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ABSTRACT
Assessing the contribution of Moso bamboo (Phyllostachys pubescens)
forest to forest ecosystem carbon storage requires accurate estimation
of gross primary production (GPP). Based on measurements of
light-use efficiency (LUE), defined as the ratio of measured GPP to
photosynthetically active radiation (PAR), from the eddy covariance
flux tower, the linear regressionmodel and partial least squares regres-
sion model were used for estimation of LUE using the Moderate-
Resolution Imaging Spectroradiometer (MODIS) reflectance data. GPP
estimates were then calculated by the product of LUE estimates and
PAR (named the LUE-PARmodel), which was comparedwith GPP from
the GPP algorithm designed for the MODIS sensor aboard the Aqua
and Terra platforms (MOD17A2 model) and the EC-LUE model. The
results revealed the PLSmodel performedbetter than the linear regres-
sion model in LUE estimation but had lager uncertainties in high and
low LUE values. GPP estimates driven by a MODIS-based radiation
product with high spatial resolution was more accurate than those
driven by Modern-Era Retrospective Analysis for Research and
Applications (MERRA) radiation product from the NASA’s Global
Modelling and Assimilation Office data set. The LUE-PAR model had
the highest accuracy than the other two LUE models. The GPP values
derived from the EC-LUE model driven by photosynthetically active
radiation (PAR) fromMERRA andmaximum LUE from the EC data were
overestimated due to the overestimation in MERRA radiation product.
The GPP values derived from theMOD17A2model driven by PAR from
the MERRA and maximum LUE from the biome properties look-up
table were underestimated due to underestimation in the maximum
LUE of Moso bamboo forest. This study implied that the LUE-PAR
model driven by LUE estimates from the PLS model and PAR from
MERRA is a superior approach in improving GPP simulations, and PAR
products with high spatial resolution and accurate species-specific
maximum LUE are necessary for the LUE models in estimating GPP at
regional scale.
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1. Introduction

Gross primary production (GPP) of terrestrial ecosystems is a key part of terrestrial
carbon cycle, which plays an important role in regulating the exchange of carbon
between the atmosphere and terrestrial ecosystems and further global climate change
(Zhao and Running 2010). Bamboo forest is one of important forest types in the world.
The area of bamboo forest is about 37 million hectares in the world and accounts for
roughly 1% of the global forest area in 2005 (Lobovikov et al. 2007). Moso bamboo
(Phyllostachys pubescens) is a major bamboo species in China. A special characteristic of
Moso bamboo forest is that production of new bamboo shoots fluctuated significantly
among years (Li et al. 1998). According to the number of bamboo shoots, Moso bamboo
forest can be classified as either on-year (‘good’ year) or off-year (‘poor’ year) bamboo
forest, i.e. the year of bamboo shoot production is known as the on-year and the
following year with less shoot production is known as the off-year (Li et al. 1998; Zhou
et al. 2011). The number of bamboo shoots in an on-year is considerably greater than
that in an off-year during mid-March to mid-May. On-year and off-year often alternated,
forming a regular biennial cycle (Li et al. 1998). Leaf lifespan of Moso bamboo is two
years, except in the first-year shoots where it is only one year (Li et al. 1998). Most of
leaves in on-year are two years old leaves and those in off-year are one year old leaves.
Two years old leaves and leaves on the first-year shoots are dropped in April (Li et al.
1998). Flushing of new leaves soon follows upon leaf dropping (Li et al. 1998). The
characteristics of carbon storage of Moso bamboo forest are also different with other
forest types. The height growth of bamboos is surprisingly rapid and arrives at their
maximum height in about 40 days (Yen 2016). The biomass and soil carbon storage of
Moso bamboo stands is strongly correlated with management strategies (Yen 2015; Li
et al. 2013). Mean aboveground carbon sequestration value of Moso bamboo forests was
higher than that of China fir plantations (Yen and Lee 2011). Many previous studies have
demonstrated that Moso bamboo has a strong ability in absorbing carbon from the
atmosphere and plays an important role in climate change mitigation (Chen et al. 2009;
Komatsu et al. 2010; Lou et al. 2010; Li, Zhou et al. 2015). Accurate spatial and temporal
GPP estimates of Moso bamboo are critical to understand and assess its contribution to
forest carbon sequestration. Study on GPP estimation of Moso bamboo forest was rare
and had considerable uncertainty in GPP estimates based on terrestrial carbon cycle
model driven by remote sensing data (Xu et al. 2013).

