e.g., 𝑘𝑟 > 5).  If 𝑟 is the radius of a sphere, then 〈𝑅eff〉 is

described as (HT74):  

〈𝑅eff〉 =
∫ 𝑟𝜋𝑟2𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

∫ 𝜋𝑟2𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

=
∫ 𝑟3𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

∫ 𝑟2𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

=
𝑀3

𝑀2
, (16) 

which can also be expressed as the ratio of the third moment to the second moment of a 

𝑑𝑁 𝑑𝑟⁄  for spherical particles.  Similarly, the effective variance of a PSD 〈𝑉eff〉, a

dimensionless parameter as a measure of a PSD width, is defined as 
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〈𝑉eff〉 =
∫ (𝑟−〈𝑅eff〉)2𝜋𝑟2𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

〈𝑅eff〉
2 ∫ 𝜋𝑟2𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

.  (17) 

Among various PSDs proposed and used for atmospheric science applications, the log-

normal distribution (LND) and the gamma distribution (GD) are the two major PSDs 

used for aerosol (e.g., Nakajima et al., 1996) and ice clouds (e.g., Heymsfield et al., 

2013), respectively.   

1) LOG-NORMAL DISTRIBUTION

The analytical PSD expression in terms of the LND number concentration is 

described as  

𝑑𝑁(𝑟)

𝑑𝑟
=

1

𝑟

𝑁T

ln 𝑆√2𝜋
exp [−

1

2
(

ln 𝑟−ln 𝑟̂N

ln 𝑆
)

2

], (18) 

where 𝑟̂x and 𝑆 are the median particle radius and geometric standard deviation of the 

PSD in terms of a physical variable of particles 𝑥, respectively.  The i-th moment of the 

log-normal PSD in terms of the number concentration is given by 

𝑀𝑖 = 𝑟̂N
𝑖 exp [

𝑖2

2
ln2 𝑆].        (19)

From Eqs. (10–11, 18–19), the log-normal PSDs in terms of the projected area and 

volume concentrations are written as 

𝑑𝐴(𝑟)

𝑑𝑟
=

1

𝑟

𝐴T

ln 𝑆√2𝜋
exp [−

1

2
(

ln 𝑟−ln 𝑟̂A

ln 𝑆
)

2

], (20) 

𝑑𝑉(𝑟)

𝑑𝑟
=

1

𝑟

𝑉T

ln 𝑆√2𝜋
exp [−

1

2
(

ln 𝑟−ln 𝑟̂V

ln 𝑆
)

2

], (21) 

where 

𝐴T = 𝜋𝑟̂N
2𝑁Texp[2 ln2 𝑆], (22) 

𝑉T =
4

3
𝜋𝑟̂N

3𝑁Texp [
9

2
ln2 𝑆],       (23)

𝑟̂A = 𝑟̂Nexp[2 ln2 𝑆], (24) 

𝑟̂V = 𝑟̂Nexp[3 ln2 𝑆], (25) 

and 𝑆 is invariant through these conversions.  The effective radius and variance for the 

log-normal PSD are derived by substituting Eq. (18) into Eqs. (16–17) as 

〈𝑅eff〉 = 𝑟̂Nexp [
5

2
ln2 𝑆], (26) 

〈𝑉eff〉 = exp[ln2 𝑆] − 1. (27)
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As a similar analog of LND, a multimodal LND (e.g., Ahmad et al., 2010) can be 

described with a superimposed set of multiple LNDs through defining ratios of the 

physical variables among each mode of a PSD.  

2) GAMMA DISTRIBUTION

Similarly, the gamma PSD in terms of the number concentration is described as 

𝑑𝑁(𝑟)

𝑑𝑟
=

𝑁TΛ𝜇N

Γ(𝜇N)
𝑟𝜇N−1exp[−Λ𝑟], (28) 

where Γ(𝜇x) is the complete gamma function; Λ and 𝜇x are the slope and dispersion

parameters of the PSD in terms of a physical variable of particles 𝑥, respectively.  The i-

th moment of the gamma PSD in terms of the number concentration is  

𝑀𝑖 =
𝑁TΛ−𝑖

𝜇N
∏ (𝜇N + 𝑗)𝑖

𝑗=0 . (29) 

The gamma PSDs in terms of the projected area and volume concentrations are derived 

from Eqs. (10–11, 28–29) as 

𝑑𝐴(𝑟)

𝑑𝑟
=

𝐴TΛ𝜇A

Γ(𝜇A)
𝑟𝜇A−1exp[−Λ𝑟], (30) 

𝑑𝑉(𝑟)

𝑑𝑟
=

𝑉TΛ𝜇V

Γ(𝜇V)
𝑟𝜇V−1exp[−Λ𝑟], (31) 

where 

𝐴T = 𝜋Λ−2𝑁T ∏ (𝜇N + 𝑖)1
𝑖=0 , (32) 

𝑉T =
4𝜋

3
Λ−3𝑁T ∏ (𝜇N + 𝑖)2

𝑖=0 ,       (33)

𝜇A = 𝜇N + 2, (34) 

𝜇V = 𝜇N + 3, (35) 

and Λ is unchanged through these conversions.  The effective radius and variance for the 

gamma PSD are  

〈𝑅eff〉 =
𝜇N+2

Λ
, (36) 

〈𝑉eff〉 =
1

𝜇N+2
. (37) 

According to HT74, Eq. (28) can be rewritten as 

𝑑𝑁(𝑟)

𝑑𝑟
= 𝑁0𝑟

1−3〈𝑉eff〉

〈𝑉eff〉 exp [−
1

〈𝑅eff〉〈𝑉eff〉
𝑟], (38) 

where an intercept 𝑁0 is 
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𝑁0 =
𝑁T(

1

〈𝑅eff〉〈𝑉eff〉
)

1−2〈𝑉eff〉

〈𝑉eff〉

Γ(
1−2〈𝑉eff〉

〈𝑉eff〉
)

. (39) 

A particular case of GD includes a power-law distribution (e.g., Junge, 1955) 

useful for aerosol PSD by applying Λ = 0 to Eq. (28). Note that the moment of a power-

law distribution and GD with 𝜇N ≤ 0 can be obtained by specifying a finite particle size 

range (e.g., PH11).  

