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ABSTRACT

This study analyzes factors affecting the predictability of seasonal-mean precipitation over the tropical

Indian Ocean. The analysis focuses on the contributions from the local sea surface temperature (SST)

forcing in the Indian Ocean, the remote SST forcing related to ENSO in the tropical eastern Pacific, and the

role of local air–sea coupling. To understand the impacts of the individual factors, the prediction skill over

the tropical Indian Ocean for four model simulations, but with different treatments for the ocean, are

compared. The seasonality in precipitation skill, the local precipitation–SST relationship, and prediction

skill related to Indian Ocean dipole mode (IODM) are examined. It is found that the importance of the

accuracy of local SST and the presence of local air–sea coupling in the Indian Ocean has a strong seasonal

dependence. Accurate local SSTs are important during the boreal fall season, whereas the local air–sea

coupling is important during the boreal spring. The precipitation skill over the Indian Ocean during boreal

winter is primarily from ENSO. However, ENSO impacts are better realized with the inclusion of an

interactive ocean. For all four seasons, the simulation without the interannual variations of local SST in the

Indian Ocean shows the least precipitation skill and a much weaker seasonality. It is also found that, for the

simulation where the global SSTs are relaxed to the observations and hence maintain some level of active

air–sea coupling, the observed seasonal cycle of precipitation–SST relationship is reproduced reasonably

well. In addition, the analysis also shows that simulations with accurate SST forcing display high pre-

cipitation skill during strong IODM events, indicating that IODM SST acts as a forcing for the atmospheric

variability.

1. Introduction

Understanding the mechanisms controlling the inter-

annual variability of seasonal-mean precipitation and

its predictability is important because precipitation in the

tropics (i) represents the atmospheric latent heat release

that is an important component in the global energy

balance; (ii) influences the global and regional hydro-

logical cycle; (iii) is closely related to the predictability of

seasonal-mean large-scale circulation and its influence on

high-frequency systems such as the tropical cyclone var-

iability; and (iv) is one of the dominant atmospheric

signatures of variability related to the El Niño–Southern

Oscillation (ENSO), with significant impacts over the

global climate (Webster et al. 1998; Wang et al. 2001; Yu

et al. 2002; Wu and Kirtman 2004; Annamalai et al. 2005).

In addition, tropical precipitation is also one of the forc-

ing components that drive the oceanic circulation by af-

fecting subsurface vertical density stratification through

changes in the freshwater budget and salinity.

Over a particular region, interannual variability of pre-

cipitation can have several controlling factors. The oc-

currence of tropical deep convection depends on the

warmth of ocean surface and, in general, colder sea surface

temperatures (SSTs) are not conducive for precipitation

(Zhang 1993). Therefore, interannual variations in SSTs

can influence the local precipitation variability. An ex-

ample of this is the precipitation variability in the tropical

eastern Pacific associated with ENSO SST variability
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(Arakawa and Kitoh 2004; Trenberth and Shea 2005).

Further, because global mass flux across a pressure sur-

face is conserved, regions of enhanced precipitation with

upward mass flux are also associated with regions of

suppressed precipitation with downward motion else-

where leading to nonlocal reduction in precipitation. As a

consequence, interannual variation in precipitation can

also be caused by precipitation changes in remote regions

via the atmospheric bridge (Alexander et al. 2002). Un-

derstanding interannual variability in precipitation over a

region therefore requires understanding various control-

ling mechanisms. In this paper, our focus is on the analysis

of the interannual variability over the Indian Ocean.

Although the precipitation variability over the tropical

Pacific has been widely studied and is well understood to

be tightly controlled by the local SST variability associ-

ated with ENSO, the precipitation variability over the

Indian Ocean is posited to be due to multiple factors. To

provide further motivation for our analysis, below we first

summarize various possible mechanisms for precipitation

variability over the Indian Ocean.

It is well known that anomalous SST associated with

ENSO is the primary source of the seasonal predicta-

bility of global circulation (Shukla and Wallace 1983;

Brankovic et al. 1994; Livezey et al. 1996; Barnett et al.

1997; Kumar and Hoerling 1998; Kumar et al. 2003;

Schubert et al. 2008). Many earlier observational and

numerical modeling studies have shown that ENSO SST

in tropical Pacific also has a strong remote influence on

the atmospheric and SST variability over the Indian

Ocean through the atmospheric bridge (Klein et al.

1999; Alexander et al. 2002; B. Wang et al. 2005; Wu and

Kirtman 2005; Krishna Kumar et al. 2005; Wu et al.

2008). However, it is still not clear to what extent the

remote SST forcing associated with ENSO contributes

directly (via changes in atmospheric circulation) or in-

directly (via changes in SST) to the seasonal-mean

precipitation variability over the Indian Ocean.

In tropical oceans, higher SSTs, in general, are accom-

panied by increased convection and precipitation (Zhang

1993). For example, over the equatorial tropical Paci-

fic, the interannual variation of precipitation is positively

correlated with the underlying SST variability, implying

warm SST leading to an increase in precipitation. The

positive correlation is highest in the tropical eastern Pa-

cific where the amplitude of interannual SST variation

associated with ENSO is also the largest (Arakawa and

Kitoh 2004; Trenberth and Shea 2005; Wu et al. 2006).

This strong positive relationship reflects the influence of

SST forcing and is a major contributor to the prediction

skill for tropical precipitation. The controlling influence of

SST over this region is also confirmed by successful sim-

ulations of interannual variability of precipitation with

atmospheric general circulation models (AGCMs) with

specified SST forcing (e.g., Shukla and Wallace 1983;

Kang et al. 2002; Wang et al. 2004; Peng and Kumar 2005;

Peng et al. 2009).

Interannual variability of SST over the tropical Indian

Ocean is weaker than that over the tropical eastern Pa-

cific, and also the control of SST on precipitation is not as

well understood. Previous studies have shown that the

precipitation anomalies have a weak negative correlation

with the underlying SST anomalies over the north Indian

Ocean and western North Pacific in boreal summer

(Trenberth and Shea 2005; B. Wang et al. 2005; Wu et al.

2006). A negative SST–precipitation correlation implies

that the coupled air–sea interaction in these regions such

that SSTs respond to atmospheric variability. The sea-

sonality, as well as spatial dependence, of precipitation–

SST correlation over the Indian Ocean, however, is not

well documented or understood.

Another aspect related to the precipitation variability

over the Indian Ocean is the role of the coupled air–sea

interaction. In numerical model studies, it is found that

coupled simulations have a better depiction of the re-

lationship between SST and precipitation variability

over the Indian monsoon region than that simulated in

AGCM-alone simulations with specified SST forcing:

that is, the Atmospheric Model Intercomparison Project

(AMIP) type of simulations (B. Wang et al. 2005; Wu

and Kirtman 2005; Krishna Kumar et al. 2005; Wu et al.

2006). Most of the previous studies have focused on the

variability related to the Indian summer monsoon. It is

yet to be determined to what extent the coupled air–sea

interactions and feedbacks are essential for capturing

precipitation variability throughout the seasonal cycle.

Mechanisms controlling precipitation variability over

the Indian Ocean also have implications for prospects for

its prediction and its remote influence via teleconnection.

Kumar et al. (2010) analyzed evolution of precipitation

skill based on retrospective forecasts from the National

Centers for Environmental Prediction (NCEP) Climate

Forecast System (CFS) and found that skill of monthly-

mean precipitation decays quickly over the tropical ocean

basins other than the tropical eastern Pacific. The decay

of forecast skill of seasonal-mean precipitation and SST is

compared in Fig. 1 for the Pacific and the Indian Ocean. It

is seen that precipitation skill in the Indian Ocean is not

only lower initially but also decays more quickly than that

over the Pacific. The average precipitation skill is re-

duced from 0.50 (0.65) at 0-month lead time to 0.28

(0.52) at 3-month lead time over the tropical Indian

(Pacific) Ocean, representing a reduction of 44% versus

20% over the Indian and Pacific Oceans, respectively.