Light-use efficiency (LUE) model is one kind of terrestrial carbon cycle models and has a
firm ecophysiological basis, which is on the basis of strong relationship between GPP and
the amount of solar energy the plants absorbed (Running and Zhao 2015). Many different
LUE models were developed, such as the GPP algorithm designed for the MODIS sensor
aboard the Aqua and Terra platforms (MOD17A2 model) (Running and Zhao 2015),
Carnegie–Ames–Stanford approach (Potter et al. 1993), Vegetation Photosynthesis
Model (Xiao et al. 2004), and Eddy Covariance-Light Use Efficiency (EC-LUE, Yuan et al.
2007). These LUE models have been widely used in estimating spatial distribution of GPP
of forest ecosystem because they are simple and useful and easy to couple with remote-
sensing data for large-scale application (Hilker et al. 2008; Yuan et al. 2014; Zhang et al.
2015). A key issue is to determine maximum LUE without environmental stress (ɛmax),
which is an important model parameter in the LUE models and significantly effects on the

INTERNATIONAL JOURNAL OF REMOTE SENSING 211



accuracy of LUE models (Cheng et al. 2014). The ɛmax varies widely with different vegeta-
tion types (Turner et al. 2003) and with different temporal-spatial pattern of same
vegetation type (Hember et al. 2010). For regional studies, the ɛmax should be carefully
recalibrated and field-derived ɛmax can be consistently applied to large-scale modelling
(Xin et al. 2015). However, it is hard to get accurate and representative ɛmax for regional
studies through limited field inventory data and EC measurements, resulting in lager
uncertainty in spatial variation of GPP estimates (Wang et al. 2010; Groenendijk et al.
2011; Keenan et al. 2012). Previous researches have shown that a direct estimation of LUE
could reduce uncertainty of GPP estimates (Goerner, Reichstein, and Rambal 2009; Wu
et al. 2012). Alternative approaches were presented to estimate proxy of LUE (such as
chlorophyll content) or LUE using remote-sensing data (Gitelson et al. 2005, 2006; Wu et al.
2009; Peng et al. 2011), which has advantage in avoiding the issue of determining ɛmax and
can well represent the spatial heterogeneity of LUE. Estimation of chlorophyll content
based on remote-sensing data has been proven feasible and can provide an acceptable
accuracy because of the strong absorption by chlorophyll content in the visible blue and
red regions (Gitelson et al. 2005; Peng et al. 2011). A good correlation has been found
between canopy chlorophyll content and LUE for different vegetation types (Gitelson et al.
2006, 2014; Wu et al. 2009). Therefore, using remote-sensing data for LUE estimation is
also feasible, which can provide spatial distribution of LUE and is a new possibility to
estimate GPP (Wu et al. 2009, 2010, 2012).

In this study, the site-specific LUE of Moso bamboo forest was calculated based on GPP
and photosynthetically available radiation (PAR) measurements from EC flux tower. Then,
relationships between measured LUE and the Terra MODIS 8-day composite reflectance
product (MOD09A1) were built using the empirical statistical models. GPP was estimated
according to the product of predicted LUE and PAR and was then compared with GPP
estimates derived from other LUE models. The objectives of this study are (1) to test the
possibility for estimating LUE of Moso bamboo forest using MOD09A1 reflectance data, (2)
to test the effect of PAR from different sources with different spatial resolution (observed
PAR, PAR from the Modern-Era Retrospective Analysis for Research and Applications
(MERRA) data set, and PAR estimates calculated from a solar radiation model) on accuracy
of GPP estimates, and (3) to test the usefulness of themodel in the estimation of GPP using
MOD09A1 reflectance data and compare the model proposed in this study with different
LUE models, such as the EC-LUE model and MOD17A2 algorithm.

2. Study area

The study area is located in Anji County, Zhejiang province, China, which is rich in Moso
bamboo forest (Figure 1). Bamboo forest encompasses an area of 757 km2 and accounts
for 56.47% of the forested area, in which 79.30% is Moso bamboo. The canopy height of
the Moso bamboo forest is approximately 11 m. The average annual precipitation is
between 1100 and 1900 mm, and the average annual temperature is between 12.2°C
and 15.6°C. An EC tower (30.476°N, 119.673°E) was built in 2010 to measure carbon fluxes
of Moso bamboo forest because of large carbon sequestration potential for Moso bamboo
forest. The 1000 × 1000 m square around the EC tower site comprises mainly Moso
bamboo forest (86.1%) with small proportions of mixed forest (1.9%), cropland (8.6%),
and buildings (3.4%). The site is surrounded by relatively complex terrain, ranging in
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elevation from 288 to 525 m above sea level. The southern and southeastern region of the
site is flat, whereas the northern and northwestern region is steeper. The EC system and its
measurements are described in detail by Xu et al. (2013).

3. Materials and methods

In order to make this research design clear, a flow chart is shown in Figure 2. Table1
gives the explanations of those abbreviations shown in Figure 2.