4. Theoretical Conversions of Size Distributions

Let a PSD be rewritten as a generalized form 
𝑑𝑥(𝑝)

𝑑𝑝
, where 𝑥(𝑝) is a physical 

variable (i.e., 𝑁, 𝐴, or 𝑉) of arbitrary nonspherical particles expressed with a particle size 

descriptor 𝑝 (i.e., 𝑟v, 𝑟a, 𝑟g, or 𝑟e).  To simplify the problem, here we begin with a 

theoretical derivation of the PSD interconversions in the case of a size-invariant particle 

shape that is a common assumption for cloud–aerosol remote sensing applications (e.g., 

Platnick et al., 2016; Lee et al., 2017).  We consider a conversion of a PSD from 
𝑑𝑥(𝑝)

𝑑𝑝

into 
𝑑𝑦(𝑞)

𝑑𝑞
in terms of another physical variable of particles 𝑦 expressed with another 

particle size descriptor 𝑞.  As physical variables of particles and size descriptors are 

interconvertible (Eqs. 8–14 and Table 1), we let these variables be 𝑥(𝑦) and 𝑝(𝑞).  The 

conversions of PSDs can be achieved by solving  

𝑑𝑦(𝑞)

𝑑𝑞
=

𝑑𝑥𝑝{𝑦𝑝[𝑝(𝑞)]}

𝑑𝑝

𝑑𝑦𝑝

𝑑𝑥𝑝

𝑑𝑝

𝑑𝑞
, (40) 

where 
𝑑𝑦𝑝

𝑑𝑥𝑝
 is a derivative of a physical variable with respect to another physical variable 

expressed with size descriptor 𝑝, and 
𝑑𝑝

𝑑𝑞
 is a derivative of a referenced size descriptor 

with respect to another. 

a. Log-normal distributions

Solving Eq. (40) in conjunction with log-normal PSDs, we have 

𝑑𝑦(𝑞)

𝑑𝑞
=

1

𝑞

𝑦T,q

ln 𝑆√2𝜋
exp [−

1

2
(

ln 𝑞−ln 𝑞̂y

ln 𝑆
)

2

], (41)
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where new parameters 𝑦T,q and 𝑞̂y are expressed with a set of old parameters 𝑥T,p and 𝑝̂x.

A complete set of the parameters for PSD conversions among physical variables (𝑁, 𝐴, 

and 𝑉) and size descriptors (𝑟v, 𝑟a, 𝑟g, and 𝑟e) is tabulated in Table 2.   

Table 2.  A complete set of the coefficients for interconversions of log-normal PSDs from one 

(column heading) to another (row heading) in Eq. (41). 

Parameters in 

the target 

LND 

Parameters in the source LND 

𝑑𝑁

𝑑𝑝

𝑑𝐴

𝑑𝑝

𝑑𝑉

𝑑𝑝

𝑁T,p 𝐴T,p 𝑉T,p

𝑑𝑁

𝑑𝑞

𝑁T,q 𝑁T,p 𝜋𝑝̂A
−2𝛼pa

−2𝐴T,pexp[2 ln2 𝑆] 3

4𝜋
𝑝̂V

−3𝛼pv
−3𝑉T,pexp [

9

2
ln2 𝑆]

𝑑𝐴

𝑑𝑞

𝐴T,q 𝜋𝑝̂N
2 𝛼pa

2 𝑁T,pexp[2 ln2 𝑆] 𝐴T,p 3

4
𝑝̂V

−1𝛼pe
−1𝑉T,pexp [

1

2
ln2 𝑆]

𝑑𝑉

𝑑𝑞

𝑉T,q
4

3
𝜋𝑝̂N

3 𝛼pv
3 𝑁T,pexp [

9

2
ln2 𝑆]

4

3
𝑝̂A𝛼pe𝐴T,pexp [

1

2
ln2 𝑆]

𝑉T,p

𝑝̂N 𝑝̂A 𝑝̂V 

𝑑𝑁

𝑑𝑞
𝑞̂N 𝛼pq𝑝̂

N 𝛼pq𝑝̂
A

exp[−2 ln2 𝑆] 𝛼pq𝑝̂
V

exp[−3 ln2 𝑆]

𝑑𝐴

𝑑𝑞
𝑞̂A 𝛼pq𝑝̂

N
exp[2 ln2 𝑆] 𝛼pq𝑝̂

A 𝛼pq𝑝̂
V

exp[− ln2 𝑆]

𝑑𝑉

𝑑𝑞
𝑞̂V 𝛼pq𝑝̂

N
exp[3 ln2 𝑆] 𝛼pq𝑝̂

A
exp[ln2 𝑆] 𝛼pq𝑝̂

V

The striking feature in the interconversions of PSDs is that the conversion of the 

median radius is similar to those for spherical cases but multiplied by coefficient 𝛼pq as 

in Eq. (8) for a single particle case.  The 𝑦T,q conversion formulas are also similar to 

those for spherical cases as partly described in Eqs. (20–25) but include the coefficient 

𝛼pa
±2 for conversions between the number and projected area concentrations, 𝛼pv

±3 between

the number and volume concentrations, and 𝛼pe
±1 between the projected area and volume

concentrations, respectively.   

b. Gamma distributions

Similarly, the interconversions of GDs can be achieved by solving Eq. (40) as 

𝑑𝑦(𝑞)

𝑑𝑞
=

𝑦T,qΛq
𝜇y

Γ(𝜇y)
𝑞𝜇y−1exp[−Λq𝑞], (42)
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where a set of new parameters 𝑦T,q, 𝜇y, and Λq can be obtained from a set of old

parameters 𝑥T,p 𝜇x, and Λp (Table 3).  Interestingly, the slope parameter is converted with 

Λq = Λp 𝛼pq⁄  for the conversions of the size descriptor from one (𝑝) to another (𝑞), which 

is independent of the conversions of the physical variable in PSD, while the dispersion 

parameter is independent of the size descriptor conversion, and their conversions follow 

the form of those for spherical particles partly described in Eqs. (34–35).  Similar to the 

LND cases, the physical variable conversions 𝑦T,q include the coefficients 𝛼pa, 𝛼pv, or 

𝛼pe depending on the physical variables involved in the conversions.  

Table 3.  Same as Table 2, except for gamma PSDs in Eq. (42).  

Parameters in 

the target GD 

Parameters in the source GD 

𝑑𝑁

𝑑𝑝

𝑑𝐴

𝑑𝑝

𝑑𝑉

𝑑𝑝

𝑁T,p 𝐴T,p 𝑉T,p

𝑑𝑁

𝑑𝑞

𝑁T,q 𝑁T,p
1

𝜋
𝛼pa

−2𝐴T,p Λp
2

1

∏ (𝜇A − 𝑖)2
𝑖=1

3

4𝜋
𝛼pv

−3𝑉T,pΛp
3

1

∏ (𝜇
V

− 𝑖)3
𝑖=1

𝑑𝐴

𝑑𝑞

𝐴T,q

𝜋𝛼pa
2 𝑁T,pΛp

−2 ∏(𝜇
N

+ 𝑖)

1

𝑖=0

𝐴T,p 3

4
𝛼pe

−1𝑉T,pΛp

1

(𝜇
V

− 1)

𝑑𝑉

𝑑𝑞

𝑉T,q 4

3
𝜋𝛼pv

3 𝑁T,pΛp
−3 ∏(𝜇

N
+ 𝑖)

2

𝑖=0

4

3
𝛼pe𝐴TpΛp

−1𝜇
A

𝑉T,p

𝜇
N

𝜇
A

𝜇
V

𝑑𝑁

𝑑𝑞
𝜇N 𝜇N 𝜇A − 2 𝜇V − 3

𝑑𝐴

𝑑𝑞
𝜇A 𝜇N + 2 𝜇A 𝜇V − 1

𝑑𝑉

𝑑𝑞
𝜇V 𝜇N + 3 𝜇A + 1 𝜇V

c. Radius-to-diameter conversions

Within the same type of size descriptor, a conversion of PSDs from the radius 

notation to the diameter notation requires (PH11) 