Meanwhile, the SST forecast skill, although higher than

that of precipitation, also decreases with lead time, with
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substantially lower skill over the Indian Ocean than that

over the Pacific.

Is the lower skill, as well as faster decay, over the In-

dian Ocean precipitation skill a feature of inherent

predictability or is it due to the lower skill for SST pre-

diction over the Indian Ocean (and therefore skill for

prediction will improve with improvements in SST

forecasts)? One potential avenue to answer this ques-

tion is the use of the AGCM simulations where observed

SSTs are specified. However, AGCM simulations also

have a low precipitation skill over the Indian Ocean

(Peng et al. 2009; Kumar et al. 2010). It is conceivable

that the advantage of having better SSTs in the AGCM

simulations is counteracted by lack of coupled air–sea

feedback (Kumar and Hoerling 1998; Lau and Nath 2000;

van den Dool et al. 2006; Kumar et al. 2007) and, even if

SSTs are the same as the observed SSTs, the setup of an

AGCM AMIP-type simulation may not provide an ac-

curate estimation for the predictability of precipitation.

Therefore, we are still faced with the question that, if the

prediction of SST in the Indian Ocean were to improve

and if the coupled air–sea feedback is included, will it also

lead to improvements in precipitation prediction skill to

the levels at par with that over the equatorial eastern

Pacific?

These issues are the focus of this study. Specifically,

we investigate ocean surface–related factors affect-

ing the precipitation variability over the Indian Ocean

that include 1) the influence of remote SST forcing re-

lated to ENSO in the tropical Pacific; 2) the role of local

SST forcing in the Indian Ocean; and 3) the role of cou-

pled air–sea feedback and the gain in skill due to correct

representation of air–sea coupling. Impacts of these fac-

tors are analyzed based on a suite of numerical experi-

ments in which SST and coupled air–sea interaction have

a varying degree of accuracy. The paper is structured as

follows: model simulations and the analysis approach are

described in section 2, results are presented in section 3,

and a summary and discussion of implications of the

analysis for the prediction of seasonal-mean precipitation

over tropical Indian Ocean are provided in the closing

section 4.

2. Model simulations and analysis approach

Analysis of dynamical predictability and prediction

skill of seasonal climate variability is generally based on

two modeling approaches. In the first approach, coupled

ocean–atmosphere models are integrated from observed

initial conditions and SSTs are predicted by the model

itself during the course of the integration. For example,

the NCEP CFS used for operational seasonal prediction

follows this approach. In the second approach, AGCM

simulations are performed with the specification of ob-

served SSTs.

Both approaches have their own advantages and dis-

advantages for the simulation of the atmospheric vari-

ability. The first approach includes coupled dynamical

and thermodynamical air–sea interaction, but the skill of

predicted SSTs is not perfect (Fig. 1). For example, for

the CFS skill of SST prediction with lead time beyond

3 months is largely confined to the tropical central and

eastern Pacific Ocean (Jin and Kinter 2009; Wang et al.

2010; Kumar et al. 2010). Apart from the correct simu-

lation of the variability, coupled models also have biases

in predicted SSTs that may result in erroneous atmo-

spheric variability.

In the second approach of AGCM simulations with

the specification of observed SST, although the SST are

perfect, coupled air–sea interaction is not included,

which may degrade the response of the atmosphere to

the specified SSTs. To address the issues raised in the

introduction, we analyze four different model simula-

tions that to a varying degree of realism include the

observed evolution of SST and coupled air–sea in-

teraction and are based on a design of model simulations

that fall in between two modeling approaches outlined

above.

FIG. 1. Area-averaged CFS seasonal-mean forecast correlation

skill over (a) the tropical Indian Ocean [208S–208N, 308–1208E] and

(b) the tropical eastern Pacific Ocean [208S–208N, 1808–3008E] at

forecast lead times from 0 to 3 months. The gray bars are for pre-

cipitation skill, and the black bars are for the SST skill.
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a. The model

The simulations used in this study are based on the

NCEP operational CFS model. The CFS is a fully cou-

pled ocean–land–atmosphere dynamical seasonal pre-

diction system. The atmospheric component of the CFS

is the 2003 version of the NCEP atmospheric Global

Forecast System (GFS) model with a spectral truncation

of 62 waves (T62) in the horizontal (which is equivalent

to nearly a 200-km grid) and a finite differencing in the

vertical with 64 sigma layers. The oceanic component of

the CFS is the Geophysical Fluid Dynamics Laboratory

Modular Ocean Model version 3 (MOM3; Pacanowski

and Griffies 1998). The domain is quasi global, extend-

ing from 748S to 648N with a zonal resolution of 18 and

a meridional resolution of 1/38 between 108S and 108N,

gradually increasing through the tropics until becoming

fixed at 18 poleward of 308S and 308N. There are 40 layers

in the vertical with a vertical resolution of 10 m from the

surface to the 240-m depth, gradually increasing to about

511 m in the bottom layer around 4.5-km depth. The at-

mospheric and oceanic components are coupled without

any flux adjustment. The two components (i.e., ocean and

atmosphere) exchange daily averaged quantities once a

day. A more detailed description of the model and

analysis of its performance based on the hindcast and

free runs can be found in W. Wang et al. (2005) and Saha

et al. (2006).

b. Model simulations

We analyze four types of ensemble simulations with

the CFS. All simulations are for January 1996–December

2008, and each simulation consists of an ensemble of nine

runs started from differing atmospheric initial conditions.

Differences in the specification of observed SST and the

inclusion of coupled air–sea interaction among the simu-

lations are summarized in Table 1 and further details are as

follows:

1) The global SST relaxation (GSSTR) simulation: This

simulation is carried out with the coupled CFS. To

constrain the SST to the evolution of the observed

SST, a relaxation approach is used. This is achieved

by a restoring term that relaxes the model’s predicted

SST toward the observed SST with an e-folding time

scale of 3.3 days. The relaxation is computed once

per day using observed monthly-mean SSTs that

are linearly interpolated to each day. The resulting

SST is close to that observed, whereas the coupled

air–sea interaction included in the model also has

some influence on the SST evolution. In this simula-

tion, the source of the ensemble-mean precipitation

variability (i.e., the variability that is common to all

members in the ensemble) over the Indian Ocean

includes (i) dynamical response to remote SST

forcing via atmospheric circulation, (ii) interannual

variability in local SST, and (iii) interannual vari-

ability in local SST that itself is due to remote SST

forcing.

2) The Pacific SST relaxation (PSSTR) simulation:

This simulation also uses a restoring term for SST

but only for the tropical Pacific Ocean. Within the

equatorial tropical Pacific region (108S–108N, 1408–

2858E), the restoring time scale is 3.3 days as in the

GSSTR. In the transition zones of 108 latitude/

longitude around this region, the restoring time scale

increases linearly from 3.3 days at the inner boundary

of the transition zones to infinity at the outer boundary

of the transition zones. Therefore, outside of tropical

Pacific Ocean, there is no direct information of local

observed SSTs, the atmosphere and ocean are fully

coupled, and SSTs are free to evolve. Over the Indian

Ocean, the ensemble-mean SST variability in this

simulation is due to the response to remote SST

forcing communicated via the atmospheric circulation

and possibly due to local air–sea coupling. We note

that although the SST variability due to coupled air–

sea interaction over the tropical Indian Ocean also has

influence on the ENSO variation (e.g., Luo et al.

