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ABSTRACT

An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North

Pacific (WNP) and its association with El Niño–SouthernOscillation (ENSO), as well as a subsequent diagnosis

for possible causes of model biases generated from simulated large-scale climate conditions, are documented in

the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate

Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a

total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period

from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual

variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate

mean annual number of WNP TCs and the smallest root-mean-square error to the observation.

Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during

two types of El Niño—namely, eastern Pacific (EP) and central Pacific (CP) El Niño—and weaker activity

during La Niña. However, none of the models capture the differences in TC activity between EP and CP El

Niño as are shown in observations. The inability of models to distinguish the differences in TC activities

between the two types of El Niño events may be due to the bias of the models in response to the shift of

tropical heating associated with CP El Niño.

1. Introduction

The distinct modulation of global tropical cyclone

(TC) activity by the El Niño–Southern Oscillation

(ENSO) has received much attention in the past three

decades. For example, in the western North Pacific

(WNP), with the highest fraction of the global annual

mean number of TCs (Camargo et al. 2005), the phase of

ENSO is one of the most important climate factors af-

fecting the genesis, tracks, durations, landfall numbers,

and intensities of TCs (e.g., Lander 1994; Chan 2000;

Wang and Chan 2002; Chia and Ropelewski 2002;

Camargo and Sobel 2005; Chen et al. 2006; Camargo

et al. 2007b; Chen and Tam 2010; Hong et al. 2011; Kim
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et al. 2011; Ha et al. 2013; Wang et al. 2013; Zhang and

Guan 2014). ENSO affects WNP TC activity by altering

the large-scale flow pattern. The increase of the low-level

shear vorticity generated by El Niño–induced low-level

equatorial westerly anomalies favorsmoreTC formation in

the southeastern part of the WNP, while the upper-level

convergence induced by the deepening of the East Asian

trough and strengthening of the WNP subtropical high

suppresses the TC formation in the northwestern part of

the WNP, both resulting from El Niño forcing. The oppo-

site is true for La Niña years (Wang and Chan 2002).

In recent years, it has come to be distinctly appreci-

ated by the climate research and prediction community

that there is diversity in the El Niño phenomenon

(Capotondi et al. 2015). In particular, the extent to

which the warmest equatorial Pacific sea surface tem-

perature (SST) anomalies are principally in the central

or eastern equatorial Pacific differs between different El

Niño events and leads to distinct climate teleconnec-

tions (e.g., Larkin and Harrison 2005; Ashok et al. 2007;

Takahashi et al. 2011; Hu et al. 2012; Wang et al. 2014;

Capotondi et al. 2015). Although the zonal position of

warmest SST anomalies during El Niño spans a contin-

uum (Takahashi et al. 2011; Capotondi et al. 2015), it can

be useful to explore extremes in that continuum to gain

understanding of the mechanisms behind and the im-

pacts of this rich spectrum of variability. On one extreme

are El Niño events whose main anomalies are princi-

pally in the eastern equatorial Pacific, which are usually

referred to as ‘‘east Pacific (EP)’’ or ‘‘canonical’’ El Niño
events (e.g., Larkin and Harrison 2005). At the other

extreme are events whose main warm SST anomalies are

concentrated in the central Pacific, near the date line,

which will be referred to here as ‘‘central Pacific (CP) El

Niño,’’ but have elsewhere been referred to by many

other names, including ‘‘datelineElNiño events’’ (Larkin
and Harrison 2005), ‘‘El Niño Modoki’’ (Ashok et al.

2007; Yeh et al. 2009), and ‘‘warm-pool ENSO’’ (Kug

et al. 2009; Hu et al. 2012). The zonal difference of the

warmest SST anomalies is associated with distinct atmo-

spheric convective heating anomalies and consequent

changes in the atmospheric response around the globe

(Larkin and Harrison 2005; Ashok and Yamagata 2009;

Kao and Yu 2009; Hu et al. 2012).

The zonal position ofmaximum SST anomalies during

El Niño has been shown to affect the impact of El Niño
on tropical cyclone activity in the Atlantic (e.g., Kim

et al. 2009; Wang et al. 2014). The focus of the present

paper is on the WNP. Using observational data, Kim

et al. (2011) noted distinct differences in WNP TC ac-

tivity associated with the three phases of ENSO. In EP

El Niño, the genesis and track density of TCs tend to be

enhanced over the southeastern part of the WNP by the

extension of the monsoon trough and weak wind shear

over the central Pacific and suppressed in the north-

western part of the WNP by the strong westerly wind

shear. In CPElNiño, with the westward shift of the warm
SST forcing, the TC activity shifts toward the west and

extends through the northwestern part of the WNP as-

sociated with the anomalous westerly wind and monsoon

trough over the northwestern part of the WNP. In La

Niña, the anomalous TC activity and large-scale circula-

tions show almost a mirror image of the EP El Niño.
There is substantial skill in predicting seasonal TC ac-

tivity over various basins using dynamical models (e.g.,

Zhao et al. 2010; Chen and Lin 2011, 2013; Vecchi et al.

2014). Although the interannual variability in some as-

pects of TC behavior could be estimated by the type of

ENSO, the capability of global climatemodels (GCMs) in

simulating the spatial distribution of the TC activity as-

sociated with the different phases of ENSO is still con-

sidered one of the key issues in dynamical seasonal

prediction of TCs. In terms of the routine seasonal fore-

casts of TC frequency in the WNP, both the model sim-

ulations and real-time predictions using high-resolution

GCMs in recent years are promising (Zhao et al. 2009,

2010;Chen andLin 2011, 2013; Shaevitz et al. 2014;Vecchi

et al. 2014; Wang et al. 2014; Mei et al. 2015; Murakami

et al. 2015;Walsh et al. 2015), although statistical methods

(e.g., Chan et al. 1998; Fan andWang 2009; Yonekura and

Hall 2011) and the dynamical–statistical combined ap-

proach (Wang et al. 2009; Kim et al. 2012; Li et al. 2013)

have also been used in the past with some skill.