3.1. Acquisition of GPP and LUE

The LUE of the canopy was defined as GPP divided by PAR in this study (Wu et al. 2009;
Gamon, Serrano, and Surfus 1997). Daily GPP and PAR were calculated based on half-hourly
values which were measured by the EC method and were corrected following the proces-
sing method introduced by Papale et al. (2006) using EdiRe and Matlab R2010b softwares.
Missing half-hourly flux measurements were gap-filled based on the methods presented in
Xu et al. (2013) and Lasslop et al. (2010). Daily values of GPP and PAR were indicated as
missing if missingmeasurements accounted for greater than 20% of all data on a given day.
The 8-day GPP and PAR were also calculated as the average value within 8-day period using
daily GPP and PAR. The 8-day GPP and PAR were indicated as missing when missing daily
GPP and LUE are greater than 40% of all data during the period of 8 days. Then, the 8-day
LUE was calculated as 8-day GPP divided by 8-day PAR.

Figure 1. Study area and location of flux tower in Anji county, Zhejiang Province, China.
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3.2. PAR data set

Three kinds of surface incident shortwave radiation (SISR) data set were collected. The
SISR is converted to PAR by multiplying by 0.45 for calculating GPP (Cai et al. 2014). The
first one, named as PARflux, is measured using a CNR4 radiometer (4-Component Net

Comparisons 

between the three 

LUE models 

Effects of different PAR 

data on GPP estimates 

MODIS09A1 LUEflux PAR data 

PARflux PARx

LUElinear LUEPLS

GPPLPF GPPLPX GPPLPM

GPPEC-LUE

PARMERRA

LUE model 2: 

EC-LUE model

LUE model 3: 

MOD17A2 model

Linear PLS 

GPPMOD17A2

LUE model 1: 

LUE-PAR model 

Figure 2. Flow chart of this research design.

Table 1. The explanations of those abbreviations shown in Figure 1.
Abbreviation Full name Explanation

LUEflux Observed LUE from the EC flux tower Defined as GPP divided by PAR

LUElinear Estimated LUE using the linear regression /
LUEPLS Estimated LUE using the partial least squares (PLS)

regression
/

PARflux Observed PAR from the EC flux tower /

PARX Estimated PAR from a solar radiation model Spatial resolution of 1 km;
Details in Xu, Du, Zhou, Mao et al. (2016)

PARMERRA Estimated PAR from the MERRA dataset Spatial resolution of 0.50° latitude by 0.67°
longitude

GPPLPF Estimated GPP using the LUE-PAR model Calculated as LUEPLS multiplied by parflux

GPPLPX Estimated GPP using the LUE-PAR model Calculated as LUEPLS multiplied by PARX

GPPLPM Estimated GPP using the LUE-PAR model Calculated as LUEPLS multiplied by PARMERRA

GPPEC-LUE Estimated GPP using the EC-LUE model Driven by PARMERRA, maximum LUE
calibrated by EC flux data

GPPMOD17A2 Estimated GPP using the MOD17A2 model Driven by PARMERRA, ɛmax (1.05 g C m−2

day−1 MJ−1) From the biome properties
look-up table
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Radiometer, Kipp & Zonen, The Netherlands) located above the forest canopy layer at
heights of 38 m above ground at EC flux tower site Anji. The second one, named as
PARMERRA, is downloaded from the MERRA data set from http://gmao.gsfc.nasa.gov/
research/merra/ with a spatial resolution of 0.50° latitude by 0.67° longitude. The third
one, named as PARX, is average of the SISR from the MERRA data set and the SISR from a
solar radiation model (Xu, Du, Zhou, Mao et al. 2016). The PARX has higher spatial
resolution of 1 km and accuracy than PARMERRA (Xu, Du, Zhou, Mao et al. 2016).

3.3. MODIS reflectance data and vegetation indices

Surface reflectance data were acquired from the MOD09A1 at 500-m resolution and
downloaded directly from the website of the Oak Ridge National Laboratory Distributed
Active Archive Center. The MOD09A1 product includes seven bands: band 1 (red,
620–670 nm), band 2 (NIR, 841–876 nm), band 3 (blue, 459–479 nm), band 4 (green,
545–565 nm), band 5 (mid-IR, 1230–1250 nm), band 6 (mid-IR, 1628–1652 nm), and band
7 (mid-IR, 2105–2155 nm). There are uncertainties in MODIS reflectance data due to
atmospheric effects, clouds, and snow. In order to remove bad reflectance data, blue
band 3 reflectance data greater than 0.05, referred to the measured reflectance data of
the forest canopy of Moso bamboo, were defined as bad data. Then, other band
reflectance data were defined as bad if the blue band 3 reflectance data were bad.
The raw MOD09A1 reflectance data and the values after the removal of the bad data are
shown in Figure 3, which shows that the outliers were removed appropriately.