2010), this aspect is not the focus of this study. Figure 2

shows the temporal correlation of ensemble-mean

seasonal-mean SST simulated in PSSTR with the

observations from 1996 to 2008 over the tropical

Indian and Pacific Oceans. The correlation skill is

generally higher than 0.8 in the tropical western

Pacific and higher than 0.9 in the tropical central to

eastern Pacific because of the restoring of the ob-

served SST over this region. Over a large part of the

Indian Ocean, the correlation is 0.5 or higher (e.g.,

around 108N in the Arabian Sea and to the northeast

of Madagascar), whereas the SST skill is relatively

low in the northern part of Bay of Bengal, near the

TABLE 1. A summary of four simulations GSSTR, PSSTR,

GOGA, and POGA in terms of the local SST forcing in the Indian

Ocean, the remote ENSO-related SST forcing in the tropical eastern

Pacific Ocean, and the extent coupled air–sea interaction is main-

tained in the Indian Ocean.

Model

simulations

Local SST

forcing

ENSO SST

forcing

Air–sea

coupling

GSSTR near observed

(3.3-day SST

relaxation)

near observed

(3.3-day SST

relaxation)

partial (3.3-day

SST relaxation)

PSSTR predicted observed yes

GOGA observed observed no

POGA observed

climatology

observed no
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equator, and to the southeast of Cocos Island (around

158S, 1008E). The sources for the ensemble-mean

precipitation variability over the Indian Ocean in this

simulation primarily include (i) the remote impact

from the ENSO-related SST in the tropical eastern

Pacific through atmospheric teleconnection and (ii)

local influence from the SSTs that are driven by the

remote SST anomalies in the tropical Pacific, which

can be thought as an indirect influence of ENSO SST

on the precipitation variability over the Indian Ocean.

3) The global ocean forced global atmospheric (GOGA)

simulation: This simulation is an AMIP-type integra-

tion with the GFS, the atmospheric component of the

CFS. The simulation is forced by observed SSTs over

the globe. The SST is updated once per day using

observed monthly-mean SSTs that are linearly in-

terpolated to each day. Therefore, the sources of the

ensemble-mean precipitation variability in the Indian

Ocean are same as for the GSSTR simulation; how-

ever, coupled air–sea interaction is not included.

4) The Pacific Ocean forced global atmospheric (POGA)

simulation: This simulation is the same as the GOGA

simulation, except that the observed monthly-mean

SST is specified only over the tropical Pacific Ocean

(108S–108N, 1408–2858E) and the seasonal cycle of the

climatological monthly-mean SST is specified in the

other ocean basins. Thus, the source of the ensemble-

mean precipitation variability over the Indian Ocean is

only from the remote forcing related to ENSO SST.

We should point out that for the GSSTR and PSSTR

simulations a relaxation time of zero (infinity) is equiv-

alent to the AMIP-type AGCM (fully coupled) simu-

lation. For the former, SST is constrained to evolve as

the observed SST and the feedback due to coupled air–

sea interaction is not included. For the latter, although

SST is no longer constrained to be the same as the ob-

served, a consistent coupled air–sea feedback is in-

cluded.

c. Analysis

Different treatments of ocean surface in four simula-

tions allow for an analysis of the influence of different

factors on the precipitation variability over the Indian

Ocean. For example, in the POGA simulation the

ensemble-mean precipitation variability is solely from

the remote ENSO SST forcing. A comparison between

PSSTR and POGA provides a further assessment of

the influence of SST variability in the Indian Ocean

in response to remote ENSO-related SST variability. A

comparison between GOGA and POGA allows an ex-

amination of the role of accurate SST ‘‘predictions’’

outside the tropical Pacific but in the absence of cou-

pled air–sea interaction. A comparison between the

GOGA and the GSSTR simulation is useful in quan-

tifying the role of coupled air–sea interaction in addition

to the accurate SST predictions. A comparison be-

tween the GSSTR and the PSSTR simulation gives an

estimate of the influence SST on precipitation variability

when SST is closer to the observed while at the same

time a certain degree of coupled air–sea interaction is

also included.

The analysis of precipitation variability follows two

complementary approaches. In the first approach, the

correlations of the ensemble-mean precipitation vari-

ability with the observed precipitation variability are an-

alyzed. This analysis therefore assesses the fidelity of

interannual precipitation variability against the observed

precipitation. In the second approach, local correlations

between SST and precipitation are analyzed and the sign

of correlation provides information whether SST is a

forcing for the atmosphere (i.e., regions of positive cor-

relation) or is forced by the atmosphere (i.e., regions of

negative correlation). In addition, some specific aspects

related to the understanding of precipitation skill in the

Indian Ocean are also analyzed. In particular, we ex-

plore the seasonality in skill, the influence of remote SST

variability associated with ENSO in the tropical eastern

Pacific via the atmospheric bridge mechanism, and the

influence of SST related to the Indian Ocean dipole

mode (IODM).

In our analysis, the precipitation skill is defined as

the temporal correlation between the seasonal anoma-

lies of the model ensemble mean and corresponding

observed anomaly. The seasonal anomalies are obtained

from a 3-month running mean of monthly anomalies

from 1996 to 2008. The observed monthly SST data-

set used as the oceanic forcing in the four simulations,

and as the verification to evaluate the simulation skill is

from the analysis of Reynolds et al. (2002). The ob-

served monthly precipitation is from the Climate Pre-

diction Center (CPC) Climate Anomaly Monitoring

FIG. 2. The spatial distribution of correlation skill for seasonal-

mean SST over the tropical Indian and Pacific Oceans from the

PSSTR simulation. The shading starts from 0.2, with 0.1 intervals.
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System–outgoing longwave radiation precipitation in-

dex (CAMS–OPI) (Janowiak and Xie 1999).

3. Results

a. General features of precipitation skill

Figure 3 shows the spatial maps of correlation skill for

the seasonal-mean precipitation from all four simula-

tions. Their corresponding areal-averaged values over

the tropical Indian Ocean and eastern Pacific Ocean are

shown in Fig. 4. The skill is calculated based on the en-

tire time series from 1996 to 2008.

As expected, all simulations have the highest pre-

cipitation skill in the tropical eastern Pacific where the

interannual variability of SST associated with ENSO is

the largest. All four simulations show precipitation skill

higher than 0.7 over the far equatorial eastern Pacific

where the SST forcing is either prescribed or is relaxed

to the observed SST. The area-averaged skill over the

tropical Pacific for all simulations is above 0.6 (Fig. 4).

The difference in skill between forced simulations (i.e.,

GOGA and POGA) and the SST relaxation simulations

(i.e., GRSST and PRSST) is small and, given a short

verification time series, not statistically significant. A

large precipitation skill resulting from the specification

of SSTs is consistent with earlier results in that the

precipitation over this region is mainly controlled by the

interannual SST variability and precipitation variability

is slaved to the ocean.

Over the tropical Indian Ocean, the precipitation skill

from the four simulations is lower than over the eastern

Pacific. This contrast is similar to that for the fully cou-

pled CFS predictions in Fig. 1 and indicates that reasons

for low prediction skill in the CFS may not be due to the

lack of skill in SST prediction over the Indian Ocean and

may be due to inherent predictability limits.

We first discuss the skill in the POGA simulation,

which is simplest in terms of SST variability over the In-

dian Ocean in that it only includes the climatological

seasonal cycle. The only region with discernible precipi-

tation skill in POGA simulation is in the vicinity of the

eastern edge of Indian Ocean near the coast of Sumatra

and Java (Fig. 3d). Because of the design of POGA sim-

ulation, this skill is due to the remote influence of SST

variability in the equatorial eastern tropical Pacific and is

consistent with the documented influence of ENSO over

this region (Klein et al. 1999; Lau and Nath 2000, 2003).