It is well recognized that high-resolution GCMs are

capable of simulating TC activity more accurately than

low-resolution models because of a better representation

of the spatial scale of TCs (e.g., Camargo et al. 2005;

Chauvin et al. 2006; Scoccimarro et al. 2011). For exam-

ple, using the Geophysical Fluid Dynamics Laboratory

(GFDL) GCM with a 50-km resolution and observed

SSTs as boundary conditions, Zhao et al. (2009) simu-

lated the annual mean counts of TCs in the Atlantic and

the east, west, and South Pacific well, with correlations to

observations being 0.8, 0.6, 0.5, and 0.3, respectively. The

simulated 25-yr trend inNorthernHemisphere basinwide

frequency for the period of 1981–2005 is also consistent

with the observations. Although previous studies have

examined simulations of WNP TCs using high-resolution

GCMs, they emphasize the capability of a single GCM

simulating TCs (Zhao et al. 2009; Chen and Lin 2011,

2013; Mei et al. 2015; Vecchi et al. 2014; Murakami et al.

2015) or an ensemble of simulations of TCs without

considering specifically the forcing from the different

types of ENSO (Shaevitz et al. 2014). There is a more

complex relationship between SSTs and other environ-

mental factors related to TCs in the WNP than in the
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Atlantic (Emanuel 2007). Therefore, it is necessary to

evaluate the overall performance of multiple GCMs in

simulating the response ofWNPTCs to ENSO, then verify

whether the simulations in the WNP can be as good as

those in the North Atlantic (Wang et al. 2014) and explore

possible causes ofmodel biases in simulating the large-scale

circulation associatedwithTCs. The assessment is based on

the analysis of the Atmospheric Model Intercomparison

Project (AMIP)–type simulations with five GCMs and

comparisons with observations. The study aims to provide

insights into the basic characteristics of WNP TC activity

associated with different types of ENSO in GCMs.

Similar to Wang et al. (2014), the present study is

based on the interannual experiment set of TC simula-

tions performed by the Hurricane Working Group

(HWG) with high-resolution atmospheric GCMs

(Walsh et al. 2015), but focuses onWNP TC activity and

its association with ENSO. This paper is organized as

follows. Section 2 provides a brief description of data,

models, and analysis methods being used. Section 3

characterizes WNP TC activity and its association with

ENSO in observations. The performance of GCMs in

simulating the variability of WNP TCs and its associa-

tion with ENSO is assessed in section 4. Some possible

explanations for the differences between themodels and

observations are explored in section 5. Conclusions are

given in section 6.

2. Data and models

The data used in this study consist of SST, WNP TC

tracks, precipitation, 500-hPa relative humidity, and

200-, 500-, and 850-hPa winds over a 28-yr (1982–2009)

period from both observations and simulations with five

atmosphericGCMs.All data are the sameas used byWang

et al. (2014), except for the observed TC track density and

origin data from the Regional Specialized Meteorological

Center (RSMC) Tokyo–Typhoon Center best-track data-

set (available online at http://www.jma.go.jp/jma/jma-eng/

jma-center/rsmc-hp-pub-eg/trackarchives.html). TheRSMC

dataset has a high reliability in terms of annual fre-

quency, track location, and intensity of TCs since the

1980s (Ren et al. 2011).

The observed time-varying SSTs were used as com-

mon forcing to drive different models, which are from

theHadleyCentre Sea Ice and Sea Surface Temperature

(HadISST) dataset (Rayner et al. 2003) in monthly av-

erages and with a horizontal resolution of 18 3 18
(latitude 3 longitude), except for the Florida State

University (FSU) model forced with the NOAA Opti-

mum Interpolation SST version 2 (OISSTv2; Reynolds

et al. 2002). The rainfall dataset is the Climate Pre-

diction Center (CPC) Merged Analysis of Precipitation

(CMAP; Xie and Arkin 1997). The variables describing

the atmospheric circulation, including relative humidity

and horizontal winds, are obtained from the National

Centers for Environmental Prediction–Department of

Energy (NCEP–DOE) Reanalysis 2 (R2; Kanamitsu

et al. 2002). All these atmospheric data are monthly

averages with a 2.58 3 2.58 resolution.
Vertical wind shear is taken as the difference between

the 200- and 850-hPa zonal winds. We use the same

method as Colbert and Soden (2012) to define the steering

flow for TCs, which is 0.25V850 hPa 1 0.5V500 hPa 1
0.25V200 hPa based on winds at 850, 500, and 200 hPa

(V850 hPa, V500 hPa, and V200 hPa).

The HWG conducted the interannual experiments

(1982–2009) with five different models. They are the FSU

model (Cocke andLaRow2000), theGFDLmodel (Zhao

et al. 2009), the National Aeronautics and Space Ad-

ministration (NASA) Goddard Institute for Space Stud-

ies (GISS) model E2 (Schmidt et al. 2014), the NASA

Goddard Space Flight Center (GSFC) Earth Observing

SystemModel, version 5 (GEOS-5; Rienecker et al. 2008;

Molod et al. 2012), and the NCEP Global Forecast Sys-

tem (GFS) model (Buizza et al. 2005). Wang et al. (2014)

andWalsh et al. (2015) providedmore details about these

models in terms of resolution, number of ensemble

members, and different TC tracking schemes used by

each modeling group. For the number of ensemble runs

and model data resolutions, as well as the TC tracking

algorithms for the five models, refer to Table 1 (also

Table 1 in Wang et al. 2014). The sensitivity of the

modelTCactivity to thedifferent tracking algorithms in the

HWGsimulations has been discussed byHorn et al. (2014).

They demonstrated that there are moderate agreements in

TABLE 1. List of fiveGCMs for theHWG interannual experiments, the number of ensemblemembers, model data grid, and references for

TC tracking algorithms.