Based on MOD09A1 reflectance data, three important vegetation indices were calcu-
lated for estimating the LUE. Normalized difference vegetation index (NDVI, Equation
(1)), enhanced vegetation index (EVI, Equation (2)), and simple ratio (SR, Equation (3)) are
shown good relationships with LUE (Gitelson et al. 2006; Goerner, Reichstein, and
Rambal 2009; Wu et al. 2009, 2012). Total 10 variables, including seven reflectance
bands and three vegetation indices, were used to build models for estimating LUE.
The three vegetation indices can be calculated as follows:

NDVI ¼ RNIR � Rredð Þ= RNIR þ Rredð Þ (1)

EVI ¼ 2:5� RNIR � Rredð Þ= RNIR þ 6� Rred � 7:5� Rblue þ 1ð Þ (2)

SR ¼ RNIR=Rred � 1 (3)

where RNIR, Rred, and Rblue are reflectance data in the NIR band 2, red band 1, and blue
band 3, respectively.

3.4. LUE estimation methods

Two empirical statistical models were used to build relationship between LUE and MODIS
reflectance data. One is a linear regression model. Stepwise selection method embedded
in SPSS 13.0 software was used to select variables for the model, defining 0.05 and 0.10 as
thresholds for adding and removing an independent variable, respectively. The other one
is the partial least squares (PLS) regression. The PLS regression method has the ability to
analyse data with noisy, collinear, and even incomplete variables in both dependent and
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independent data because a principal component analysis technique was involved in the
PLS regression (Wold, Sjöström, and Eriksson 2001). The precision of themodel parameters
was also improved with increasing number of relevant variables and observations (Wold,
Sjöström, and Eriksson 2001). A detailed description of the PLS regression is provided in
Wold, Sjöström, and Eriksson (2001). The important step in using the PLS regression is to
determine the number of components and the method for choosing the optimal number
of components was described in Xu et al. (2011). The PLS-bootstrap algorithm was used to
select variables, and details of the algorithm are presented in Lazraq, Cleroux, and Gauchi
(2003). The PLS regression method was run using the Matlab R2010b software.

3.5. LUE models for GPP estimation

Three LUE models were used to estimate GPP and compared with measured GPP from
EC. The three LUE models were also compared with each other in this study. The first
LUE model (LUE-PAR) is that GPP is calculated by LUE estimates from this study multi-
plied by PAR (Equation (4)):

Figure 3. Time series of (a) raw MOD09A1 reflectance data and (b) values after removal of bad data
for band 1 (red, 620–670 nm), band 2 (NIR, 841–876 nm), band 3 (blue, 459–479 nm), and band 4
(green, 545–565 nm).
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GPPLUE-PAR ¼ PARð Þ � LUEð Þ (4)

The second LUE model is that the MOD17A2 model designed for the MODIS sensor
aboard the Aqua and Terra platforms (Equation (5)). The details of the MOD17A2 model
are presented in Running and Zhao (2015).

GPPMOD17A2 ¼ εmax � Tscalar � VPDð Þscalar � FPARð Þ � PARð Þ (5)

where GPPMOD17A2 is GPP estimates from the MOD17A2 model. εmax is obtained from the
biome properties look-up table and is constrained by using simple linear ramp functions
of minimum air temperature (Tscalar) and vapour pressure deficit (VPDscalar). Values of
temperature, VPD, and PAR are obtained from the NASA’s Global Modelling and
Assimilation Office (GMAO/NASA) data set. FPAR is the fraction of PAR absorbed by
the vegetation canopy. Satellite-derived FPAR product, which is directly qualified by the
NDVI product, was used to calculate absorbed PAR.

The third LUE model is the EC-LUE model presented by Yuan et al. (2007) and has
been successfully used in estimating GPP of Moso bamboo forest (Xu et al. 2013)
(Equation (6)). The εmax in the EC-LUE model is constrained by air temperature and
moisture.

GPPEC-LUE ¼ Gmax � εmax � minðTs;WsÞ � FPARð Þ � PARð Þð Þ
εmax � minðTs;WsÞ � FPARð Þ � PARð Þð Þ þ Gmax

(6)

where Ts and Ws are the downward-regulation scalars for the respective effects of air
temperature and moisture on LUE of vegetation (Yuan et al. 2007). Ws is calculated as
latent heat flux divided by net radiation (Yuan et al. 2010) and Ts is estimated based on the
equation developed for the terrestrial ecosystem Model (Raich et al. 1991). Gmax is the
potential GPP. Themeteorological inputs for the EC-LUEmodel, such as PAR, net radiation,
and air temperature, are from the MERRA reanalysis data set at GMAO/NASA. The FPAR is
calculated from NDVI data with a linear equation built by Myneni and Williams (1994). The
latent heat flux is calculated using the remote-sensing-driven Penman–Monteith model
(Mu et al. 2007).