𝑑𝑁(𝑟)

𝑑𝑟
= 2

𝑑𝑁(
𝐷

2
)

𝑑𝐷
. (43)
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Therefore, the conversions for LND and GD in terms of the number concentrations are 

described by substituting Eq. (43) into Eqs. (18, 28) as 

𝑑𝑁(𝑟)

𝑑𝑟
=

2

𝐷

𝑁T

ln 𝑆√2𝜋
exp [−

1

2
(

ln 𝐷−ln 2𝑟̂N

ln 𝑆
)

2

], (44) 

𝑑𝑁(𝑟)

𝑑𝑟
=

2𝑁T(
Λ𝑟
2

)
𝜇N

Γ(𝜇N)
𝐷𝜇N−1exp [−

Λ𝑟

2
𝐷],     (45) 

where 𝐷̂N = 2𝑟̂N, 𝑆𝐷 = 𝑆𝑟, Λ𝐷 =
Λ𝑟

2
, and 𝜇N,D = 𝜇N,r through a conversion from 

𝑑𝑁(𝑟)

𝑑𝑟
 to

𝑑𝑁(𝐷)

𝑑𝐷
.  Based on the derived formulas in Sections 4a–c (Eqs. 41–45 and Tables 1–3), the 

ambiguity in the interconversions of PSDs for nonspherical particles can be overcome as 

long as the particle shape is size-invariant.   

d. Effective radius of nonspherical PSD

For nonspherical particles, there were extensive discussions on the definition of 

the effective radius for a specified PSD (e.g., Ebert and Curry, 1992; Liou, 1992; Fu, 

1996; Wyser and Yang, 1998) due to ambiguity about the particle “radius” in Eq. (16).  

For a PSD of nonspherical ice crystals, the following definition of the effective radius 

(Foot, 1988; hereinafter referred to as F88) has often been used:  

〈𝑅eff〉 =
3 ∫ 𝑣(𝑟)

𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

4 ∫ 𝑎(𝑟)
𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

, (46) 

which is mathematically equivalent to the original definition (Eq. 16) by HT74 in the 

case of spherical particles; in particular, substituting 𝑣(𝑟) =
4

3
𝜋𝑟3 and 𝑎(𝑟) = 𝜋𝑟2 into

Eq (46) gives exactly Eq. (16).  In addition, Eq (46) has no ambiguous nonspherical 

radius 𝑟 and thus is a useful definition of 〈𝑅eff〉 for nonspherical particles.  However, as

Wyser (1998) argued, the definition of 〈𝑅eff〉 must be a projected-area weighted particle

radius according to the original concept of 〈𝑅eff〉 introduced by HT74.  From Eqs. (3, 16,

46), we find that 

〈𝑅eff〉 =
∫ 𝑟e(𝑟)𝑎(𝑟)

𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

∫ 𝑎(𝑟)
𝑑𝑁(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

, (47) 

which indicates that 𝑟e should be the radius of a single nonspherical particle being 

weighted with the projected area for 〈𝑅eff〉.  Hence, Eq. (47) can be considered a
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generalized form of the 〈𝑅eff〉 definition for arbitrary particles, as it satisfies the original

concept of 〈𝑅eff〉 by HT74 and is also consistent with Eq. (16) for spherical particles.

Numerous studies have applied Eq. (16) to a PSD of nonspherical particles for the 

〈𝑅eff〉 calculation, although the accuracy of Eq. (16) is guaranteed only for spherical

particles.  Therefore, we evaluate a potential systematic bias in 〈𝑅eff〉 for the PSD of

nonspherical particles with various size descriptors based on Eq. (16).  We take the ratio 

of 〈𝑅eff〉 defined in Eq. (16) 〈𝑅eff,HT74〉 to Eq. (46) 〈𝑅eff,F88〉 for a given size descriptor 𝑝,

and we have 

〈𝑅eff,HT74〉

〈𝑅eff,F88〉
= 𝛼ep, (48) 

where 𝛼ep is a conversion coefficient from the effective radius to the given size 

descriptor 𝑝, as listed in Table 1.  This mathematical analysis indicates that the two 

effective radius definitions systematically deviate from each other for nonspherical 

particles with Ψ < 1 and 
𝑉r

𝐴r
< 1.

Figure 1 illustrates the systematic 〈𝑅eff〉 biases of nonspherical particles defined as

(〈𝑅eff,HT74〉 − 〈𝑅eff,F88〉) 〈𝑅eff,F88〉⁄  with various size descriptors.  Typical aerosol and ice

crystal models are also shown in Fig. 1, including the droxtal (Yang et al., 2003), the 

hexagonal column with an aspect ratio of unity, irregular hexahedral ensemble (Saito et 

al., 2021), and 8-column aggregate (Yang et al., 2013).  For size descriptors 𝑟v and 𝑟a, the 

systematic biases in 〈𝑅eff〉 by HT74 for nonspherical particles are proportional to Ψ−
3

2 and 

Ψ−1, respectively.  In addition, the bias for size descriptor 𝑟g is proportional to (
𝑉r

𝐴r
)

−1

>

1. Therefore, Eq. (16) substantially overestimates 〈𝑅eff〉 for typical ice crystals and

aerosol models other than a droxtal, for which Eq. (16) leads to a moderate positive 〈𝑅eff〉

bias as it is a quasi-spherical shape.  On the other hand, using Eq. (16) for nonspherical

particles with size descriptor 𝑟e does not induce a systematic bias in 〈𝑅eff〉, which

corroborates the validity of Eq. (47).  Thus, 〈𝑅eff〉 must be derived from either the F88

definition (Eq. 46) or the HT74 definition with a size descriptor of 𝑟e for a PSD of

arbitrary nonspherical particles (Eq. 47).
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Fig. 1.  Effective radius biases among size descriptors due to applying Eq. (16) for nonspherical 

particles. Example particle shape models include droxtal, compact hexagonal column, hexahedral 

ensemble, and 8-column aggregate used as a particle shape model for MODIS Collection 6 (C6). 

According to Eq. (46), we can obtain PSD parameters as a function of 〈𝑅eff〉.  For

LND, the median radius 𝑝̂x is described as  

𝑝̂N = 𝛼pe〈𝑅eff〉exp [−
5

2
ln2 𝑆],      (49)

and 𝑝̂A and 𝑝̂V are easily obtained from Table 2.  For GD, the slope parameter Λp is 

obtained from Eq. (42, 46) and Table 3 as  

Λp =
𝛼pe

〈𝑅eff〉〈𝑉eff〉
.  (50) 

e. Example interconversions of nonspherical PSDs

Example conversions of nonspherical mineral dust PSDs are performed using 

LNDs with a geometric standard deviation of 𝑆 = 2.0 (Reid et al., 2003b).  Two different 

particle shapes obtained from irregular hexahedral ensemble models with Ψ = 0.695 

(irregular model) and Ψ = 0.785 (compact model) are used for the PSD conversions 

(Saito et al., 2021).  We consider two original PSDs with 〈𝑅eff〉 = 1.0 µm and 𝑉T = 800

µm3 cm-3 for Case A, and 𝑟̂g,N = 0.8 µm and 𝑁T = 300 cm-3 for Case B.