Model Ensemble members Model data grid points (zonal 3 meridional) Tracking algorithm

FSU 3 384 3 192 LaRow et al. (2008)

GFDL 3 576 3 360 Zhao et al. (2009)

GISS 3 360 3 180 Camargo and Zebiak (2002)

GSFC 2 576 3 361 LaRow et al. (2008)

GFS 5 360 3 181 Camargo and Zebiak (2002)
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both TC geneses and TC tracks using different tracking

schemes. However, some models (e.g., GFS) show better

agreement across different tracking methods than others

(e.g., GISS). This indicates a source of uncertainty in the

analysis of TC activity as a result of different tracking

schemes used by different modeling groups.

The annual total number of TCs and the spatial dis-

tribution of TC track density and origin depict the TC

activity. Similar to Wang et al. (2014), this work adopts

the following strategy for the analysis of TC track density

and origin. Nondeveloping tropical depressions are ex-

cluded from theRSMCdataset. TheTCorigin in both the

observation and model simulations is examined from the

equator to 418N and from 1008E to 1808, while the scope

of TC track density is not defined in a specific region as

long as the TC originates inside the defined region. The

methodologies used to derive TC track density and

define a TCorigin are same as those inWang et al. (2014).

Briefly, the TC track density is the number of TCs passing

through a 58 3 58 box during an entire hurricane season.

The TC origin is the first location detected by the TC

tracking schemes. For visualization, the TC origin data

are gridded by a 58 3 58 (longitude 3 latitude) box.

The analysis focuses on the peak season of WNP TCs

from July toOctober (JASO). Composites of both SST and

atmospheric anomalies, including rainfall, 200–850-hPa

wind shear, relative humidity, and tropospheric steering

flow, are compared with each other between the three

types of ENSO. The statistical significance of the analysis

is determined by the Monte Carlo technique (e.g., von

Storch and Zwiers 1999). This is done by first generating

500 new sets of data that are the same size as the original

data by resampling the original data using random orders

in time. Then the same analysis is repeated with these

new datasets to create a pool of reference analysis sta-

tistics. If the result from the analysis with the original data

falls into the top 5% rank in the reference tests, it is de-

fined to be above the 95% significance level. The multi-

model ensemble (MME) mean is the average of the five

individual model ensemble means.

3. Variability of WNP TCs associated with ENSO
in observations

The two El Niño categories are the same as those used

by Wang et al. (2014), based on the definition by

McPhaden et al. (2011). The La Niña years are selected

according toNOAA/CPC (http://www.cpc.ncep.noaa.gov/

products/analysis_monitoring/ensostuff/ensoyears.shtml).

During the 28-yr period (1982–2009) there are five EP

El Niño (1982, 1986, 1991, 1997, and 2006), five CP El

Niño (1987, 1994, 2002, 2004, and 2009), and eight La

Niña (1984, 1985, 1988, 1995, 1998, 1999, 2000, and

2007) years. The composites of JASO mean SST

anomalies for the three types of ENSO shown on Fig. 1

display the representative characteristics (Ashok et al.

2007) of EP El Niño with warm SST anomalies in the

equatorial eastern Pacific, CP El Niño with weak warm

SST anomalies in the central Pacific, and La Niña with

cold SST anomalies in the equatorial eastern and cen-

tral Pacific.

Figure 2 shows the composite of the observed TC

track density (upper row) and its anomaly (middle row)

associated with the three ENSO types. Compared to the

composites of the two types of El Niño (Figs. 2a,b), the

TC track density in the La Niña years (Fig. 2c) has a

smaller maximum, and its centroid is located farther

westward and northward, which is consistent with pre-

vious studies (e.g., Wang and Chan 2002; Camargo and

Sobel 2005; Kim et al. 2011). By contrast, the CPElNiño
composite (Fig. 2b) of the TC tracks has an extension

farther northeastward and westward than the EP El

Niño (Fig. 2a).

Likewise, the anomaly composite of La Niña years

(Fig. 2f) shows fewer TC tracks in the WNP than the El

Niño composites (Figs. 2d,e). Both the composites of La

Niña and CP El Niño show positive TC track density

anomalies along the East Asia coast, indicating above-

normal landfalling TCs. Landfalling TCs tend to be be-

low normal during EP El Niño. The anomaly differences

in TC track density between the EP and CP El Niño
(Figs. 2d,e) clearly show a higher TC track density of the

CP El Niño over the northwestern part of the WNP

(positive anomalies) but a lower density over the

southern part of the WNP (positive but weaker anom-

alies), especially from the eastern South China Sea

(SCS) to the Philippines (negative anomalies). The

composite anomalies in Fig. 2 (middle row) within the

white contours are statistically significant above the 95%

level estimated by the Monte Carlo test. The anomaly

patterns are very similar to those in Kim et al. (2011),

which contain a longer record (57 yr, 1950–2006).

Additionally, Fig. 2 (bottom row) also shows the lo-

cations of TC origins for each ENSO category. To be

consistent with the sample size for both the EP and CP

El Niño, the five La Niña events of 1985, 1988, 1998,

1999, and 2007 are selected based on the Niño-3.4 SST

index as the coldest five years averaged from July to

October. Compared to EP El Niño years (Fig. 2g), there

is a distinct westward and northward shift of TC origins

during LaNiña (Fig. 2i) and to some extent during CPEl

Niño (Fig. 2h) events, with both ENSO types having

more TC origins over the SCS. The total numbers of TC

origins in the WNP domain (1108E – 1808, 08 – 418N) are

127, 128, and 108 for the five EP El Niño, five CP El

Niño, and five La Niña events, respectively. Because it is
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hard to discern the differences in numbers and locations

of TC origins between the three ENSO categories, fur-

ther analyses will be done in section 4c based on the

zonal and meridional distributions of TC origins in dif-

ferent ENSO categories.