3.6. Statistic analysis

The MODIS reflectance data, PAR, LUE, and GPP data set shown in Table 2 were used in this
study. All data set were synthesized into 8-day average. Minimum and maximum values of
measured/obtained parameters (such as LUE, GPP, and vegetation indices) along with

Table 2. Description of remote sensing data and biophysical parameters used in this
study.
Dataset Year Temporal scale Source

MOD09A1 band 1 ~ 7 2000–2014 8-day ORNL DAAC
NDVI, EVI, SR 2000–2014 8-day ORNL DAAC
PARflux 2011–2013 Daily Anji EC flux tower
PARMERRA 2000–2014 Daily GMAO/NASA
PARX 2011–2012 Daily Xu, Du, Zhou, Mao et al. (2016)
LUEflux 2011–2013 (n = 78) Daily Anji EC flux tower
GPPflux 2011–2013 (n = 78) Daily Anji EC flux tower
GPPMOD17A2 2000–2014 8-day ORNL DAAC
GPPEC-LUE 2003–2011 8-day Xu et al. (2013)
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standard deviation are shown in Table 3. Themeasured LUE andGPP from three years (2011,
2012, and 2013) with 78 available data were divided into two parts. The data set with
sequence number (2, 6, 10. . ., 78) was used as an independent dataset (n = 20) for the
validation of the prediction accuracy of the linear regression and PLSmodels. The remaining
data set (n = 58) was used for building the linear regression and PLS models for the
estimations of LUE. The goodness of fit of the linear regression and PLS models were
measured by calculating the correlation coefficients (r), root mean squared error (RMSE),
and relative RMSE (RMSEr) for the calibration and validation sets. The prediction accuracy of
LUE models for estimating GPP were also evaluated by comparing GPP estimates with
measured GPP from EC flux tower.

4. Results

4.1. Relationships between reflectance data and LUE

The correlation analysis between LUE of Moso bamboo forest and the reflectance data
(Table 4) showed that the visible reflectance band has higher r with LUE than the NIR and
mid-IR reflectance bands. The r of −0.38 (p < 0.01) between the red band 1 reflectance
(620–670 nm) and LUE was the highest, implying that the red reflectance band is a good
indicator for the estimation of LUE, followed by NDVI with r of 0.35 (p < 0.01) and SR with r
of 0.33 (p < 0.01). The reflectances in the visible blue band 3 (p < 0.05) and the visible green
band 1 (p < 0.05) had significantly negative correlation with LUE, whereas the NIR
reflectance band 2 had the weakest relationships with LUE.

4.2. LUE estimates from linear regression and PLS models

Only reflectance data in band 1 was selected to build a linear regression model for the
estimation of LUE based on a stepwise variable selection method using 58 sample data

Table 3. Minimum (Min) and maximum (Max) values of GPPflux, LUEflux, vegetation indices, and
reflectance data (band 1 ~ band 7) along with standard deviation (Std).

GPPflux LUEflux SR NDVI EVI band 1 band 2 band 3 band 4 band 5 band 6 band 7

Min 1.69 0.04 2.09 0.51 0.23 0.01 0.14 0.01 0.03 0.16 0.12 0.05
Max 7.35 0.09 14.66 0.88 0.56 0.08 0.36 0.04 0.09 0.57 0.23 0.14
Std 1.42 0.01 2.59 0.08 0.08 0.01 0.05 0.01 0.01 0.06 0.03 0.02

Table 4. Correlation coefficients (r) between LUEflux and reflectance data
(band 1 ~ band 7) and between LUEflux and vegetation indices.
Variable r p-value

Band 1 (620–670 nm) −0.38 0.001
Band 2 (841–876 nm) −0.05 0.698
Band 3 (459–479 nm) −0.28 0.013
Band 4 (545–565 nm) −0.25 0.026
Band 5 (1230–1250 nm) −0.09 0.440
Band 6 (1628–1652 nm) −0.13 0.265
Band 7 (2105–2155 nm) −0.21 0.065
SR 0.33 0.004
NDVI 0.35 0.002
EVI 0.12 0.288
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collected from 2011 to 2013. The linear regression equation (Equation (7)), which is
significant at the level of 0.01, was used for estimating LUE.

LUElinear ¼ 0:081� 0:497� Rred (7)

The above equations yielded accuracy of r = 0.49 and RMSEr = 19.58% for the calibration
data set and of r = 0.58 and RMSEr = 20.00% for the validation data set (Figure 4). The
linear regression model has poor ability to predict high and low LUE values. The high
LUE values were obviously underestimated, whereas the low LUE values were seriously
overestimated.

Compared with stepwise selection method, three independent variables were
selected from original 10 variables for the PLS regression model based on the PLS-
bootstrap algorithm. The structure of the PLS equation (Equation (8), p < 0.01) used for
estimating LUE is as follows:

LUEPLS ¼ �0:034� 0:269� RNIR þ 0:712� Rgreen þ 0:170� NDVIð Þ (8)

where Rgreen is reflectance data in the green band 4.
The PLS regression model has the higher r and lower RMSEr values between the predicted

LUE (LUEPLS) and measured LUE from EC flux tower (LUEflux) for both the calibration and the
validation datasets than the linear regression model (Figure 5), implying that the PLS regres-
sion has better predictive ability for estimating LUE than the linear regression model.
However, the same issue with the linear regression model happens in the PLS regression
model. There exists the problem in slight overestimation of LUEflux values lower than 0.05 g C
m−2 PAR and underestimation of LUEflux values greater than 0.07 g C m−2 PAR.