Figure 2 shows the interconversions of PSDs for two nonspherical models.  Case 

A corresponds to numerical simulations of atmospheric cloud-aerosol fields, as a typical 
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predicted quantity of atmospheric particles is the particle mass mixing ratio proportional 

to 𝑉T.  Depending on the size descriptor, the peaks of PSDs (i.e., 𝑝̂x) deviate from each 

other model by a factor of the ratio of 𝛼pe between two nonspherical models according to 

Eq. (49).  The two nonspherical models have identical PSDs for 𝑑𝐴 𝑑 ln 𝑟e⁄  and

𝑑𝑉 𝑑 ln 𝑟e⁄  (Fig. 2h), as the original PSDs have the same 〈𝑅eff〉 (Fig. 2g).  Also, all PSDs

show a consistent 𝐴T, as 〈𝑅eff〉 and 𝑉T are consistent for Case A.   𝑁T is systematically

larger for the compact model (Ψ = 0.785) than for the irregular model (Ψ = 0.695) by a 

factor of the cube of the 𝛼pv ratio, or (0.785 0.695⁄ )3 ≈ 1.441 according to Table 1.

Case B is typical for the in-situ measurements of PSDs using a Differential 

Mobility Particle Sizer (e.g., Schladitz et al., 2009).  The PSDs converted from the 

original PSD 𝑑𝑁 𝑑 ln 𝑟g⁄  to the other size descriptors show a systematic shift of 𝑝̂x toward

smaller sizes using the irregular model than the compact model.  In addition, these PSDs 

also show systematically larger 𝐴T and 𝑉T for the compact model, compared to the 

irregular model, by a factor of the square of the 𝛼pa ratio and the cube of the 𝛼pv ratio, 

respectively (see Table 2).  This inconsistency was also suggested by PH11, which shows 

marked differences among PSD parameterizations of snow with the same snow water 

content.  However, a major point relevant to this paper is that converted PSDs 𝑑𝑌 𝑑 ln 𝑞⁄  

can differ among nonspherical particle models even though the original PSDs 𝑑𝑋 𝑑 ln 𝑝⁄  

among these models are identical, as demonstrated in Fig. 2.  In addition, the deviations 

of PSDs can be analytically derived for arbitrary nonspherical particles with coefficient 

𝛼, as specified in Tables 1–3.  
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Fig. 2.  Converted log-normal PSDs in terms of (blue) the number, (green) projected area, and 

(yellow) volume concentrations with respect to the size descriptors of (a-b) the volume-equivalent 

spherical radius, (c-d) projected area-equivalent spherical radius, (e-f) geometric radius, and (g-h) 

effective radius.  Solid and dashed lines are for the irregular and compact models, respectively. The 

original PSDs are 𝑑𝐴 𝑑 ln 𝑟e⁄  for Case A and 𝑑𝑉 𝑑 ln 𝑟e⁄  for Case B.

f. Example analysis of in-situ measured nonspherical PSDs

We performed another example analysis of ice cloud PSDs using airborne in-situ 

observations compiled by Heymsfield et al. (2013), consisting of 78 flights among 10 

observational campaigns targeting ice clouds.  In each airborne observation, an ice cloud 

PSD is fitted with a gamma PSD using the maximum diameter as the size descriptor.  The 

dataset contains the slope parameter, dispersion parameter, and intercept in addition to 

meteorological variables such as temperature.  We exclude the measured PSDs with 
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temperatures warmer than -40°C from the analysis to avoid potential biases by inclusion 

of liquid droplets.  In total, we analyze 14,405 PSDs to estimate 〈𝑅eff〉 and 〈𝑉eff〉 of ice

clouds from in-situ measured PSDs. 

Figure 3 shows the occurrence density of 〈𝑅eff〉 and 〈𝑉eff〉 of ice clouds.  For

gamma PSDs, 〈𝑉eff〉 can be estimated from the dispersion parameters through Eq. (37),

showing a median value of ~0.26 that is larger than that for liquid clouds (~0.1; Miles et 

al., 2000).  The effective radius is obtained from Eq. (36) for a gamma PSD (Eq. 38) 

originally derived from HT74, as shown in Fig. 3b.  Significantly larger 〈𝑅eff〉 values,

ranging mostly from 80–200 µm, are obtained due to an assumption of spherical particles 

in Eq. (38).  We estimate 〈𝑅eff〉 from the same dataset using Eq. (50) under the

assumption of the MODIS C6 ice model as a nonspherical ice crystal shape, showing a 

reasonable range of 〈𝑅eff〉 30–70 µm, which is fairly consistent with climatology inferred

from spaceborne observations (Platnick et al., 2016).  Therefore, an incorporation of the 

particle nonsphericity into in-situ measured PSD analysis is essential. 

Fig. 3.  (a) A histogram of the effective variance, (b-c) two-dimensional histograms of the effective 

radius and variance of ice clouds derived from in-situ measured particle size distributions based on 

Eq. (36) originally derived by HT74 and Eq. (50) that incorporates the nonspherical shape effects, 

respectively.  

g. A practical form for an arbitrary PSD with size-dependent nonspherical particles

Analytical interconversions of two PSDs derived in the previous sections rely on 

the assumption of size-invariant particle shapes.  In reality, the size distributions of 

atmospheric particles may not always be fitted well with these analytical PSD formulas.  

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-22-0086.1. 
Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/05/22 07:36 PM UTC



20 

The in-situ measurements of PSDs are depicted using a limited number of discretized size 

bins (e.g., Reid et al., 2003a).  In addition, atmospheric particles show size-dependent 

particle shapes, as confirmed by in-situ observations of ice crystals (e.g., Ono, 1970; 

Lawson et al., 2019) and mineral dust particles (e.g., Reid et al., 2003b).  To incorporate 

these observational PSDs of size-dependent nonspherical atmospheric particles, more 

practical formulation of the interconversions of arbitrary PSDs is desirable.   

Let an arbitrarily discretized PSD be 
Δ𝑥𝑖

Δ𝑝𝑖
, where Δ𝑥𝑖 is the total amount of a

physical variable (i.e., 𝑁, 𝐴, or 𝑉) of nonspherical particles whose size 𝑝 falls within 

particle size bin i (indicated as subscript i), [𝑝min,𝑖, 𝑝max,𝑖] with a finite bin width of Δ𝑝𝑖 =

𝑝max,𝑖 − 𝑝min,𝑖. We consider a conversion of PSD from 
Δ𝑥𝑖

Δ𝑝𝑖
 into 

Δ𝑦𝑖

Δ𝑞𝑖
.  The particle shape

(i.e., Ψ, 𝑉r, and 𝐴r) varies across size bins but is assumed to be homogeneous within a 

size bin.  Also, the number concentration within a size bin is assumed to be 

homogeneous.  The conversions of an arbitrary PSD in size bin i can be given as 

Δ𝑦𝑖

Δ𝑞𝑖
= 𝑓xy,𝑖𝛼pq,𝑖

−1 Δ𝑥𝑖

Δ𝑝𝑖
, (51) 

where a coefficient for the interconversions of a physical variable from 𝑥 to 𝑦 for a PSD 