Compared to POGA, Indian Ocean SST variability in

the PSSTR simulation has an interannual signal that is

forced by the remote teleconnection associated with the

tropical Pacific SST via the atmospheric bridge (for the

skill of SST prediction in the PSSTR, see Fig. 2). This

additional SST variability in the Indian Ocean does im-

prove precipitation skill over that for the POGA and can

be thought of as the secondary (or indirect) influence

of remote ENSO SSTs. The skill of SST prediction for

the PSSTR, however, is far from perfect, with correla-

tions generally around 0.5 (Fig. 2). What would be

FIG. 3. The spatial distribution of correlation skill for seasonal-

mean precipitation from the simulations of (a) GSSTR, (b) PSSTR,

(c) GOGA, and (d) POGA. The shading starts from 0.2, with 0.1

intervals.

FIG. 4. Area-averaged correlation skill for seasonal-mean pre-

cipitation over the tropical Indian Ocean [208S–208N, 308–1208E]

and eastern Pacific Ocean [208S–208N, 1808–3008E] from the sim-

ulations of GSSTR (red bars), PSSTR (green bars), GOGA (blue

bars), and POGA (light blue bars).
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improvement in precipitation skill if SST followed the

observed evolution (i.e., skill of SST prediction is im-

proved)?

For the GOGA simulation (Fig. 3c), the observed SST

variability over the Indian Ocean is specified; however,

coupled air–sea interaction, as well as feedback, is not

included. Nonetheless, specification of correct SST does

add incrementally to the skill over that in the POGA and

the PSSTR, particularly over the western edge of the In-

dian Ocean to the coast of Somalia and the mid-southern

Indian Ocean. However, even with the specification of

correct SST, the level of skill for precipitation over the

Indian Ocean is nowhere near that over the equatorial

Pacific and leads us back to the question whether this is

due to a lack of inherent predictability in precipitation or

the lack of coupled air–sea interaction in the design of

GOGA simulation.

Possible contribution of coupled air–sea interaction,

with SST being close to the observations, and its in-

fluence on prediction skill can be gleaned from the

GSSTR simulation, which relative to the GOGA simu-

lation also includes a partial representation of the cou-

pled air–sea interaction. In section 3c, from the analysis

of local SST–precipitation correlation, we will demon-

strate that the GSSTR simulation, as a consequence of

coupled air–sea interaction, indeed has a more realistic

simulation of the local SST–precipitation relationship.

Prediction skill for the GSSTR, in turn, also has an in-

cremental improvement in skill over the GOGA but is

still much less than that over the equatorial Pacific.

Going beyond the GSSTR, a complete representation

of the coupled air–sea interaction would be similar to

the initialized CFS predictions, for which, however, SST

trajectory, either because of the inherent predictability

limits for SST or because of prediction errors due to model

biases, cannot be constrained to be the same as for the

observed. Skill of precipitation, even for the CFS pre-

dictions with 1-month (2-month) lead time when the in-

fluence of the observed initial conditions on the skill has

waned (Chen et al. 2010; Kumar et al. 2011), is 0.4 (0.35)

(see Fig. 1) and is comparable to the skill for the GSSTR

and GOGA simulations.

The progression of precipitation skill from POGA to

GSSTR indicates that both the accuracy of SST and the

inclusion of coupled air–sea interaction are important for

precipitation prediction. However, even with the coupled

air–sea interaction and relatively accurate SSTs, for ex-

ample, in the GSSTR, the absolute precipitation skill over

the Indian Ocean is not at par with that over the tropical

Pacific. These results suggest that the relatively lower CFS

precipitation skill over the Indian Ocean compared to

that over the eastern Pacific Ocean is likely because of

the inherent predictability limit resulting from a weaker

control of the SST on the precipitation variability over the

Indian Ocean and not because of lower skill in SST pre-

diction itself.

b. Seasonality of precipitation skill

Seasonality in precipitation skill is discussed next.

Figure 5 shows the spatial maps of seasonal-mean pre-

cipitation prediction skill from the four simulations for

December–February (DJF), March–May (MAM), June–

August (JJA), and September–November (SON), and

Fig. 6 shows the area average of skill over the Indian

Ocean. Each panel in Fig. 5 is the skill for three running

seasons. For example, the maps labeled with DJF are the

average of skill for November–January, December–

February, and January–March seasonal means.

It is apparent from Fig. 6 that the skill has a distinct

seasonality and is largest (smallest) for boreal fall/winter

(boreal spring/summer). Further, during fall and winter

there are appreciable differences in skill between POGA

compared to the GOGA and GSSTR simulations, in-

dicating the importance of having correct interannual SST

variability. There is also a small but consistent improve-

ment in skill for the GSSTR relative to the GOGA. The

role of interannual variability in SST for improving pre-

cipitation skill is further supported by the PSSTR simu-

lation for which skill is generally higher than for POGA.

The spatial pattern of precipitation skill for different

seasons is discussed next.

For DJF (Fig. 5, left), precipitation skill in the POGA

simulation is due to the remote influence of ENSO and is

confined to the eastern Indian Ocean. The addition of

local SST variability in the Indian Ocean due to ENSO,

as well as its feedback on the atmosphere, does lead to a

substantial improvement in skill in the PSSTR simula-

tion. Specification of SSTs in the GOGA simulation im-

proves skill in the equatorial Indian Ocean, particularly

in the west, and additional improvement in skill occur

when the coupled air–sea interaction is also included (i.e.,

the GSSTR simulation).

For MAM (Fig. 5, second column), precipitation skill

is generally lower. Regions with the largest skill are lo-

cated in the Bay of Bengal and southwestern tropical

Indian Ocean. In the Southern Hemisphere, precipitation

skill is likely to be associated with the asymmetric mode

of tropical Indian Ocean precipitation variability. Pre-

vious studies have shown that the spring asymmetric

precipitation mode is closely related to air–sea inter-

actions in the tropical Indian Ocean and to the remote

influence from ENSO and is better simulated when the

air–sea coupling is included in the Indian Ocean (Wu

and Kirtman 2004; Wu et al. 2008; Wu and Yeh 2010).

Our results are consistent with the results from these
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previous studies and show that during MAM the atmo-

spheric variability in the Indian Ocean is better captured

with the full air–sea coupling as is the case for PSSTR

than with partial coupling and reasonable SSTs (as for

GSSTR) or with perfect SSTs but no coupling (as in

GOGA).

During JJA (Fig. 5, third column), all four simulations

show relatively low prediction skill for seasonal-mean

precipitation over the Indian Ocean, and neither the use

of observed SSTs (GOGA) nor the inclusion of full

coupling (PSSTR) leads to improvement in skill over the

Indian Ocean. The highest skill in the Indian Ocean is

confined to the region off Sumatra and is associated with

ENSO forcing as is already evident in the POGA sim-

ulation. Low precipitation skill during JJA may be due

to the fact that the interannual variability of SST during

this season is the lowest (Fig. 7, bottom), leading to a low

inherent signal that can be predicted. Another possi-

bility is that the summertime rainfall may be associated

with subscale convective events and may be more diffi-

cult to predict at longer leads (Wang et al. 2004). It is

also noted that on average the skill in POGA is slightly

better than that in PSSTR in this season (Fig. 6). The

reason for this is not clear. One possibility is that the SST

bias in the PSSTR adversely degrades the model’s per-

formance in this season, or the difference is not statis-

tically significant because of a short verification time

series.

For SON (Fig. 5, right), precipitation skill is highest of

all four seasons (also see Fig. 6). The skill in GSSTR and

GOGA are much higher than the other two simulations,

indicating that SST accuracy during this season is

FIG. 5. Spatial distribution of correlation skill for seasonal-mean precipitation over the region of the tropical Indian Ocean from the

simulations of (top)–(bottom) GSSTR, PSSTR, GOGA, and POGA in the seasons (left)–(right) DJF, MAM, JJA, and SON. The shading

starts from 0.2, with 0.1 intervals.
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beneficial for the simulation of precipitation variability

in the Indian Ocean. As will be discussed in section 3d,

the higher precipitation skill is related to the atmospheric

response to the IODM. The IODM, featuring an east–west

contrast of SST anomalies (Saji et al. 1999; Webster et al.