4.3. Comparisons in GPP derived by different PAR estimates

The resulting LUEPLS is combined with PAR to calculate GPP. Effects of PAR from three
different sources on GPP estimates are compared in this study (Table 5 and Figure 6).
Compared with measured GPP from EC flux tower (GPPflux), GPP estimates driven by the
PARflux (GPPLPF) have the highest accuracy with RMSE of 1.03 g C m−2 day−1 and RMSEr of
24.10% (Table 5 and Figure 6(a)). The RMSE and RMSEr of GPP estimates driven by the PARX

r = 0.49
RMSE = 0.012
RMSEr = 19.58%
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Figure 4. Comparison of predicted LUE (LUElinear) from the linear regression model and measured LUE
(LUEflux), (a) calibration data set and (b) validation dataset. The 1:1 line is marked with a dashed line.
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(GPPLPX) are comparable to those driven by the PARflux (Table 5 and Figure 6(b)), implying
that the PARXwith high spatial resolution and accuracy significantly reduced the uncertainty
of the GPP estimates compared with GPP estimates driven by the PARMERRA (GPPLPM).
Compared to PARflux (Figure 6(a)) and PARX (Figure 6(b)), the PARMERRA results in obvious
overestimation of GPP estimates (Figure 6(c)) and the absolute relative error (ARE) of GPPLPM
decreases as GPPflux increases (Figure 7).

4.4. Comparisons in GPP from different LUE models

Compared with GPPflux in 2011, GPPLPF has the highest accuracy with RMSE of 0.83 g C
m−2 day−1 and RMSEr of 17.26% (Table 5), which is comparable to GPP estimates derived
from the EC-LUE model (GPPEC-LUE) with RMSE of 0.86 g C m−2 day−1 and RMSEr of
17.96% (Xu et al. 2013). The MOD17A2 model has the poorest accuracy with RMSE of
1.57 g C m−2 day−1 and RMSEr of 32.95% (Xu et al. 2013). Results showed that the LUE-
PAR model if high-quality PAR data available and the EC-LUE model exhibited the similar
capabilities in simulating GPP of Moso bamboo forest and overall performed better than
the MOD17A2 model.

GPP estimates from the three LUE models are also compared with each other (Figure 8).
GPP estimates derived from the three LUE models have high correlation coefficients.
GPPLPM is slightly smaller than GPPEC-LUE with a bias of −0.78 g C m−2 day−1 (Figure 8(a)).
GPPLPM is obviously greater than GPPMOD17A2 with a bias of 1.68 g C m−2 day−1 (Figure 8(b)).
The relationship between the GPPEC-LUE and GPPMOD17A2 is the strongest with r of 0.93
while the bias between them is the greatest with a bias of 2.53 g C m−2 day−1 (Figure 8(c)).
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Figure 5. Comparison of predicted LUE (LUEPLS) from the PLS regression model and measured LUE
(LUEflux), (a) calibration data set and (b) validation data set. The 1:1 line is marked with a dashed line.

Table 5. RMSE (g C m−2 day−1) and RMSEr (%) of GPP estimates from the LUE-PAR model driven by
different PAR data.

2011 2012 2013 All data

RMSE RMSEr RMSE RMSEr RMSE RMSEr RMSE RMSEr

GPPLPF 0.83 17.26 1.22 39.46 1.29 31.15 1.03 24.10
GPPLPM 1.15 23.97 2.20 71.41 1.58 38.24 1.63 38.04
GPPLPX 0.87 18.10 1.40 45.26 / / 1.10 25.21
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Results showed that the EC-LUE model and the LUE-PAR model have similar performance
but they are obviously different with the MOD17A2 model.

Time series of 8-day mean GPP estimates averaged by multi-years showed that the
GPPLPM is closer to GPPflux than the other two LUE models with ARE smaller than 20%
relative to GPPflux in the period of DOY1 to DOY97 and DOY177 to DOY361 (Figures 9 and
10), which is attributed to counteract the underestimation in LUEPLS to the overestimation
of PARMERRA (Figure 10). However, it has overestimation problem with ARE far larger than
20% in the period of DOY 97 to DOY177 (Figures 9 and 10) due to superimposed effect of
the overestimations of LUEPLS and PARMERRA (Figure 10). GPPEC-LUE overestimated GPPflux
with ARE larger than 20% in the period of DOY 97 to DOY361. GPPMOD17A2 seriously
underestimated GPPflux with ARE larger than 20% in the period of DOY 1 to DOY97 and
DOY 289 to DOY361 (Figure 9).