4. Assessment of variability in WNP TCs and its
association with ENSO in GCMs

a. Annual number of TCs

The statistical characteristics of the interannual vari-

ation of the annual number of WNP TCs from 1982 to

2009 are displayed in Fig. 3 and Table 2. In Fig. 3, nearly

86% (24 out of 28 yr) of the observations fall into the

range of the spreads of the five individual model en-

semble means from the MME mean (gray shading),

suggesting the possible predictability of the TC annual

number during the peak TC season. The GFDL model

has the highest mean numbers (33.8) of TCs, while the

FSUmodel has the lowest numbers (15.8) of TCs among

all models (Table 2). Overall, the MME mean result

(25.4) is the closest to the observations (24.6) among all

individual models, implying the benefit of performing an

MME mean.

In addition to the differences in the mean annual

number, the standard deviations show that the GISS and

GFSmodels have the same value (3.6) and are the closest

to observations (3.5). The standard deviations of the FSU

model (2.3) and MME (2.7) are also close to observa-

tions. However, the standard deviations of the GFDL

model (5.6) and the GSFC model (4.7) are larger than

observations, suggesting higher annual TC number vari-

ations in the two models. Furthermore, the observations

have a slightly declining trend with21.4 TCs per decade,

which is statistically significant at the 95% confidence

level and consistent with Ho et al. (2004), who showed a

decreasing TC track density over the East China Sea and

the Philippine Sea. The models that have a similar trend

are theGFDL [20.9 TC per decade, similar toZhao et al.

(2009), with 20.7 TC per decade over the simulated pe-

riod of 1981–2005] and GISS (20.7) models, although

FIG. 1. Composites of JASO mean SST anomalies (K) for (a) EP El Niño (1982, 1986, 1991,

1997, and 2006); (b) CPEl Niño (1987, 1994, 2002, 2004, and 2009); and (c) LaNiña (1984, 1985,
1988, 1995, 1998, 1999, 2000, and 2007) during 1982–2009. The SST anomalies circled by the

brown lines are above the 99% significance level estimated by the Monte Carlo test.
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most of the model trends are weaker than the observa-

tions, whereas theGSFC (1.6) andGFS (0.9)models have

an unrealistic upward trend. The FSUmodel (0.0) has no

trend during the 28yr. None of the trends in the models

are statistically significant, except the GSFCmodel at the

90% confidence level.

In terms of anomaly correlation (AC; Table 2), the

individual ensemble mean of the GISS model has the

FIG. 2. Composites of (top) TC track density, (middle) track density anomaly, and (bottom) TC origins for (a),(d),(g) EP El Niño;
(b),(e),(h) CP El Niño; and (c),(f),(i) La Niña years in the observations. The composites are for all the cases, except for (i) the TC

origins in La Niña years, in which only the strongest five events are used in order to have the same sample size for comparison. The

light white contours in (d)–(f) represent the 95% significance level estimated by theMonte Carlo test. The longitude (8E) and latitude

(8N) of the centroids of TC track density and TC origins are listed on each panel.
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highest value (0.51), followed by the GFDLmodel (0.50),

and theMME (0.43), all statistically significant at the 95%

confidence level (ACs for the other models are not sig-

nificant). The results indicate that 25% of the observed

interannual TC variance is captured by both theGISS and

GFDL models and 18% by the MME (von Storch and

Zwiers 1999).We note thatACs in Table 2 are lower than

ACs for the Atlantic (Wang et al. 2014), which is consis-

tent with previous work (e.g., Zhao et al. 2009; Chen and

Lin 2013; Shaevitz et al. 2014) and implies that TC pre-

dictability may be higher in theAtlantic than in theWNP.

Similarly, the ACs obtained by Shaevitz et al. (2014) in

WNP are 20.25 for the FSU model, 0.24 for the GSFC

model, and 0.55 for the GFDLmodel. The one exception

is the GISS model with an AC of 0.21, which is much

lower than the AC value of 0.51 seen in Table 2. The re-

markable discrepancy may originate primarily from dif-

ferent detection periods of annual TC number. In this

study, the period is from June to November, while it is for

the whole year in Shaevitz et al. (2014). Additionally, the

MME has the smallest root-mean-square error (RMSE),

while the GFDL and FSU models have relatively larger

RMSEs. Zhao et al. (2009) pointed out that the convec-

tive entrainment rate designed in theGFDLmodel is high

and unrealistic for the WNP but suitable for the North

Atlantic. That may be a reason for the overestimated

annual mean numbers of TCs, the standard deviation, and

the large RMSE in the GFDL model (Table 2).

b. Track densities and origins of TCs

The spatial distributions of the 28-yr mean TC track

densities and total TC origins are shown on Fig. 4 for both

observations and simulations. Unlike the observed TC

track density (Fig. 4a), the TC track densities in themodels

are confined to south of 418N(Figs. 4c–h). This could be an

artifact of either the tracking schemes or sample errors in

the observations or both, as the best-track dataset typically

does not have a specific extratropical quantitative cutoff

for stopping the tracking of TCs. A sensitivity study of TC

tracks to tracking schemes by Horn et al. (2014, their

Figs. 4h,i) illustrates that in the GISS model, theWNP TC

tracks based on Camargo and Zebiak (2002) have a

farther northward extension than those based on the Zhao

et al. (2009) scheme. Overall, however, the distributions of

TC track densities in the fivemodels andMME are similar

to the observations with the center of high track density

over the subtropics. The maximum TC track densities in

the GFDL, GSFC, and GFS simulations (Figs. 4d,f,g) are

comparable to the observations, while the maxima in the

FSU and GISS simulations and MME (Figs. 4c,e,h) are

smaller than observations. Only the locations of the max-

imum centers in theGFDL and FSUmodels coincide with

that of the observations, and those in the other three

models and MME are biased eastward (and southward in

GSFC). Among the fivemodels, the GFDLmodel has the

best performance in simulating theTC track density,which

is closest to the observations in terms of both the spatial

distribution and magnitude.