1999), develops in summer and peaks in fall.

The analysis of seasonal variability of skill can be sum-

marized as follows: precipitation skill is largest for SON

and smallest for JJA; for SON, there is large improvement

in skill from the specification of SST variability; and the

inclusion of coupled air–sea interaction does help improve

prediction skill but is not a crucial factor, and this is true for

all the seasons but MAM. The peculiar behavior of the

PSSTR for MAM will be discussed further in section 3e.

c. Local precipitation–SST relationship

A key aspect in understanding the predictability of

seasonal-mean precipitation is the relationship between

SST and precipitation: that is, is the slowly varying SST

variability responsible for precipitation variability (as is

the case for tropical eastern Pacific) or is it a consequence

of atmospheric variability itself? For the former (latter),

one would expect a positive (negative) precipitation–SST

correlation. For the predictability of precipitation, a slower

time scale associated with the SST forcing may also be

associated with higher predictability for precipitation.

Further, if SST forcing for the atmosphere dominates,

atmospheric model simulations alone are likely able to

capture the predictable component when forced by the

observed SST. On the other hand, if the observed SST

anomalies are a result of atmospheric variability, which

itself is unpredictable beyond the weather time scale,

AGCMs with specified SST forcing will have difficulty in

reproducing observed precipitation variability (B. Wang

et al. 2004, 2005; Wu and Kirtman 2005). An assessment

of the precipitation–SST relationship therefore helps

discern the role of SST on precipitation variability and

may also help clarify the regional dependence of skill in

four simulations.

Figure 7 shows the spatial distribution of the local si-

multaneous correlation between seasonal anomalies of

precipitation and SST from observations (top row) and

simulations of GSSTR (second row) and GOGA (third

row). Similar to Fig. 5, the correlations are shown for

four seasons: DJF, MAM, JJA, and SON. For the

POGA simulation, the precipitation–SST correlation

cannot be computed because of a lack of interannual

SST variability. For the PSSTR simulation, in which the

SST variability over the Indian Ocean is internal to the

model, although the precipitation–SST relationship is

self-consistent (as is for observations), because of error

in the simulation of SST variability the spatial structure

of correlation is not directly comparable with the ob-

servations. Thus, the precipitation–SST correlations

from POGA and PSSTR are not included in the analysis.

Further, we calculate the precipitation–SST correlation

for each individual simulation and then average the

correlation from all simulations. To further understand

the role of SST, the standard deviation of SST seasonal

anomaly for different seasons is also shown in Fig. 7

(bottom).

As shown in Fig. 7, the precipitation–SST correlation

displays considerable geographical and seasonal varia-

tion. For observations, the highest positive correlations

are generally collocated with regions having the largest

interannual variability in SST. DJF shows high positive

correlations over the western tropical Indian Ocean

near the coast of Somalia and the southwest Indian

Ocean. In MAM, SST variability is relatively weak, and

positive correlations are mainly confined to the south-

western Indian Ocean and negative correlations extend

from the northeastern Indian Ocean to the coast of Su-

matra. Associated with a large SST variability related to

the IODM, which develops in JJA and peaks in SON

(Fig. 7, bottom), the weak negative correlation in MAM

changes to a strong positive correlation over the west

coast of Sumatra in JJA and SON. The positive correla-

tions over the eastern and western tropical Indian Ocean

are also enhanced in SON. Observed precipitation–SST

correlations also have regions with negative values. It is

also worth noting that (i) positive correlation is not as

strong as over the tropical eastern Pacific (not shown), in-

dicating less control by the SST, and (ii) over a large area of

the Indian Ocean correlation is near zero, implying a lack

of consistent relationship between SST and precipitation

variability on seasonal time scale.

FIG. 6. Area-averaged correlation skill for seasonal-mean pre-

cipitation over the tropical Indian Ocean [208S–208N, 308–1208E]

from the simulations GSSTR (red bars), PSSTR (green bars),

GOGA (blue bars), and POGA (light blue bars) in the seasons

DJF, MAM, JJA, and SON.
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To a large extent, the GSSTR simulation (which in-

cludes air–sea interaction and a SST relaxation with the

time scale of 3.3 days) replicates the seasonal cycle of the

precipitation–SST correlation pattern seen in observa-

tions. The GSSTR simulation also replicates the regions

of negative SST correlation, whereas, because of the

specification of SST, the GOGA correlations everywhere

are positive. Therefore, although the SST in the GSSTR is

relaxed to the observed value, it still allows for a negative

SST–precipitation correlation. For the GOGA, the lack of

a negative SST–precipitation correlation is a common

deficiency noted in simulations with specified SST in

AGCMs (Trenberth and Shea 2005; B. Wang et al. 2004,

2005; Wu et al. 2006). The regions of a strong positive

precipitation–SST correlation for the GOGA generally

coincide with that for the GSSTR.

FIG. 7. The spatial distribution of simultaneous temporal correlation between seasonal-mean precipitation and underlying SST from

(top) observations, (top middle) the GSSTR simulation, and (bottom middle) the GOGA simulation in the seasons (left)–(right) DJF,

MAM, JJA, and SON. The correlation shading interval is 0.1. (bottom) The corresponding observed SST standard deviation in the four

seasons. The SST units: kelvins (K), and the shading interval is 0.1 K.
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We next discuss the relationship between the

precipitation–SST correlation and the precipitation skill.

As summarized earlier, a positive precipitation–SST cor-

relation implies a forcing for the atmospheric variability

by the underlying SSTs. Another implication is that cor-

rect evolution (e.g., when specified) of SST in model

simulations (e.g., GSSTR and GOGA) should also lead

to a skillful precipitation forecast. This is generally true as

can be gleaned from the comparison of areas of positive

correlation in Fig. 7 (top, for observations) and areas with

positive skill for precipitation (Fig. 5).

A better visualization of this relationship is via a

scatterplot between precipitation skill and the observed

precipitation–SST correlation shown in Fig. 8. For a

positive precipitation–SST correlation, in general, there

is a quasi-linear relationship with the precipitation

skill, and this generally holds true for all seasons, except

MAM in GOGA. In other words, over the regions of

positive precipitation–SST correlation, potential predicta-

bility of seasonal-mean precipitation is high. Actual pre-

diction, however, would require a skillful prediction of

SSTs. It is also interesting to note that the amplitude of

positive precipitation–SST correlations is much larger

than their negative counterparts. This is to be expected

because slowly varying SST (particularly if a consequence

of ocean dynamics) acting as a forcing for the atmosphere

can lead to a large positive precipitation–SST correlation

(as is the case for the equatorial Pacific). On the other

hand, persistent precipitation anomalies as a consequence

of atmospheric circulation are generally not long lived and

cannot lead to substantial SST cooling (due to a reduction

in surface shortwave flux and other feedbacks) on a sea-

sonal time scale.

Precipitation skill over the regions of negative

precipitation–SST correlation falls under two regimes.

The first regime is the regions where precipitation–SST

correlation is negative but the precipitation skill is positive.

These regions are the points that populate the top-left

quadrant in Fig. 8 and are more frequent in DJF and MAM.

A specific example is the area of negative precipitation–SST

correlation in MAM in the eastern Indian Ocean north of

the equator between Sri Lanka and northern Sumatra (Fig.

7) over which precipitation skill is positive. A likely expla-

nation is that precipitation over these regions is forced re-

motely by the tropical Pacific SST and in turn leads to

a reduction in SST. The former link provides positive skill

for precipitation due to remote forcing, whereas the latter

provides a negative precipitation–SST correlation. Sup-

porting evidence for this causal link is further provided by

the precipitation skill for the POGA simulation (Fig. 5,

bottom, for DJF and MAM) that also has positive pre-

cipitation skill in response to ENSO SST even when no SST

variability in the Indian Ocean is specified.