𝑓xy,𝑖 obeys 

𝑓yx,𝑖 = 𝑓xy,𝑖
−1,         (52)

𝑓NA,𝑖 = ∫ 𝜋𝑝2𝛼pa,𝑖
2 𝑑𝑝

𝑝max,𝑖

𝑝min,𝑖
=

𝜋𝛼pa,𝑖
2

3
(𝑝max,𝑖

2 + 𝑝max,𝑖𝑝min,𝑖 + 𝑝min,𝑖
2 ), (53) 

𝑓NV,𝑖 = ∫
4

3
𝜋𝑝̃3𝛼pv,𝑖

3 𝑑𝑝
𝑝max,𝑖

𝑝min,𝑖
=

𝜋𝛼pv,𝑖
3

3
(𝑝max,𝑖

2 + 𝑝min,𝑖
2 )(𝑝max,𝑖 + 𝑝min,𝑖), (54) 

𝑓AV,𝑖 = 𝑓NV,𝑖𝑓NA,𝑖
−1 = 𝛼pe

(𝑝max,𝑖
2 +𝑝min,𝑖

2 )(𝑝max,𝑖+𝑝min,𝑖)

𝑝max,𝑖
2 +𝑝max,𝑖𝑝min,𝑖+𝑝min,𝑖

2 . (55) 

The above formulas would be useful particularly for converting in-situ measured PSDs 

from one to another form when collocated size-resolved particle shape measurements are 

available.  

5. The Impacts on the Optical Properties

Understanding the impact of a choice of the size descriptor on the simulations of 

the single-scattering properties of nonspherical particles is critical to radiative transfer 

applications.  The definition of size parameter 𝑘𝑟 is extended to a nonspherical particle 
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by replacing a radius of a sphere with a size descriptor of a nonspherical particle, where 

various size descriptors are arbitrarily selected in the literature.  A different size 

descriptor could affect the comparisons of the single-scattering properties among various 

nonspherical particles with the same size parameter value for investigating the impacts of 

particle shapes on the scattering properties.  This is because the volume, projected area, 

and these relations can be different among the nonspherical particle size descriptors.  

Hence, it is important to choose the best size descriptor for the size parameter that 

achieves the same optical size (hereinafter referred to as optically quasi-equivalent size) 

among various nonspherical particles.  An earlier study by GW99 suggests 𝑘𝑟e as the best 

size descriptor through a comparison of the scattering properties between spherical and 

nonspherical particles.  Here, we revisit the predefined four size descriptors for the size 

parameter definitions (𝑘𝑟v, 𝑘𝑟a, 𝑘𝑟g, and 𝑘𝑟e) and discuss a possible mechanism behind 

the optically quasi-equivalent size among nonspherical particles. 

a. Single-scattering properties

To determine the best size descriptor for the size parameter of a nonspherical 

particle, we compute the single-scattering properties of three nonspherical mineral dust 

particles, including compact, moderately, and severely irregular hexahedral particle 

models obtained from the TAMUdust2020 database (Saito et al., 2021; particle IDs 20, 

11, and 01, respectively).  The single-scattering property simulations of these 

nonspherical particles are performed with the Invariant-Imbedding T-matrix Method 

(IITM; Johnson, 1988; Bi et al., 2013) for geometric size parameter 𝑘𝑟g ≤ 75 and the 

Improved Geometric Optics Method (IGOM; Yang and Liou, 1996) for larger 𝑘𝑟g.  The 

complex refractive index of dust with the real part 𝑚r = 1.5 and the imaginary part 𝑚i =

0.001, typical in the shortwave, is selected for the evaluation of the optically quasi-

equivalent size.   

Figure 4 shows the single-scattering properties of these three nonspherical dust 

particles with size parameters ranging from 1–70 for these four size descriptors.  The 

extinction efficiency 𝑄ext of nonspherical particles has two striking features. First, peaks 

of 𝑄ext due to optical interference between diffracted and refracted waves of light by a 

particle appear at different size parameters among the size descriptors (Figs. 4a-d).  
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Second, the optical interference patterns tend to be coherent among the three 

nonspherical models with the 𝑘𝑟e size descriptor (Fig. 4d).  The single-scattering albedo 

(SSA; 𝜔) is also consistent among the three nonspherical particle models using 𝑘𝑟e (Fig. 

4h) compared to other size descriptors (Figs. 4e-g).  This implies that an optically quasi-

equivalent size for the three nonspherical particles is achieved using 𝑘𝑟e due to the 

consistent phase shift and light absorption by refracted waves in those nonspherical 

particles. The rest of this section is a detailed exploration of this implication, including 

tests involving other particle shapes and ice particles in addition to aerosols. 

Fig. 4.  (a-d) The extinction efficiency, (e-h) single-scattering albedo, and (i-l) asymmetry factor of 

nonspherical particles for size parameters 1-70 defined with (first column) the volume-equivalent 

spherical radius, (second column) projected-area-equivalent spherical radius, (third column) geometric 

radius, and (fourth column) effective radius.  Lines indicate three nonspherical dust particle models.  

Blue, yellow, and red color shades in (d) correspond to the range of the first, second, and third peaks 

of the extinction efficiency predicted with a modified anomalous diffraction theory. 

Therefore, a 𝑘𝑟e size parameter is the best choice for comparing the single-

scattering properties of different nonspherical particles with the same size parameter, 

which is consistent with GW99.  In other words, comparisons of the single-scattering 

property simulations among nonspherical particles based on other size descriptors could 

complicate the interpretation of the results, as the single-scattering property differences 

are associated with both size and shape differences.  The asymmetry factor 𝑔 exhibits 
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systematic differences for all size descriptor cases, including the 𝑘𝑟e cases that purely

show the sensitivity of 𝑔 to the particle shape.   

b. Possible physical rationale

We explore a possible theoretical rationale of the optically quasi-equivalent size 

achieved with 𝑘𝑟e for nonspherical particles.  To explain the coherent oscillation of 𝑄ext 

and consistent SSA for these nonspherical particles in a physics-based manner, we shall 

recall the anomalous diffraction theory (ADT) originally developed by Van de Hulst 

(1957) for optically soft particles (i.e., |𝑚𝑟 − 1| ≪ 1). In principle, ADT is not

applicable to typical atmospheric nonspherical particles when 𝑚𝑟 is not close to 1 

because of the assumption of the rectilinear propagation of the incident wave though the 

scattering particle.  However, the essential mechanism of the coherent oscillation of 𝑄ext 

in such particles as seen in Fig. 4 is quite similar to ADT (Bi and Gouesbet, 2022), except 

the optical interference between diffraction and transmitted waves propagating in the 

forward direction.   