5. Discussion

5.1. Factors effect on accuracy of LUE estimates

Correlation coefficient analysis showed that LUE has the strongest relationship with red
band. Previous study showed that the photochemical reactance index calculated using
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red band was significantly related to LUE (Table 4), implying that the red band is an
important reflectance region for LUE estimation (Goerner, Reichstein, and Rambal 2009).
The magnitude of LUE is highly related to the chlorophyll content in forest canopy (Wu
et al. 2009). The reflectances in blue and red bands are affected by the chlorophyll
content (Datt 1999). Therefore, the high negative relationships between LUE and visible
reflectance bands are attributed to the strong absorption by chlorophyll content in the
visible blue and red regions (Gitelson et al. 2005; Peng et al. 2011).

Except for chlorophyll content, the reflectance data of MODIS bands are affected by
many other factors, such as leaf area index, soil background, cloud, and atmospheric
matter, which will reduce the correlations between LUE and reflectance bands. The
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Figure 10. Time series of relative error (RE) for GPPLPM, LUEPLS, and PARMERRA averaged from 2011 to
2013. Positive RE means underestimation; negative RE means overestimation.
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source area of LUEflux represents the footprint area (Chen et al. 2011), which is different
with the pixel area of MODIS 09A1. The scale problem also causes reduction in correla-
tions between LUE and reflectance bands.

The PLS regression model performed better than the linear regression model (Figures 4
and 5). The main difference between the linear regression model and the PLS regression
model is the selected independent variables resulting from the different variable selection
strategies. The PLS-bootstrap algorithm has advantages in eliminating collinearity among
reflectance in bands and solving the effect of noisy reflectance data on model parameters
(Wold, Sjöström, and Eriksson 2001; Lazraq, Cleroux, and Gauchi 2003). In this study, the
band 2, band 4, and NDVI were selected as independent variables, although there are high
correlations between each other. The critical problem in LUE estimates is the overestimation
in low LUE values and the underestimation in high LUE values. In this study, only MODIS
reflectance data were used to explain LUE using the empirical statistical models. Many other
factors closely related to LUE were not considered into the models for estimation of LUE,
which is one of factors resulting in uncertainty of LUE estimates. The climatic conditions
have close relationship with variability in LUE at finer temporal scales (Running and Zhao
2015; Wu et al. 2012). Wu et al. (2012) proposed a new algorithm that incorporates the
temperature for estimating monthly forest LUE based on MODIS imagery. The algorithm
performed better than models including only EVI (Wu et al. 2012). Considering the impacts
of solar radiation partitioning increased accuracy for modelling crop GPP on a daily or
shorter basis because canopy LUE could vary with illumination conditions (Xin et al. 2016).

5.2. Effect of PAR on GPP estimates

The impacts of different PAR products on GPP estimates have been tested. Results from this
study are consistent with other researches, which showed the errors of the PAR products
significantly impacted the accuracy of the GPP estimates and the GPP estimates derived
from satellite-based PAR products have the low errors compared with GPP estimates derived
from the PARflux (Cai et al. 2014; Li, Ju et al. 2015). The PARMERRA product tended to
overestimate radiation relative to PARflux and further resulted in overestimating GPP (Cai
et al. 2014; Xu, Du, Zhou, Mao et al. 2016). There is huge difference in spatial resolution
between satellite-based PARX product and PARMERRA product. The PARX derived from MODIS
atmospheric products has higher spatial resolution than the PARMERRA product. The 1 km
spatial resolution of PARX is closer to the footprint area of EC flux tower than the PARMERRA

product, which may be the main reason for low errors in GPP estimates derived from the
PARX. Therefore, high-resolution satellite-derived radiation products were suggested to be
used for GPP estimation (Cai et al. 2014; Jin et al. 2015).

5.3. Comparisons of LUE models

Compared with GPPflux, GPP estimates from the three LUE models have significantly
different. The model inputs and model parameters are the main factors resulting in the
differences among the three LUEmodels. The LUE-PARmodel proposed in this study has the
highest accuracy but tended to overestimate GPP from DOY 97 (beginning of April) to
DOY177 (ending of June) (Figures 9 and 10). The LUE-PAR model overestimates the GPP in
this period due to overestimations in both of LUEPLS and PARMERRA (Figure 10). The reasons
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for overestimation of LUE in this period derived from remote-sensing data are that Moso
bamboo forest in this period of DOY 97 to DOY177 has complicated phenological char-
acteristics, such as changing leaf, the flushing of new shoots, and new leaf spread. These
phenological characteristics are significantly different between the on-year and off-year. The
amount of fallen leaves in the Moso bamboo forests change annually (Li et al. 1998). Two-
year-old leaves in the off-year are dropped in April and are replaced by one-year-old leaves
(Li et al. 1998), but this phenomenon does not occur in an on-year. Two-year-old leaves of
old bamboo in the on-year turn yellow after the flushing of new shoots in March, because
the growth of bamboo shoots consumes considerable quantities of carbohydrate and
nutrients (Qiu 1984; Hu 2011). The rate of photosynthesis of one-year-old leaves is up to 3
times higher than that of two-year-old leaves (Huang et al. 1989; Kleinhenz and Midmore
2001). These complicated phenological characteristics not only cause greater differences in
LUE andGPP but also in remote-sensing data. Therefore, theremay be different responses of
LUE and GPP values to remote-sensing data between the on-year and off-year because of
different phenological characteristics between the on-year and off-year, which may affect
the accurate estimation of LUE and GPP during DOY97 to DOY177.