The other regime of negative precipitation–SST cor-

relation occurs when seasonal-mean precipitation anom-

alies generate cooling in the underlying SSTs and the

FIG. 8. Scatterplot between the precipitation skill in simulations (the y axis) and the observed precipitation–SST correlation (the x axis)

over the Indian Ocean region [208S–208N, 308–1208E] from the seasons of DJF, MAM, JJA, and SON: for (top) GSSTR and (bottom)

GOGA.
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associated atmospheric circulation itself results from in-

ternal atmospheric dynamics and is unpredictable on a

seasonal time scale. One would expect that precipita-

tion skill for such instances to be small. This is the case

for region over the southern Indian Ocean for SON,

where precipitation skill for the GSSTR and the GOGA

simulation is small and at the same time the observed

precipitation–SST correlation is negative.

In summary, spatial features in precipitation skill

are generally consistent with the spatial distribution of

precipitation–SST correlation with areas of positive cor-

relation (i.e., forcing of the atmosphere by SST) having (a

large) positive precipitation skill and areas of negative

precipitation–SST correlation, except for the places where

precipitation is forced remotely because of ENSO SST,

having small precipitation skill. The results once again

suggest that low precipitation skill over the Indian Ocean

therefore may be an inherent feature of climate variability

over the Indian Ocean.

d. Prediction skill from IODM

The analysis of the precipitation–SST relationship

shows a strong positive correlation over the western coast

of Sumatra in JJA and SON. It is also well known that

a substantial portion of the interannual SST variability

over this region is associated with the IODM events (e.g.,

Saji et al. 1999; Webster et al. 1999). The key characteristic

of the IODM is the reversal in sign of SST anomalies

across the basin between the region off Sumatra and the

western Indian Ocean basin. Typically, the IODM de-

velops around June, intensifies in the following months,

and peaks in October. As reported in early studies (e.g.,

Luo et al. 2007, 2008, 2010; Saji et al. 2005), the IODM

shows significant influence on precipitation and temper-

ature variability over the Indian Ocean and surrounding

region and remotely on ENSO over the eastern Pacific. As

shown in Fig. 7, there is a strong positive correlation be-

tween precipitation and SST over both the eastern and the

western nodes of the IODM that indicates SST acts as a

forcing for the atmosphere. In this section, we further an-

alyze the influence of the IODM-related SST variability on

precipitation. With the anticipation that the SST is forcing

for the atmospheric variability, results for the GSSTR and

GOGA simulations alone are shown.

Shown in Fig. 9 are the GSSTR and GOGA precipi-

tation skill over the tropical Indian Ocean and the ob-

served normalized SST Indian Ocean dipole mode index

(IODMI) from 1996 to 2008. The IODMI is defined as

the difference in SST anomaly between the tropical

western Indian Ocean (108S–108N, 508–708E) and the

tropical southeastern Indian Ocean (108S–08, 908–1108E).

During the analysis period, there are four strong IODM

events for which the IODMI exceeds 1.5 of its standard

deviation. These events are for SON of 1996, 1997, 1998,

and 2006. From the time series of precipitation skill, it is

also apparent that for both GSSTR and GOGA precipi-

tation skill is high during the IODM events (Fig. 9, blue

and green curves).

Figure 10 shows composite maps of the observed SST,

the observed precipitation, the simulated precipitation

from GSSTR and GOGA for the above four IODM

events. The composite maps are the average of two positive

IODM events (SON 1997 and SON 2006) minus the av-

erage of two negative IODM events (SON 1996 and SON

1998). From the spatial pattern of the SST anomaly, it is

clear that associated with the IODM events there is

sharp SST gradient between the eastern and western

tropical Indian Ocean with the cold SST anomalies over

the eastern side off Java–Sumatra and warm SST anom-

alies over the western side off Somalia and the south-

western Indian Ocean.

Corresponding to the anomalous SST, the observed

precipitation is reduced over the eastern equatorial In-

dian Ocean throughout Indonesia while it is increased

over the western equatorial Indian Ocean and parts of

Africa. The sign of precipitation anomaly is such that

enhanced (reduced) precipitation is generally collocated

with the positive (negative) SST anomaly, consistent

with positive precipitation–SST correlation for this sea-

son. The GOGA simulation reproduces well the observed

precipitation variation for the IODM events and confirms

that the variations in SST are responsible for the pre-

cipitation variability. Similar precipitation anomalies

are also replicated in the GSSTR simulation. The pat-

tern correlations of composite precipitation between the

model simulations and observations are 0.70 for GSSTR

and 0.75 for GOGA. The slightly better correlation in

GOGA than in GSSTR may suggest that the accurate

SST forcing is a dominant factor for the precipitation

variability during the extreme IODM events. To sum-

marize, the SST variability associated with the IODM

FIG. 9. The time series of seasonal-mean precipitation correla-

tion skill averaged over the tropical Indian Ocean [208S–208N, 308–

1208E] from the simulations of GSSTR (green line) and GOGA

(blue line) and the normalized IODMI from observations (red

line).
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represents a strong forcing for the atmosphere, acts in

a manner similar to the SST variability associated with

ENSO in the tropical eastern Pacific, and leads to a high

precipitation skill during JJA and SON.

e. Analysis of the ENSO influence

Different configurations for the SST variability in four

simulations also allow us to quantify the effect of remote

ENSO variability over the Indian Ocean. In the PSSTR

simulation, the SST is relaxed to the observed SST over

the tropical Pacific Ocean, whereas it is predicted elsewhere.

Therefore, the source of Indian Ocean SST variability in that

simulation is from the SST variability associated with ENSO

in the tropical eastern Pacific Ocean via the atmospheric

bridge mechanism, as shown in Fig. 2.

To quantify the influence of ENSO on Indian Ocean

SST variability, Fig. 11 shows the time series of the

normalized Niño-3.4 SST from observations (gray curve)

and the SST correlation skill in the PSSTR simulation

over the tropical Indian Ocean (black curve). During the

time period from 1996 to 2008, the years with higher SST

skill is closely related to ENSO events. For example, the

SST skill higher than 0.6 in years 1998, 1999, 2000, 2003,

2007, and 2008 are about 3 months after the large am-

plitudes of Niño-3.4 SST. The maximum correlation be-

tween the PSSTR SST skill and the Niño-3.4 SST is 0.69

at a 3-month lag and is consistent with delay of ENSO-

related SST anomalies in other tropical ocean basins

(Klein et al. 1999; Kumar and Hoerling 2003; Saji et al.

2006).

The influence of ENSO on precipitation variability

over the Indian Ocean is analyzed from a comparison of

the PSSTR and POGA simulations. We compare the

precipitation skill in PSSTR and POGA stratified based

on different level of SST prediction skill in the PSSTR

simulation. Figure 12 shows the PSSTR and POGA

precipitation skill from the months with low PSSTR

SST prediction skill (less than 0.6 in Figs. 12a,b) and

those with higher PSSTR SST prediction skill (equal to

or greater than 0.6 in Figs. 12e,f). In all, there are 32

seasons out of a total of 156 for which PSSTR SST skill

is equal to or greater than 0.6 (Fig. 11). When the SST

prediction skill is ,0.6, the precipitation skill of the

PSSTR and the POGA is similar. For SST skill . 0.6,

there is clear improvement in precipitation skill for the

PSSTR over the POGA, which implies the secondary

influence of ENSO variability in the Indian Ocean is

induced via changes in the SST.