Reformulating ADT in terms of the probability density of the geometric-path 

length (𝑙) of a randomly oriented particle (Xu et al., 2003; Yang et al., 2004), the 

extinction and absorption cross-sections are written as 

𝐶ext = 2𝑎 ∫ {1 − exp(−𝑘𝑙∗𝑚i) cos[𝑘𝑙∗(𝑚r − 1)]}ℎ(𝑙∗)𝑑𝑙∗∞

0
, (56) 

𝐶abs = 𝑎 ∫ [1 − exp(−2𝑘𝑙∗𝑚i)]ℎ(𝑙∗)𝑑𝑙∗∞

0
, (57) 

where ℎ(𝑙∗) is the geometric-path length distribution of a randomly oriented particle.  Xu

et al. (2003) assume that the geometric-path length distribution obeys the Gaussian 

distribution, 𝑁(𝜇, 𝜎), and solve Eqs. (56–57) by replacing the lower boundary of 𝑙∗ with

−∞ [see Eq. 10 in Xu et al. (2003)] as follows: 

𝐶ext = 2𝑎 − 2𝑎 cos[𝑘(𝑚r − 1)(𝜇 − 𝑘𝜎2𝑚i)] exp {−𝑘𝜇𝑚i −
𝑘2𝜎2[(𝑚r−1)2−𝑚i

2]

2
}, (58) 

𝐶abs = 𝑎{1 − exp[−2𝑘𝑚i(𝜇 − 𝑘𝜎2𝑚i)]}. (59) 

For a convex particle, the mean geometric-path length (𝑙)̅ is proportional to the 

ratio of the volume to the projected area of a particle (𝑙 ̅ = 𝑣 𝑎⁄ ), which is theoretically 

derived for diffusive media (Blanco and Foumier, 2003) and experimentally indicated for 

non-diffusive media (Davy et al., 2021).  From Eq. (3), we have 

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-22-0086.1. 
Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/05/22 07:36 PM UTC



24 

𝑙 ̅ =
4

3
𝑟e. (60) 

Based on the optical theorem, 𝐶ext is determined at the exact forward direction, 

where the diffracted and the second-order forward-transmitted rays (refracted twice at the 

entering and exit points on the surface of a particle) are dominant according to analysis 

with the Debye series expansion of the phase function of a nonspherical particle (Xu et 

al., 2010; Bi et al., 2018).  The mean geometric-path lengths of second-order transmitted 

rays (𝑙2̅) can be larger than 𝑙 ̅ because 𝑙 ̅ includes short geometric-ray paths originating 

from incident rays at large incident angles on the particle surface, which could be 

reflected or transmitted toward off-forward directions for particles with a sufficiently 

large 𝑚r.  The longest possible geometric-ray path length is obviously 2𝑟g = 2 (
𝑉r

𝐴r

)
−1

𝑟e ≥

2𝑟e, where the equivalence is satisfied for the spherical case.  For simplicity, we assume a 

possible range of 
4

3
𝑟e ≤ 𝑙2̅ ≤ 2𝑟e.  The standard deviation of the second-order transmitted

rays may depend on the particle geometry but is approximated as 
1

3
𝑙2̅ in this study.  Thus, 

based on Eqs. (58–59), 
4

3
≤ 𝑐2 ≤ 2, and ℎ(𝑙∗) = 𝑁 (𝑙2̅,

1

3
𝑙2̅), the extinction and 

absorption efficiencies are obtained as 

𝑄ext = 2 − 2 cos [(𝑚r − 1) (𝑐2𝑘𝑟e −
𝑐2

2𝑘2𝑟e
2𝑚i

9
)] exp {−𝑐2𝑘𝑟e𝑚i −

𝑐2
2𝑘2𝑟e

2[(𝑚r−1)2−𝑚i
2]

18
}, 

(61) 

𝑄abs = 1 − exp [−2𝑐2𝑘𝑟e𝑚i (1 −
𝑐2𝑘𝑟e𝑚i

9
)], (62) 

which indicates that both 𝑄ext and SSA [𝜔 = (𝑄ext − 𝑄abs) 𝑄ext⁄ ] are a function of 𝑘𝑟e.

Note that the amplitude of the 𝑄ext oscillation in Eq. (61) may be uncertain as the exact 𝑙2 

distribution is not considered.  However, the optical interference pattern should be 

roughly consistent as it is primarily determined by the mean optical path of rays that 

cause interference.   

The peaks of the optical interference appear at size parameters where the 

derivative of Eq. (61) with respect to 𝑘𝑟e satisfies 
𝑑𝑄ext

𝑑(𝑘𝑟e)
= 0.  With the uncertainty range

of 𝑙2̅, the predicted 𝑘𝑟e corresponding to the first three peaks based on Eq. (61) for the 

present dust models are 2.84–4.25, 5.72–8.58, and 8.67–13.01 as specified in Fig. 4d, 
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which are reasonably consistent with rigorously computed 𝑄ext for the three nonspherical

particles.     

c. The bulk optical properties

An arbitrary choice of the size descriptor should not numerically affect any 

quantities that are weighted with a PSD such as the bulk optical properties of 

nonspherical particles for the same PSD.  Let 
𝑑𝑁(𝑝)

𝑑𝑝
 be an original log-normal PSD and be 

convertible to 
𝑑𝐴(𝑞)

𝑑𝑞
.  The bulk extinction efficiency at a single wavelength is derived 

from a PSD with any size descriptor 𝑞 as  

〈𝑄ext〉 =
∫ 𝑄ext(𝑞)

𝑑𝐴(𝑞)

𝑑𝑞
𝑑𝑞

∞
0

∫
𝑑𝐴(𝑞)

𝑑𝑞
𝑑𝑞

∞
0

. (63) 

As an original PSD of 
𝑑𝐴(𝑞)

𝑑𝑞
 among size descriptors 𝑞 is the same PSD, the total projected 

area concentration and median radius of 
𝑑𝐴(𝑞)

𝑑𝑞
 are expressed with size descriptor 𝑝 as 

𝐴T,q = 𝜋𝑝̂N
2𝛼pq

2 𝑁Texp[2 ln2 𝑆] and 𝑞̂A = 𝛼pq𝑝̂Nexp[2 ln2 𝑆].

If 𝑞(𝑝) = 𝛼pq𝑝, then Eq. (63) can be reformulated as

〈𝑄ext〉 =
∫ 𝑄ext[𝑞(𝑝)]

𝑑𝐴[𝑞(𝑝)]

𝑑𝑞

𝑑𝑁𝑞

𝑑𝐴𝑞

𝑑𝑞

𝑑𝑝
𝑑𝑝

∞
0

∫
𝑑𝐴[𝑞(𝑝)]

𝑑𝑞

𝑑𝑁𝑞

𝑑𝐴𝑞

𝑑𝑞

𝑑𝑝
𝑑𝑝

∞
0

= ∫ 𝑄ext(𝑝)
𝑑𝑛(𝑝)

𝑑𝑝
𝑑𝑝

∞

0
, (64) 

where 
𝑑𝑛(𝑝)

𝑑𝑝
is a normalized log-normal PSD with a median radius of 𝑝̂Nexp[2 ln2 𝑆].