The TC origins in the observations (Fig. 4b) are

characterized by two regions of large concentrations:

one located in the eastern SCS and the other from the

east of the Philippine islands to the west of 1608E, both
between 58 and 208N. The FSU, GFDL, and GSFC

models exhibit distributions somewhat similar to the

observations (Figs. 4i,j,l), though the FSU distribution is

too narrow meridionally. However, the GISS model

shows some unrealistic origins over southern China and

near the date line, leading to the same bias in the MME

mean (Fig. 4n). TC origins in the GFS model have a

strong eastward shift compared with the observations.

TABLE 2. List of TC statistics for observations, MME mean, and

individualmodel ensemblemeans, including 28-yr (1982–2009) long-

term mean annual number of WNP TCs, standard deviation, linear

trend (increase of TCs per decade), AC between observations and

model-simulated interannual TC anomalies, and RMSE. The trend

and the ACs in bold are above the 95% significance level.

Model Mean Std dev Trend AC RMSE

Observation 24.6 3.5 21.4

MME 25.4 2.7 0.2 0.43 3.48

FSU 15.8 2.3 0.0 20.22 9.96

GFDL 33.8 5.6 20.9 0.50 10.38

GISS 30.1 3.6 20.7 0.51 6.55

GSFC 26.3 4.7 1.6 0.16 5.65

GFS 21.0 3.6 0.9 0.24 5.65
FIG. 3. Time series of annual number of WNP TCs from 1982 to

2009 for observations (OBS; black with open circles) and MME

mean (thick red line with open circles), as well as individual model

ensemble means (thin lines: FSU green, GFDL blue, GISS brown,

GSFC purple, and GFS orange). Gray shading denotes the spread

of the five individual model ensemble means around the MME

mean, measured by 61 standard deviation of 5 individual model

ensemble means from the MME mean.
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FIG. 4. Climatology of track density for (a) observations, (c)–(g) individual model ensemble means, and (h) MMEmean and 28-yr total

TC origins gridded as in Fig. 2, for (b) observations, (i)–(m) one ensemblemember of eachmodel, and (n)MME total from onemember of

each model. The longitude (8E) and latitude (8N) of the centroids of the observed TC track density and TC origins are listed at the top of

(a) and (b), respectively. The pattern correlation between the (c)–(n) model simulated and the (a),(b) observed and the corresponding

centroids in the models are listed at the tops of (c)–(n).
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Overall, for TC origins, the GFDL model (Fig. 4j) has

the distribution closest to the observations, and the

MMEmean also shows a good representation, with the

exception of the date line region (Fig. 4n). Consis-

tently, both the GFDLmodel and the MMEmean have

relatively high pattern correlations with observations

for both the TC track density and TC origins. Their

corresponding centroids are also among the closest to

the observations.

To further compare the magnitude and spatial dis-

tribution between the simulations and observations,

TC origins are summed separately along longitudinal

and latitudinal circles after undergoing a smoothing

process similar to that for deriving track density de-

scribed by Wang et al. (2014). The TC origins summed

in the 58 3 58 boxes are smoothed with eight sur-

rounding grid points with a weighting coefficient of 1/2

for the central grid point and 1/16 for the surrounding

grid points. Additionally, the values are further

smoothed using a 3-point running mean along longi-

tude or latitude (as shown in Figs. 5, 8, and 9). For the

climatological TC origins summed meridionally from

the equator to 418N (Fig. 5, left column), the observed

TC origins (black curve) exhibit a high-value zone be-

tween 1308 and 1558E, and three low-value zones in the

western and eastern ends of the WNP and near 1208E
(Philippines). The FSU, GFDL, and GSFC models per-

form reasonably well with similar characteristics and are

also highly correlated with observations (0.79, 0.68, and

0.58). The correlation for the MME is 0.54. Compared to

the observations, the FSU model underestimates TC or-

igins between 1108 and 1608E, while the GFDL model

overestimates TC origins east of 1358E. Both the GFDL

and GISS models simulate well the peak of TC origins

around 1158E. The GISS model slightly underestimates

the number of TC origins to the west of 1608E and largely

overestimates it at the date line, which is related to the

model systematic error seen in Fig. 4k. The GFS model

shows large biases in both the observed high- and low-

value zones (distribution shifted eastward). The GSFC

model also has a similar shift, although not as

pronounced.

For the climatological TC origins summed longitu-

dinally from 1008E to 1808 (Fig. 5, right column), the

distribution of the observed TC origins (black curve)

peaks between 88 and 178N. The GFDL and GISS

models and the MME show similar distributions with

latitude. Compared to the observations, the FSU,

GSFC, and GFS models show peaks shifted southward

with fewer TC formations to the north. Based on the

correlations between model simulations and observa-

tions shown on Fig. 5, the models can capture better the

distribution of TC origins along latitude (Fig. 5, right

column) than the distribution along longitude (Fig. 5,

left column).

c. Association with ENSO

Similar to the observations (Fig. 2, top), the ENSO

composites of track density for individual model en-

semble means and the MME means are shown on

Fig. 6. Although there are biases in the spatial distri-

bution of climatology in each model revealed in Fig. 4,

the composites for the three ENSO types consistently

exhibit higher TC track densities during EP and CP El

Niño (Fig. 6, left and middle) and lower track densities

during La Niña (Fig. 6, right), except for the FSU and

GISS models. However, the contrast between EP and

CP El Niño track density composites in the northeast

part of the WNP (Figs. 2a,b) cannot be seen in all

models’ simulations. The GFDL model has the best

performance in simulating the spatial distribution of

TC density for La Niña (Fig. 6, second row, right

panel), indicated by a pattern correlation of 0.89.