To assess if the correct rendition of air–sea interaction

in PSSTR leads to a better precipitation prediction skill

or if skill is compromised because of errors in SST evo-

lution, we compare the precipitation skill in PSSTR and

GOGA. When PSSTR SST skill is high, it shows some-

what better precipitation skill than GOGA in general.

FIG. 10. (a) The composite seasonal anomalies of SST from ob-

servations and precipitation from (b) observations, (c) the GSSTR

simulation, and (d) the GOGA simulation based on two strong

positive IODMI seasons (SON 1997 and SON 2006) and two strong

negative IODMI seasons (SON 1996 and SON 1998). Precipitation

units: mm day21 and SST units: kelvins.

FIG. 11. The time series of seasonal-mean SST correlation skill

averaged over the tropical Indian Ocean [208S–208N, 308–1208E]

from the PSSTR simulation (black curve) and the normalized

Niño-3.4 SST from observations (gray curve). The maximum value

of the lag correlation between the time series of the SST skill and

Niño-3.4 SST and the lag are shown in the bottom-left corner.
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GOGA misses the precipitation skill over the Bay of

Bengal and the southwest part of the Indian Ocean where

PSSTR shows high precipitation skill. The average pre-

cipitation skill over the tropical Indian Ocean is 0.60 in

PSSTR (Fig. 12e) compared to 0.45 in GOGA (Fig. 12g)

when the PSSTR SST skill is high. However, GOGA

shows small improvement in skill when the PSSTR SST

correlation skill is low: the average precipitation skill is

0.25 in GOGA (Fig. 12c) compared 0.14 in PSSTR (Fig.

12a). These results suggest that the coupled air–sea in-

teraction adds to the precipitation skill when the SST

variability is reasonably represented in the Indian Ocean.

FIG. 12. The spatial distribution of seasonal-mean precipitation correlation skill from the PSSTR, POGA, GOGA,

and GSSTR simulations for those months (a)–(d) when the seasonal-mean SST correlation skill in PSSTR is less than

0.6 and (e)–(h) when SST correlation skill is equal to or greater than 0.6. The shading starts from 0.2, with 0.1

intervals.
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For the sake of completeness, precipitation skill for the

GSSTR is also shown.

As is apparent from Fig. 11, PSSTR SST correlation

skill over tropical Indian Ocean lags Niño-3.4 SST var-

iation by 3 months. Consequently, PSSTR simulates SST

variation better in MAM, which is about one season

following the peak in ENSO in boreal winter in DJF.

Given a better simulation of SST variation in MAM, the

coupled air–sea interaction in the Indian Ocean in

PSSTR also leads to better precipitation skill in PSSTR

than in GOGA and GSSTR MAM (Figs. 5, 6).

4. Summary and conclusions

To understand the prospects of seasonal climate pre-

diction skill over the Indian Ocean and surrounding

regions, we have analyzed possible factors affecting the

seasonal-mean precipitation variability and its predic-

tion skill. We focus the analyses on the contributions

from the local SST forcing in the Indian Ocean, the re-

mote SST forcing related to ENSO in the tropical east-

ern Pacific Ocean, and the role of air–sea coupling. The

analysis is based on four simulations with the NCEP CFS

using different treatments of the ocean surface. These sim-

ulations are 1) the global SST relaxation (GSSTR) simula-

tion; 2) the Pacific SST relaxation (PSSTR) simulation; 3)

the global ocean forced global atmospheric (GOGA) sim-

ulation; and 4) the Pacific Ocean forced global atmospheric

(POGA) simulation. The seasonal-mean precipitation skills

in the tropical Indian Ocean from these four simulations

were examined and compared.

In general, GSSTR, PSSTR, and GOGA show better

skill than POGA, which indicates the accurate local SST

forcing in the Indian Ocean is important in the seasonal

precipitation prediction. This is also confirmed by the fact

that regions of positive precipitation–SST correlation in

observations have the highest precipitation skill (Figs. 5, 7,

8). Inclusion of coupled air–sea feedback in the Indian

Ocean does help improve precipitation skill. For example,

the PSSTR simulation performs better than the POGA

simulation and shows a higher skill than other simulations

in MAM (Figs. 5, 6). However, the inclusion of coupled

air–sea interaction alone in the PSSTR simulation is not

sufficient to bring over the precipitation skill on par with

that of the GOGA simulation, and overall the skill of the

GOGA simulation is closer to that of the GSSTR simu-

lation than the PSSTR simulation skill (Figs. 3–6). The

results therefore indicate that the skill of precipitation in

the GOGA simulation is a fair estimate of its potential

predictability and is not unduly influenced by the lack of

coupled air–sea interactions.

The prediction skill of precipitation, as well as the

impacts from the SST forcing and air–sea coupling, also

has a strong seasonal variation. The precipitation pre-

diction skill is much higher in DJF and SON than in

MAM and JJA because of stronger ENSO-related SST

forcing in these two seasons and also because of the peak

phase of the IODM (in SON). In MAM, when the SST

variation in the tropical Indian Ocean resulting from the

delayed influence from ENSO-related SST forcing in the

previous winter is captured well, the simulation with full

air–sea coupling in the Indian Ocean (PSSTR) shows

better precipitation skill than GSSTR and GOGA, in-

dicating the some importance of air–sea coupling during

this particular season.

The current study can be further enhanced in the fol-

lowing two aspects: First, the precipitation skill differences

between PSSTR with fully interactive air–sea coupling in

the Indian Ocean and the other three simulations either

with no air–sea coupling (GOGA and POGA) or with

partial air–sea coupling (GSSTR) may also result from the

differences in their mean SST states. Therefore, it will be

helpful to examine the role of the air–sea coupling by

comparing the simulation in a coupled model with that of

an AGCM simulation that is forced with the SST gener-

ated from the same coupled model. The second is that all

four types of simulations used in this study include ob-

served remote ENSO-related SST forcing in the tropical

eastern Pacific. Although many previous studies have

shown that the remote ENSO-related forcing has strong

influence over the Indian Ocean (Nigam and Shen 1993;

Klein et al. 1999; Lau and Nath 2000; Annamalai et al.

2005; Wu et al. 2008; Luo et al. 2010; results herein), it

would be interesting to have analysis from an additional

simulation without ENSO forcing. This might help to

identify to what extent the precipitation skill is contrib-

uted solely from the local SST forcing in the Indian Ocean.

These issues will be investigated in future work and results

will be reported accordingly.
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Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau,

and J. D. Scott, 2002: The atmospheric bridge: The influence of

ENSO teleconnections on air–sea interaction over the global

oceans. J. Climate, 15, 2205–2231.

Annamalai, H., S.-P. Xie, J.-P. McCreary, and R. Murtugudde, 2005:

Impact of Indian Ocean sea surface temperature on developing

El Niño. J. Climate, 18, 302–319.

Arakawa, O., and A. Kitoh, 2004: Comparison of local precipitation–

SST relationship between the observation and a reanalysis data-

set. Geophys. Res. Lett., 31, L12206, doi:10.1029/2004GL020283.

Barnett, T. P., K. Arpe, L. Bengtsson, M. Ji, and A. Kumar, 1997:

Potential predictability and AMIP implications of midlatitude

3580 J O U R N A L O F C L I M A T E VOLUME 25



climate variability in two general circulation models.

J. Climate, 10, 2321–2329.

Brankovic, C., T. N. Palmer, and L. Ferranti, 1994: Pre-

dictability of seasonal atmospheric variations. J. Climate,

7, 217–237.

Chen, M., W. Wang, and A. Kumar, 2010: Prediction of monthly-

mean temperature: The role of atmospheric and land initial

conditions and sea surface temperature. J. Climate, 23, 717–

725.

Janowiak, J. E., and P. Xie, 1999: CAMS–OPI: A global satellite-

rain gauge merged product for real-time precipitation moni-

toring applications. J. Climate, 12, 3335–3342.