This mathematically proves that 〈𝑄ext〉 is identical for the same PSD with different size

descriptors.  This is valid not only for 〈𝑄ext〉 but also other bulk optical properties

including 〈𝜔〉, 〈𝑔〉, and 〈𝑃〉.  Thus, a choice of the size descriptor for the size parameter 

does not cause an error in the bulk optical property calculations, as long as the size 

descriptors of nonspherical particles are consistent between the size parameter for the 

single-scattering property simulation and a PSD. 

d. Optical quasi-equivalence

As discussed in Sections 5a–b, different nonspherical particles with an optically 

quasi-equivalent size show fairly consistent 𝑄ext and SSA.  It would be of interest to 

explore another group of different nonspherical particles that have quasi-equivalent 
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single-scattering properties among them, including 𝑔 and 𝑃 (hereinafter referred to as 

optical quasi-equivalence).  As it is practically difficult to simulate the scattering 

properties of a complex geometric particle using some light-scattering computational 

techniques, optical quasi-equivalence could be useful by modeling these scattering 

properties with a simpler geometric particle model.  This study examines the optical 

quasi-equivalence by comparing the single-scattering properties among three roughened 

ice crystal models.  

1) SURFACE ROUGHNESS MODELS

The degree of surface roughness is defined in terms of the variance (𝜎2) of the

two-dimensional (2D) Gaussian distribution of particle surface tilt angles (Cox and 

Munk, 1954; Yang and Liou, 1998), which describes the statistical distribution of the 

slope of a local planar face of a particle:  

𝑃(𝑍𝑥 , 𝑍𝑦) =
1

𝜋𝜎2 𝑒−[(𝑍𝑥
2+𝑍𝑦

2) 𝜎2⁄ ], (65) 

where 𝑍𝑥 = 𝜕𝑍 𝜕𝑥⁄  and 𝑍𝑦 = 𝜕𝑍 𝜕𝑦⁄  are the slopes of a local particle surface along two

axes orthogonal to the normal direction 𝑍 relative to the local planar particle surface.   

The surrogate surface roughness model is often used for light-scattering 

computations based on the geometric optics principle (Yang and Liou, 1998), which 

incorporates a random tilt of the particle surface in each surface interaction with a ray of 

light through the ray-tracing process in the light scattering computations (Fig. 5a).  A 

local particle surface is tilted based on the following two angles:  

𝜑local = 2𝜋𝜉1, (66) 

𝜃local = cos−1[1 (1 − 𝜎2 ln 𝜉2)⁄ ], (67) 

which obey the degree of surface roughness defined in Eq. (65) and two random numbers 

(𝜉1, 𝜉2) ∈ [0,1] that have uniform distributions.  Hence, the slopes of a local particle

surface are described as 𝑍𝑥 = 𝜕𝑍 𝜕𝑥⁄  and 𝑍𝑦 = 𝜕𝑍 𝜕𝑦⁄  in Eq. (65).

The geometric surface roughness model (Liu et al., 2013) is applicable to both 

semi-analytical and geometric optics light-scattering solvers, which explicitly consider 

the 3D geometry of a roughened particle surface as illustrated in Fig. 5b.  A regular ice 

crystal particle face is split into many microscale facets (𝑁facet), and each facet is 

randomly tilted based on the two angles equivalent to Eqs. (66–67), as described in Liu et 
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al. (2013).  Therefore, a random tilt of a microscopic facet of the particle surface obeys 

the degree of surface roughness through Eq. (65).  This study uses 𝑁facet = 40.  

Liu et al. (2014) developed an irregularly distorted hexagonal ensemble model to 

mimic a surface roughness effect on the single-scattering property computations (Fig. 

5c).  Each facet of a regular ice crystal is tilted based on the two angles (𝜑macro , 𝜃macro) 

equivalent to Eqs. (66–67), which alters a macroscopic shape of an ice crystal (referred to 

as an irregularly distorted ice crystal).  The single-scattering properties of a roughened ice 

crystal are computed with the ensemble of those irregularly distorted ice crystals as  

𝑄ext,ens =
∑ 𝑄ext,i𝑎𝑖

𝑁ens
𝑖

∑ 𝑎𝑖
𝑁ens
𝑖

, (68) 

𝜔ens =
∑ 𝜔i𝑄ext,i𝑎𝑖

𝑁ens
𝑖

∑ 𝑄ext,i𝑎𝑖
𝑁ens
𝑖

, (69) 

𝑔ens =
∑ 𝑔i𝜔i𝑄ext,i𝑎𝑖

𝑁ens
𝑖

∑ 𝜔i𝑄ext,i𝑎𝑖
𝑁ens
𝑖

,  (70) 

𝑃ens =
∑ 𝑃i𝜔i𝑄ext,i𝑎𝑖

𝑁ens
𝑖

∑ 𝜔i𝑄ext,i𝑎𝑖
𝑁ens
𝑖

, (71) 

where the number of ensemble members 𝑁ens = 50 is used in this study.  The irregularly 

distorted ice crystals have the same 𝑟e to achieve the optically quasi-equivalent size.   

As the random tilt process in these three roughness models obeys the same 

equation that is a function of the degree of surface roughness, these three roughness 

models can overall be mathematically comparable.  The difference among the three 

roughness models is the geometric scale of the surface roughness, where the surrogate 

roughness, geometric roughness, and irregularly distorted ensemble models account for 

infinitesimally small scale, 2𝑟g 𝑁facet⁄ -scale, and 2𝑟g-scale of roughness, respectively.
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Fig. 5.  An illustration of three ice crystal roughness models, including (a) surrogate roughness model, 

(b) geometric roughness model, and (c) irregularly distorted ensemble models for the case with 𝜎2 =

0.15.  (d-f) The extinction efficiencies and (g-i) the asymmetry factors of the three ice crystal 

roughness models for degrees of surface roughness of (left column) 0.03, (center column) 0.15, and 

(right column) 0.5. The light green shaded area shows the weighted standard deviation of 50 

irregularly distorted ensemble members. 

2) SINGLE-SCATTERING PROPERTY COMPARISONS

To examine consistency among the three ice crystal roughness models based on 

the geometric optics principles, we compute the single-scattering properties of these 

models with IGOM (Yang and Liou, 1996) at a wavelength of 0.65 µm and an ice 

refractive index of (𝑚r = 1.308, 𝑚i = 1.43𝑒−9). Figures 5d-i compare the single-

scattering properties among the roughness models for degrees of surface roughness 0.03, 

0.15, and 0.5.  The 𝑄ext of these three models are generally consistent for all surface 

roughness cases, which corroborates the optically quasi-equivalent size.  The amplitude 

of the 𝑄ext oscillation pattern is slightly smaller for the irregularly distorted ensemble 

model than for the other two roughness models.   

The asymmetry factor is almost identical among the three roughness models for 

the three roughness cases, except for the surrogate roughness model with 𝜎2 = 0.5 (Fig.

5i), where the asymmetry factor is systematically higher than the other two roughness 
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models.  This is because the random surface tilt procedure occasionally provides 

unphysical geometric relations between the incident ray and particle surface, which leads 

to a skewed 2D slope distribution of the particle surface (Hioki, 2018).  Noteworthily, the 

weighted standard deviation 𝜎𝑤 of the asymmetry factor increases with increasing degree 

of surface roughness for the irregularly distorted ensemble model, implying the 

significant sensitivity of the asymmetry factor to the macroscopic shape of a particle.  

Note that the uncertainty of the estimated ensemble-weighted optical properties is about 

𝜎𝑤 √𝑁ens⁄  according to the central limit theorem.