The EC-LUE model driven by PARMERRA tended to overestimate GPP (Figure 9), which
is consistent to another study using the EC-LUE model (Cai et al. 2014). The main reason
for the overestimation in GPP derived from the EC-LUE model is due to overestimation in
PARMERRA relative to PARflux (Cai et al. 2014; Xu, Du, Zhou, Mao et al. 2016). Previous
researches showed that there exists obvious problem in underestimation of MODIS LAI
product during the period from DOY1 to DOY97 (Xu, Du, Zhou, and Li 2016; Li et al.
2017; Mao et al. 2017), which implies underestimation in FPAR derived from MODIS NDVI
product during the same period. Therefore, the high accuracy of GPP estimates derived
from the EC-LUE model during the period from DOY1 to DOY97 (Figure 9) because the
effect of FPAR underestimation on GPP estimates offsets by the effect of PARMERRA

overestimation on GPP estimates.
GPP calculated from the MOD17A2 model had greater error than those from the

LUEPLS_PARMERRA model and the EC-LUE model (Table 5 and Figure 9), which is consistent
with previous studies using the EC-LUE model (Xu et al. 2013) and the other LUE models (Wu
et al. 2010; Jahan and Gan 2013; Gao et al. 2014; Wagle et al. 2016). The MOD17A2 model
tended to underestimate GPP of Moso bamboo forest with the estimates being 32.95% (Xu
et al. 2013) less than GPPflux, which is comparable to previous studies for other species (Coops
et al. 2007; Sjöström et al. 2011; Wang et al. 2015). For example, GPP estimates of a Douglas-fir
forest stand based on the MOD17A2model were highly correlated with the GPPflux but these
estimates were biased with the estimates being 30% less than the GPPflux (Coops et al. 2007).
The main reason for underestimation in GPP estimates from the MOD17A2 model is uncer-
tainty in ɛmax. The ɛmax for mixed forest (1.05 g C m−2 day−1 MJ−1) was used for calculating
GPP of Moso bamboo forest, which is lower than the ɛmax (2.08 g C m−2 day−1 MJ−1) of Moso
bamboo forest calibrated with EC measurements (Xu et al. 2013; Running and Zhao 2015).
The ɛmax for grasslands and deciduous forests were also found to be underestimated in
previous study and refinements of MOD17 ɛmax may be beneficial for GPP estimation (Yang
et al. 2007). GPPMOD17A2 was highly related to GPPEC-LUE; however, GPPMOD17A2 was obviously
lower than GPPEC-LUE. The reason for that is because ɛmax for the MOD17A2 model is lower
than ɛmax for the EC-LUE model (Xu et al. 2013; Running and Zhao 2015).
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6. Conclusions

This study presented a superior approach for estimating GPP of Moso bamboo forest based
on the assumption of high relationships between LUE and MODIS reflectance data.
Correlation analysis showed that MODIS reflectance data in visible light regions were
good predictors for estimation of LUE. The PLS model has stronger capability in predicting
LUE than the linear regression model based on the MODIS reflectance data because the
PLS model can solve the collinear problem between independent variables. However, the
underestimation in high LUE values and overestimation in low LUE values are still unsolved
by the PLS model. Compared with observed PAR, the PAR derived from a solar radiation
model driven by MODIS atmospheric products with 1 km spatial resolution is more useful
for estimating GPP than the MERRA radiation product, implying PAR product with high
spatial resolution has the potential to improving GPP estimation. The LUE-PAR model,
which means GPP is calculated by the product of LUE and PAR, has the highest accuracy
than the EC-LUE model and the MOD17A2 model, which is a promising and simple way to
estimate GPP of Moso bamboo forest. The GPP estimates derived from the EC-LUE model
obviously overestimated the GPP because of overestimation in the MERRA radiation
product. The GPP estimates derived from the MOD17A2 model obviously underestimated
the GPP due to underestimation in ɛmax of Moso bamboo forest. Therefore, Moso bamboo
forest, as a special forest type, is suggested to be treated as a new land-cover class and
included into land-cover product (MOD12). A species-specific ɛmax was necessary to be
selected and used in the MOD17A2 model for estimating GPP of Moso bamboo forest.
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