Jin, E. K., and J. L. Kinter III, 2009: Characteristics of tropical

Pacific SST predictability in coupled GCM forecasts using

the NCEP CFS. Climate Dyn., 32, 675–691, doi:10.1007/

s00382-008-0418-2.

Kang, I.-S., and Coauthors, 2002: Intercomparison of atmospheric

GCM simulated anomalies associated with the 1997/98 El Niño.

J. Climate, 15, 2791–2805.

Klein, S. A., B. J. Sode, and N.-C. Lau, 1999: Remote sea surface

temperature variations during ENSO: Evidence for a tropical

atmospheric bridge. J. Climate, 12, 917–932.

Krishna Kumar, K., M. Hoerling, and B. Rajagopalan, 2005: Ad-

vancing dynamical prediction of Indian monsoon rainfall.

Geophys. Res. Lett., 32, L08704, doi:10.1029/2004GL021979.

Kumar, A., and M. P. Hoerling, 1998: Specification of regional sea

surface temperatures in atmospheric general circulation model

simulations. J. Geophys. Res., 103, 8901–8907.

——, and ——, 2003: The nature and causes for delayed atmo-

spheric response to El Niño. J. Climate, 16, 1391–1403.

——, S. D. Schubert, and M. S. Suarez, 2003: Variability

and predictability of 200-mb seasonal mean heights during

summer and winter. J. Geophys. Res., 108, 4169, doi:10.1029/

2002JD002728.

——, B. Jha, Q. Zhang, and L. Bounoua, 2007: A new methodology

for estimating the unpredictable component of seasonal at-

mospheric variability. J. Climate, 20, 3888–3901.

——, M. Chen, and W. Wang, 2011: An analysis of prediction skill

of monthly mean climate variability. Climate Dyn., 37, 1119–

1131, doi:10.1007/s00382-010-0901-4.

Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability

of the Asian–Australian monsoons as simulated in GCM ex-

periments. J. Climate, 13, 4287–4309.

——, and ——, 2003: Atmosphere–ocean variations in the Indo-

Pacific sector during ENSO episodes. J. Climate, 16, 3–20.

Livezey, R. E., M. Masutani, and M. Ji, 1996: SST-forced sea-

sonal simulation and prediction skill for versions of the

NCEP/MRF model. Bull. Amer. Meteor. Soc., 77, 507–

517.

Luo, J.-J., S. Masson, A. Behera, and T. Yamagata, 2007: Experimental

forecast of the Indian Ocean dipole using a coupled OAGCM.

J. Climate, 20, 2178–2190.

——, S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata,

2008: Successful prediction of the consecutive IOD in 2006

and 2007. Geophys. Res, Lett., 35, L14S02, doi:10.1029/

2007GL032793.

——, R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas,

and T. Yamagata, 2010: Interaction between El Niño and

extreme Indian Ocean dipole. J. Climate, 23, 726–742.

Nigam, S., and H.-S. Shen, 1993: Structure of oceanic and at-

mospheric low-frequency variability over the tropical Pa-

cific and Indian Ocean. Part I: COADS observations.

J. Climate, 6, 657–676.

Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual.

NOAA/Geophysical Fluid Dynamics Laboratory Rep., 668 pp.

Peng, P., and A. Kumar, 2005: A large ensemble analysis of the

influence of tropical SSTs on seasonal atmospheric variability.

J. Climate, 18, 1068–1085.

——, ——, and W. Wang, 2009: An analysis of seasonal predictability

in coupled model forecasts. Climate Dyn., 36, 637–648, doi:10.1007/

s00382-009-0711-8.

Reynolds, W. R., N. A. Rayner, T. Smith, D. C. Stokes, and

W. Wang, 2002: An improved in situ and satellite SST analysis

for climate. J. Climate, 15, 1609–1625.

Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System.

J. Climate, 19, 3483–3517.

Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata,

1999: A dipole mode in the tropical Indian Ocean. Nature, 401,

360–363.

——, T. Ambrizzi, and S. E. T. Ferraz, 2005: Indian Ocean dipole

mode events and austral surface air temperature anomalies.

Dyn. Atmos. Oceans, 39, 87–101, doi:10.1016/j.dynatmoce.

2004.10.015.

——, S.-P. Xie, T. Yamagata, 2006: Tropical Indian Ocean vari-

ability in the IPCC twentieth-century climate simulations.

J. Climate, 19, 4397–4417.

Schubert, S. D., M. J. Suare, P. J. Pegion, R. D. Koster, and

J. T. Bacmeister, 2008: Potential predictability of long-term

drought and pluvial conditions in the U.S. Great Plains.

J. Climate, 21, 802–816.

Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the at-

mospheric response to equatorial sea surface temperature anom-

alies. J. Atmos. Sci., 40, 1613–1630.

Trenberth, K. E., and D. J. Shea, 2005: Relationships between

precipitation and surface temperature. Geophys. Res. Lett., 32,

L14703, doi:10.1029/2005GL022760.

van den Dool, H. M., P. Peng, A. Johansson, M. Chelliah,

A. Shabbar, and S. Saha, 2006: Seasonal-to-decadal pre-

dictability and prediction of North American climate—The

Atlantic influence. J. Climate, 19, 6005–6024.

Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of

the Asian summer monsoon: Contrasts between the Indian and

the western North Pacific–East Asian monsoons. J. Climate, 14,

4073–4090.

——, I.-S. Kang, and J.-Y. Li, 2004: Ensemble simulation of Asian–

Australian monsoon variability by 11 AGCMs. J. Climate, 17,

803–818.

——, Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-

Reyes, 2005: Fundamental challenge in simulation and pre-

diction of summer monsoon rainfall. Geophys. Res. Lett., 32,

L15711, doi:10.1029/2005GL022734.

Wang, W., S. Saha, H.-L. Pan, S. Nadiga, and G. White, 2005:

Simulation of ENSO in the new NCEP coupled forecast sys-

tem model (CFS03). Mon. Wea. Rev., 133, 1574–1593.

——, M. Chen, and A. Kumar, 2010: An assessment of the CFS

real-time seasonal forecasts. Wea. Forecasting, 25, 950–969.

Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas,

M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, pre-

dictability, and the prospects for prediction. J. Geophys. Res.,

103, 14 451–14 510.

——, A. M. Moor, J. P. Loschnigg, and R. R. Leben, 1999: Coupled

ocean-atmosphere dynamics in the Indian Ocean during 1997-

98. Nature, 401, 356–360.

Wu, R., and B. P. Kirtman, 2004: Impacts of the Indian Ocean on

the Indian summer monsoon–ENSO relationship. J. Climate,

17, 3037–3054.

15 MAY 2012 C H E N E T A L . 3581



——, and ——, 2005: Roles of Indian and Pacific Ocean air–sea

coupling in tropical atmospheric variability. Climate Dyn., 25,

155–170.

——, and S.-W. Yeh, 2010: A further study of the tropical Indian

Ocean asymmetric mode in boreal spring. J. Geophys. Res.,

115, D08101, doi:10.1029/2009JD012999.

——, B. P. Kirtman, and K. Pegion, 2006: Local air–sea relation-

ship in observations and model simulations. J. Climate, 19,
4914–4932.

——, ——, and V. Krishnamurthy, 2008: An asymmetric mode of

tropical Indian Ocean rainfall variability in boreal spring. J. Ge-

ophys. Res., 113, D05104, doi:10.1029/2007JD009316.

Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002:

Impacts of Indian Ocean on ENSO cycles. Geophys. Res. Lett.,

29, 1204, doi:10.1029/2001GL014098.

Zhang, C., 1993: Large-scale variability of atmospheric deep con-

vection in relation to sea surface temperature in the tropics.

J. Climate, 6, 1898–1913.

3582 J O U R N A L O F C L I M A T E VOLUME 25