Figure 6 compares the full phase matrix elements of the three ice crystal 

roughness models for three surface roughness cases with a size parameter of 𝑘𝑟e = 150.  

The full phase matrix elements are almost identical for the 𝜎2 = 0.03 cases and fairly

consistent for the 𝜎2 = 0.15 cases among the three roughnesses, which demonstrate the

optical quasi-equivalence.  With 𝜎2 = 0.5, the three roughness models exhibit similar

angular distributions of the phase matrix elements but systematic deviations appear in a 

few scattering angle ranges, such as a systematically higher 𝑃11 at scattering angles 40–

60° with the ensemble model than the other models.  Interestingly, the weighted standard 

deviation of the phase matrix elements of the ensemble model is inhomogeneous along 

the scattering angle.  This indicates that the phase matrix elements at the scattering angles 

where 𝜎𝑤 is relatively larger are sensitive to the macroscopic particle shape, including, 

for instance, 10–30° and >120° for 𝑃11 and 40–160° for −𝑃12 𝑃11⁄  (van Diedenhoven et

al., 2012; Hioki et al., 2016).  Note that the large uncertainty of the quasi-backscattering 

properties is not discussed here as IGOM simulations at such backscattering angles (i.e., 

178°–180°) are inaccurate due to an inherent limitation.  
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Fig. 6.  Phase matrix elements of roughened ice crystal models with degree of surface roughness of 

(left column) 0.03, (center column) 0.15, and (right column) 0.5.  Each row corresponds to (a–c) P11, 

(d-f) -P12/P11, (g-i) P22/P11, (j-l) P33/P11, (m-o) P43/P11, and (p-r) P44/P11.  The size parameter 𝑘𝑟e is

150. The light green shaded area shows the weighted standard deviation of 50 irregularly distorted

ensemble members. 

Importantly, the consistency of 𝑃11 at quasi-forward scattering angles (i.e., 0°–1°) 

between the ensemble and other roughness models is not achieved, as clearly seen in 

Figs. 6a–c.  This is because 𝑃11 at the quasi-forward direction is mainly determined by 

diffraction where the scattering intensity is roughly a function of a particle projected area.  
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The projected area 𝑎ens and volume 𝑣ens of the ensemble model with particle size 𝑟e are

described, based on Table 1, as 

 𝑎ens =
1

𝑁ens
∑ 𝑎𝑖

𝑁ens
𝑖 = 𝜋Ψ̃

−3
𝑟e

2, (72) 

 𝑣ens =
1

𝑁ens
∑ 𝑣𝑖

𝑁ens
𝑖 =

4

3
𝜋Ψ̃

−3
𝑟e

3, (73) 

where the representative degree of sphericity of the ensemble model (Ψ̃) is 

Ψ̃−3 =
1

𝑁ens
∑ Ψ𝑖

−3𝑁ens
𝑖 . (74) 

As the random surface tilt process always gives lower Ψ𝑖 than Ψ of a regular hexagonal 

column, Ψ̃ < Ψ.  This implies that 𝑎ens and 𝑣ens are larger than 𝑎 and 𝑣 of other models 

by a factor of (Ψ Ψ̃⁄ )
3
, which becomes larger for larger 𝜎2.  In consequence, the forward

intensity is larger for a larger 𝜎2 for the ensemble model, as seen in Figs. 6a–c.  The

inconsistent geometric properties from the ensemble model indicated in Eqs. (72–74) 

need to be corrected for radiative transfer simulations, which is also suggested for 

spherical particles used as surrogates of nonspherical particles (GW99).  

6. Summary and Implications

This study investigated the impacts of different size descriptors on quantifying the 

physical and optical properties of atmospheric nonspherical particles.  Analytical 

expressions of the interconversions of PSD of nonspherical particles with various 

physical variables and size descriptors are derived for LND and GD (Eqs. 41–42, Tables 

2–3, and Fig. 2), which eliminate the ambiguity and potential errors in various 

downstream applications.  The interconversion formulas are similar to those for spherical 

particles (HT74), but involve coefficient 𝛼 (Table 1), which is a function of geometric 

parameters of nonspherical particles such as the degree of effective sphericity Ψ. 

Furthermore, using the HT74 definition induces a systematic bias in calculating the 

effective radius of nonspherical particles whose size is defined with size descriptors other 

than 𝑟e (Fig. 1).   

In addition, a size descriptor 𝑟e can achieve optically quasi-equivalent particle 

sizes among different nonspherical particles that have consistent 𝑄ext and SSA.  The 

physical background of the optically quasi-equivalent size of arbitrary nonspherical 

particles is suggested with the modified ADT (Xu et al., 2003; Yang et al., 2004).  
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Furthermore, we explored nonspherical particle models that achieve optical quasi-

equivalence using the roughened hexagonal ice models in the geometric optics regime. 

The single-scattering properties of three roughened ice crystal models are most consistent 

for degrees of surface roughness up to 0.15 and fairly consistent for severely roughened 

cases, with the exception of the quasi-forward phase function.  This implies that it is 

possible to mimic the single-scattering properties of a geometrically complex particle 

with a simple geometric particle model. 

The present findings suggest that Earth-atmosphere system models, cloud–aerosol 

remote sensing, and analyses of in-situ measured atmospheric particles can be further 

improved by rigorously incorporating nonspherical particle effects, as partly 

demonstrated in Sections 4e–f.  For Earth-system model simulations, the analytical PSD 

interconversion of nonspherical particles gives exact physical variables required in 

different modules.  For example, an aerosol PSD in terms of volume predicted from a 

two-moment bulk microphysics model can be easily converted into the number 

concentration in various particle size ranges without error, which is important to predict 

the ice nucleating particle concentration (e.g., DeMott et al., 2010).  PSDs can also be 

converted into the extinction coefficient for radiative transfer calculations.   For the 

analyses of in-situ measured PSDs, nonspherical particle effects can be incorporated to 

obtain a unified PSD by combining PSDs measured with different instruments that detect 

particle sizes based on different size descriptors (e.g., Knopf et al., 2021).  

PSDs and associated quantities obtained/computed among Earth system models, 

remote sensing techniques, and in-situ measurements can be made comparable through 

interconversions that consider nonspherical particle characteristics.  This is important for 

validating numerical models or remotely sensed atmospheric particle properties using in-

situ observations.  Furthermore, the optically quasi-equivalent size of a nonspherical 

particle suggests that the effective radius should be chosen as a retrieval parameter of 

particle size rather than other size-representing variables (such as a median radius 𝑟̂N) for 

the remote sensing of atmospheric nonspherical PSDs.  This is particularly important if 

the retrieval variables include some particle shape characteristics (e.g., Herman et al. 

2005; Lyapustin et al., 2011a, 2011b) due to the orthogonality of the sensitivity to the 

particle size and shape variables.  
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Thus, the generalization of the PSD interconversions for nonspherical particles 

shall eliminate the uncertainties associated with nonspherical particle characteristics in 

many applications involving atmospheric particles.  Incorporating this PSD 

interconversion can be done with little effort, as coefficient 𝛼pq primarily governs the 

interconversions, and the coefficients for the interconversion are listed completely in 

Tables 2-3. 
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