The corresponding composites for track density

anomaly with respect to model climatology are dis-

played in Fig. 7. Most of the models except for the FSU

model (and GISS model, to some extent) show above-

normal track densities across large parts of the WNP

during the two types of El Niño (Fig. 7, left and middle)

and below normal track densities during La Niña
(Fig. 7, right). Furthermore, the FSU, GISS, and GFS

models, and the MME are all able to capture the

characteristics of more landfalling TCs along the coast

of southeastern China during La Niña (Fig. 7, right)

and fewer landfalling TCs during EP El Niño (Fig. 7,

left). Although there are differences between the EP

and CP El Niño composites (Fig. 7, left and middle),

none of the model simulations resembles the observa-

tions (Figs. 2d,e), suggesting a challenge for modeling

the distinguishing impacts of two types of El Niño on

TC track density.

Figures 8 and 9 show the TC origin composites for the

three ENSO types as a function of longitude and latitude,

respectively, for each model ensemble mean and MME

mean together with the observations (black curve). For a

fair comparison with five EP and CP El Niño events, the

composite for La Niña is based on the strongest five epi-

sodes aforementioned. It is clear that the peaks in the

composite of the observed TC origins for La Niña have

more westward locations and slightly higher values than

those in the EP and CP El Niño composites (as shown by

black curves in Fig. 8; also seen in Figs. 2g,h,i), which

cannot be captured completely by any models. The main

difference between the EP and CP El Niño composites is

the relatively high TC formations to the west of 1208E in

the CP El Niño with 3.4 per CP El Niño year and 2.2 per
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EP El Niño year. The FSU and GFDL models can dis-

tinguish the aforementioned main discrepancy between

the two types of El Niño. For La Niña (right column of

Fig. 8), the FSU, GFDL, and GSFC models simulate the

peaks in the western Pacific between 1108 and 1208E better

than the other models. Although there are biases in simu-

lating the variations in TCorigins with longitude in the three

ENSO categories, most models can better simulate the

variability of TC origins with longitude in both the EP and

CP El Niño than in La Niña, as indicated by the Pearson

correlation coefficients.

Figure 9 indicates there is a peak near 108N in the ob-

served TC origins in both El Niño categories, though

slightly weaker in CP El Niño. In the La Niña, the largest

FIG. 5. Climatology of 28-yr total TC origins (left) summed from the equator to 418N as a function of longitude and

(right) summed from 1008E to 1808 as a function of latitude. The black lines are for observations and colored lines for

model results. The values are smoothed with the method described in section 4b. The Pearson correlation (cor) of

climatological TC origins between the models (color lines) and observations (black line) is listed for each panel.
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FIG. 6. Composites of track density during (left) EP El Niño, (center) CP El Niño, and (right) La Niña for (top five rows) five individual

model ensemble means and (bottom row) MME mean. The longitude (8E) and latitude (8N) of the centroid of the simulated TC track

density are listed on the upper-left side, and the pattern correlation with corresponding observations (Figs. 2a–c) on the upper right.
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FIG. 7. As in Fig. 6, but for composites of TC track density anomaly with respect to model climatology. The light white contours represent

the 95% significance level.
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peak is found near 208N with a secondary one near 108N.

Most of the models and the MME mean reproduce the

distribution of TC origins with latitudes in EP El Niño,
except for the GSFC model (and GFS to some extent).

For CP El Niño, the FSU, GFDL, and GISS models, as

well as theMMEmean, capture the changes in TC origins

with latitude, but the GSFC and GFS models have ap-

parent discrepancies. The simulations of the distribution

of the TC origins in La Niña seem difficult for the GCMs,

with the exception of the GFDL and GISS models.

Overall, the GFDL and GISS models and the MME

capture the different characteristics of the TC origins

FIG. 8. As in the left panels of Fig. 5, but for five (left) EP El Niño, (center) CP El Niño, and (right) La Niña years.
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among the three ENSO categories, which is also evident

by the correlation coefficients.

5. Possible explanations for model biases

The changes in both the mean and variability of TCs

are closely related to the changes in thermodynamic

states and large-scale circulation patterns, which are

often employed to detect the causes of biases in model

simulations (e.g., Zhao et al. 2009; Wang et al. 2014;

Shaevitz et al. 2014; Walsh et al. 2015) and differentiate

the discrepancies of TC behaviors among different

ENSO categories (e.g., Chen and Tam 2010; Kim et al.

FIG. 9. As in the right panels of Fig. 5, but for five (left) EP El Niño, (center) CP El Niño, and (right) La Niña years.
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2011; Hong et al. 2011). The key atmospheric conditions

favorable for TC formation are ascending motions over

warm SST, moistened midtroposphere, and weak verti-

cal wind shear (e.g., Camargo et al. 2007a; Kim et al.

2011). The following analyses focus on these atmo-

spheric factors in order to examine the possible causes of

the biases of TC activity in the GCM simulations.

The JASO mean climatology of the observed 200–

850-hPa vertical wind shear and the mean biases of the

vertical wind shear and climatology of TC origin for

each model ensemble mean and the MME are shown in

Fig. 10. For the observed climatology of vertical shear

(Fig. 10a), the region within a small magnitude of neg-

ative vertical shear over the northeast of the Philippines

coincides with the region of high TC track density and

dense TC origins in the observations (Figs. 4a,b).

In the model simulations, there seems to be a corre-

spondence between the biases in the vertical wind shear

(Figs. 10b–g) and the TC origins (Figs. 10h–m), espe-

cially over the low-latitude ocean between the equator

and 208N. For example, the negative biases of vertical

shear in all five models and the MME located east of

1608E (Figs. 10b–g) relative to the observed positive

vertical shear in the same region (Fig. 10a) indicate

weakened vertical shear in the simulations. Conse-

quently, a bias of enhanced TC origins is found in the

same region in all the simulations (Fig. 10h–m). On the

other hand, the negative biases of vertical wind shear in

the MME and all models except the GFS over the re-

gion from the south of Taiwan to the northern SCS

have the same sign as the observed negative vertical

wind shear in the same region (Fig. 10a) and thus in-

dicate an enhanced vertical shear in the simulations.

As a result, there is a bias of decreased TC origins in all

fivemodels and theMME simulations distributed in the

same region from the south of Taiwan to the northern

SCS (Figs. 10h–m).

Figure 11 displays the composites of JASO mean

vertical wind shear anomalies associated with the three

ENSO categories for the observations (Figs. 11a–c) and

MME (Figs. 11d–f), respectively. To some extent, the

model responses to different ENSO phases are consis-

tent with the observations. Associated with the EP El

Niño (Figs. 11a,d), the negative vertical wind shear

anomalies in the central and eastern parts of the WNP,

which favor TC activity in the southeast part of theWNP

(Figs. 2d, 7), are found in both the observations and

MME. The distributions of opposite anomalies associated

with La Niña (Figs. 11c,f) are also evident in both the

observations and MME. Likewise, they are associated

with reduced TC activity in the southeastWNP (Figs. 2f,

7). The MME fails to capture the fine structure of wind

shear anomalies over eastern China during CP El Niño

(Figs. 11b,e). However, as with the EP El Niño, in-
creased TC activity associated with reduced wind shear

in the southeast part of theWNP is found for bothMME

and the observations (Figs. 2e, 7). In general, for the

three ENSO categories, the models simulate the wind

shear anomalies better in the low latitudes (08–208N)

than in the higher latitudes (208–408N). The simulations

in the low latitudes are better to the east of 1208E than to

the west.

It is well known that there are other factors also af-

fecting TC activity, such as SST (Graham et al. 1987),

midlevel moisture (Gray 1979; Camargo et al. 2007a),

and tropical deep convection (Kim et al. 2011). The

tropical deep convection is known to be related to SST

heating and sufficient midlevel moisture, which in turn

provides a heating source for the atmosphere. There-

fore, the different locations of SST anomalies in the

ENSO categories may lead to changes in deep convec-

tion over the tropical Pacific and, thus, changes in the

atmospheric response.

In the tropics, deep convection and the associated

heating of the atmosphere can be well represented by

the distribution of tropical precipitation (e.g., Wang

et al. 2012, 2014). Figure 12 shows the composites of

JASO mean precipitation anomalies in each ENSO

category for both observations and the MME. Consis-

tent with the observations, the MME shows above-

normal precipitation in the eastern and central Pacific

during EP El Niño (Figs. 12a,d) and below-normal

precipitation during La Niña (Figs. 12c,f). Associated

with CP El Niño, there are similar anomalies in pre-

cipitation but with a smaller magnitude and shifted

westward as compared with EP El Niño. This kind of

contrast of the deep convection (precipitation) associ-

ated with EP and CP El Niño has been noted in previous

studies, such as Hu et al. (2012). Therefore, it is evident

that the GCMs simulate well the precipitation anoma-

lies over the tropical Pacific associated with the three

ENSO categories. However, some deficiencies exist in

the simulations; for example, the anomalies are much

weaker over theMaritimeContinent and between 1608E
and 1808 for all ENSO categories. These deficiencies

may be responsible for the biases of TC formations in

the MME, in which there are negative (positive) TC

origin biases over the southeastern (northwestern) part

of the WNP during the two types of El Niño events

(Fig. 12g,h), while the opposite is true during La Niña
events (Fig. 12i).

Midlevel moisture is also a key factor affecting both

TC climatology (Cheung 2004) and ENSO-induced

variability (e.g., Camargo et al. 2007a). Figure 13

shows the observed and simulated (MME) JASO

mean climatology of 500-hPa relative humidity and the
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FIG. 10. (a) Observed JASO climatology of vertical shear of zonal wind (m s21) between 200 and 850 hPa and mean bias in the (b) FSU,

(c) GFDL, (d) GISS, (e) GSFC, and (f) GFS models, as well as in (g) the MME; (h)–(m) the corresponding mean bias of TC origin.
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composites of corresponding anomalies for each type of

ENSO. As compared with the observations (Fig. 13a),

the moistened atmosphere south of 208N and east of

1308E in the MME (Fig. 13b) may be related to the

overestimated TC track density expanding eastward

toward the date line, which is not found in the obser-

vations (Figs. 4a,h). In contrast, the drier atmosphere

over the region from the Sea of Japan stretching

southward to Taiwan likely leads to a locally sparser TC

track density in MME than in the observations (Figs. 4a,

h or Fig. 10m).

In general, the ENSO-related humidity anomalies

in the MME mean (Fig. 13, right) are weak over

the southeastern part of the WNP and strong over the

northwestern part of the WNP as compared to the

observations (Fig. 13, left). For instance, the composites

of the relative humidity anomalies for the EP and CP El

Niño show lower moisture over the central and eastern

parts of the WNP in the MME (Figs. 13f,g) than in the

observations (Figs. 13b,c). These coincide with the

lower TC track density over the central and eastern

parts of the WNP in the MME (Fig. 7, two bottom-left

panels) than in the observations (Figs. 2d,e). Associated

with La Niña, the positive anomalies over the central

and western parts of the WNP are farther east in the

MME (Fig. 13h) than in the observations (Fig. 13d).

The positive anomalies over the southwest part of the

WNP are weaker in intensity and smaller in extent than

in the observations. These biases may be related to

the positive TC track density anomalies in the MME

FIG. 11. Composites of JASO mean vertical wind shear anomalies (m s21) for (a),(d) EP El Niño; (b),(e) CP El

Niño; and (c),(f) La Niña during 1982–2009 in (a)–(c) observations and (d)–(f) the MME mean. The light gray

contours represent the 90% significance level.
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shifting toward the east of the coast off east Asia and

the sparse TC track density over the SCS (Fig. 7,

bottom-right panel), as compared with the observa-

tions (Fig. 2f).

Changes in TC tracks between El Niño and La Niña
years are largely due to changes in steering flow (Colbert

and Soden 2012). The anomaly composites of the JASO

steering flow for each ENSO category are shown in Fig. 14

for both observations and the MME, together with the

corresponding TC track density anomalies. In the obser-

vations, the positive (negative) anomalies of TC track

density generally match the southerly (northerly) steering

flow. Off the coast of southeastern Asia, more (fewer)

landfalling TCs are consistent with onshore (offshore)

winds. In bothEPandCPElNiño composites (Figs. 14a,b),

the positive anomalies of TC track density match the

southerlies, which cover most parts of theWNP except for

some regions, such as the SCS. The opposite occurs in the

composite of La Niña (Fig. 14c). Between EP and CP El

Niño (Figs. 14a,b), the differences in the deep-layer steer-

ing flow can also be seen, for example, in the northerly

winds over the coast of East Asia in EP El Niño and the

southeasterlywinds inCPElNiño.Consequently, there are
fewer landfalling TCs over the coast of East Asia in EP El

Niño (Fig. 14a) and more in CP El Niño (Fig. 14b).

In the MME (Figs. 14d,e), for both the EP and CP El

Niño composites there are southerlies shifting south-

eastward compared with the observations (Figs. 14a,b).

The anomalies of TC track density in both the EP and

CP El Niño thus locate farther southeast in the MME

than in the observations. There are offshore winds over

the coast of East Asia in CP El Niño (Fig. 14e) but on-

shore winds in the observations (Fig. 14b), which leads

to the MME bias of less TC track density over the coast

of East Asia than in the observations. Concerning the

deep-layer steering flow in La Niña years, there are also
biases in the MME (Fig. 14f), with easterly winds near

the central coast of China between 1208 and 1408E but

northerlies over the same region in the observations

(Fig. 14c). This is consistent with the positive TC track

density in the MME and the negative anomalies in the

observations (Figs. 14c,f). Overall, the less southerly but

more zonal steering flow in the MME seems associated

with weaker TC track density anomalies.

6. Summary and conclusions

Based on the output data of the HWG experiments,

the multimodel performance in simulating the variabil-

ity of TCs in theWNP and its association with ENSO are

FIG. 12. (top),(middle) Composites of JASO mean precipitation anomalies (mmday21) and (bottom) the biases of composites of

anomaly TC origin for (a),(d),(g) EP El Niño; (b),(e),(h) CP El Niño; and (c),(f),(i) La Niña during 1982–2009 for (a)–(c) observations,

(d)–(f) the MME mean, and (g)–(i) the biases of TC origins. The composites are based on the five EP El Niño, five CP El Niño, and five

strongest La Niña years. The anomalies circled by the light red lines in (a)–(f) are above the 99% significance level. The red box in

(a)–(f) denotes the NWP region.
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analyzed. The results indicate that each model has dif-

ferent mean biases in terms of TC track density and TC

origins. Similar to the results of Wang et al. (2014) for

the Atlantic basin, among the five models, the GFDL

model has the best performance, although it tends to

overestimate annual TC numbers. The MME mean is

the closest to the observations in terms of climatological

annual mean TC numbers and has the smallest RMSE

and a relatively high anomaly correlation. Therefore, it

is recommended to use theMME for dynamical typhoon

seasonal predictions over the WNP.

For the association with ENSO, overall, the GCMs

simulate well the variability of WNP TCs, with stronger

TC activity during EP and CP El Niños and weaker TC

FIG. 13. JASO climatology of 500-hPa relative humidity (%) in (a) observations and (e) the MME mean, and

composites of JASO mean 500-hPa relative humidity anomalies (%) for (b),(f) EP El Niño; (c),(g) CP El Niño; and
(d),(h) La Niña during 1982–2009 in (b)–(d) the observations and (f)–(h) the MME mean.
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activity during La Niña. On the other hand, however,

GCMs fail to reproduce the observed differences of

WNP TC activity between EP and CP El Niños. The
spatial distribution of TC track density and origins is not

completely consistent among the models, indicating

strong model dependence.

The differences between the models and the ob-

servations may be associated with the biases of mul-

tiple environmental factors affecting TCs. For

instance, the majority of the models are unable to

simulate the detailed spatial distribution of vertical

wind shear in response to the shift in tropical heating

associated with CP El Niño. The models also have

biases in simulating the ENSO-related variations of

the large-scale atmospheric humidity field and deep-

layer steering flow, both of which affect TC genesis

and the distribution of TC tracks. Specifically, the

MME fails to capture the intensity of deep convection

anomalies over the Maritime Continent during dif-

ferent ENSO phases, which may be a manifestation

FIG. 14. Composites of JASO mean deep-layer steering flow anomaly (vectors; m s21) and TC track density

anomaly (shadings) for (a),(d) EP El Niño; (b),(e) CP El Niño; and (c),(f) La Niña during 1982–2009 in (a)–(c) ob-

servations and (d)–(f) the MMEmean. Arrow scales are given at the top right of (a) and (d) for the observations and

MME, respectively.
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of a key problem causing a lower model skill in the

WNP than in the North Atlantic. Furthermore, the

small sample sizes for ENSO events in the observa-

tions may be a factor affecting the robustness of the

composite results.

There are other factors that may affect the results of the

simulated interannual variability of TCs. Besides the res-

olution of the models, two other factors mentioned by

Wang et al. (2014) should also be noted here. One is the

model sensitivity to different SST datasets (e.g., LaRow

2013). TheFSUmodel is forcedwith theNOAAOISSTv2,

whereas the other models are forced with HadISST. The

other is the different TC tracking schemes employedby the

five modeling groups for their GCMs (Table 1). TC track

density and origins in themodels are proved to be sensitive

to the schemes used, which has been showed in Horn et al.

(2014). Even so, this study indicates that, given a good

prediction of ENSO SST in coupled GCMs, certain skills

can be achieved for the dynamical seasonal prediction of

TC activity over the WNP.
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