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Abstract 18 

Data from decadal hindcast experiments conducted under CMIP5 were used to assess the 19 

ability of CM2.1, HadCM3, MIROC5, and CCSM4 Earth System Models (ESMs) to hindcast sea-20 

surface temperature (SST) indices of three decadal climate variability phenomena – the Pacific 21 

Decadal Oscillation (PDO), the tropical Atlantic SST gradient (TAG) variability, and the West 22 

Pacific Warm Pool (WPWP) SST variability – from 1961 to 2010. Aerosol optical depth (AOD) 23 

and other external forcings were specified in these experiments, and the ESMs were initialized at 24 

specific times with observed data to make ten- and 30-year hindcasts/forecasts.   25 

All ESMs hindcast occurrence frequencies of positive and negative phases of the indices, 26 

and probabilities of same-phase transitions from one year to the next reasonably well. Except for 27 

the PDO in the 1980s, no one of the decade-average hindcasts show significant skill.  Major 28 

volcanic eruptions are associated with phase transitions of indices in observed data and in some of 29 

the ensemble-average hindcasts.  Some phase transitions associated with volcanic eruptions are 30 

also present in non-initialized simulations with these ESMs.  Hindcasts from some of the ESMs 31 

show correct phase transitions in the absence of AOD changes also, implying that initializations 32 

with observed data are beneficial in predicting phase transitions.  The best-performing ESM, 33 

MIROC5, predicts PDO and WPWP indices to decrease from maxima in 2016 to minima in 2018-34 

19.  The skills of PDO and WPWP indices’ phase prediction up to at least two years in advance, 35 

and perhaps longer, can be used to inform societal impacts management decisions.   36 

          37 

Key words:  Decadal climate variability;climate predictability;Pacific Decadal 38 

Oscillation;volcanic eruptions   39 

  40 
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1. Introduction 41 
Societies have sought skillful climate prediction at monthly to decadal lead times for 42 

centuries, primarily for use in management of water resources and in planning agricultural 43 

activities.  It continues to be increasingly recognized now that skillful decadal climate predictions 44 

can greatly benefit planning in many societal sectors, such as agriculture, reservoir operations, 45 

municipal water supply and drainage systems, hydro-electricity generation, transportation, 46 

fisheries and wildlife habitat manitenance, thermal and nuclear power plant operations, river- and 47 

reservoir-based recreation industry, forest fires, and state and national government decisions 48 

(Mehta et al., 2013a; Meehl et al., 2014; Mehta, 2017).  In addition to the importance of decadal 49 

climate prediction for societal impacts prediction and planning, it is also important for 50 

understanding and attribution of past, current, and future climate to natural decadal climate 51 

variability (DCV) or anthropogenic climate change.  In order for stakeholders and policymakers 52 

to use decadal climate predictions, it is very important to establish a prediction skill record by 53 

using prediction models and past, observed climate data – both for model initialization as well as 54 

for prediction verification – to make retrospective predictions, or “hindcasts”, of past climate as 55 

envisaged in the World Climate Research Program’s Coupled Model Intercomparison Project 56 

(CMIP) 5 and follow-on Projects.  It is also very important to assess climate information needs of 57 

stakeholders and policymakers, and orient prediction research towards satisfying those needs as 58 

envisaged in the World Meteorological Organization’s Global Framework for Climate Services 59 

Vision1 "To enable better management of the risks of climate variability and change and adaptation 60 

to climate change, through the development and incorporation of science-based climate 61 

                                                 
1 http://gfcs-climate.org/ 
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information and prediction into planning, policy and practice on the global, regional and national 62 

scale."     63 

The climate during a period of one or two decades consists of several interacting 64 

components, therefore prospects for decadal climate prediction depend on prospects for skillful 65 

predictions/projections of interannual variability such as El Niño-Southern Oscillation (ENSO); 66 

natural DCV, including climate system responses to variations in solar particulate and radiative 67 

emissions, and to volcanic eruptions; and responses to human-induced changes in land use-cover 68 

and atmospheric constituents.  The present study focuses on one of these components - namely, 69 

natural DCV.  As the most recent report of the Inter-governmental Panel on Climate Change states 70 

(IPCC, 2013), “Natural internal variability will continue to be a major influence on climate, 71 

particularly in the near-term and at the regional scale. By the mid-21st century the magnitudes of 72 

the projected changes are substantially affected by the choice of emissions scenario.”   Thus, for 73 

the next 30 to 40 years, natural climate variability will continue to be more important than climate 74 

change.  After 40 years also, natural climate variability will still contribute substantially to the 75 

totality of climate impacts.   76 

Among natural DCV phenomena, the Pacific climate variability generally known as the 77 

Pacific Decadal Oscillation (PDO; Mantua et al., 1997) or the Inter-decadal Pacific Oscillation 78 

(IPO; Power et al., 1999), the tropical Atlantic sea surface temperature (SST) gradient (TAG; 79 

Hastenrath, 1990; Houghton and Tourre, 1992; Mehta and Delworth, 1995; Mehta, 1998; 80 

Rajagopalan et al., 1998), and variability of the West Pacific Warm Pool (WPWP) SST (Wang 81 

and Mehta, 2008), and their impacts on global climate are attracting increasing attention in 82 

predictability and prediction studies because of their impacts on water resources, agriculture, 83 

hydro-electricity generation, inland water-borne transportation, and fish and crustacean stocks and 84 
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captures (Mehta, 2017).  Analyses of associations between SST indices of these three natural DCV 85 

phenomena; and decadal – multidecadal variability of global precipitation, temperatures, and the 86 

Palmer Drought Severity Index (PDSI) show that approximately 60 – 90% variance in these three 87 

hydro-meteorological variables on land is explained by the PDO, the TAG SST variability, and 88 

the WPWP SST variability (see, for example, Mehta (2017)).           89 

The present study is a part of a program to develop a decadal climate and impacts 90 

simulation and prediction system for the Missouri River Basin (MRB)2, to develop adaptation 91 

options for water and agriculture sectors in the MRB using decadal climate and impacts 92 

information, and to develop a methodology to estimate the value of decadal climate and impacts 93 

information to the agriculture sector.  Global Earth System Models (ESMs) and a very high-94 

resolution land use – hydrology – crop model are being used in this program.  From this program, 95 

preliminary results on decadal predictability of ocean basin averaged SSTs in decadal hindcast 96 

experiments with the Geophysical Fluid Dynamics Laboratory CM2.1, the U.K. Meteorological 97 

Office HadCM3, the Japanese Model for Interdisciplinary Research On Climate 5 (MIROC5), and 98 

the National Center for Atmospheric Research–CCSM4 ESMs in CMIP5 were reported in Mehta 99 

et al. (2013b); and a dynamical–statistical technique for decadal hydro-meteorological predictions 100 

being developed–applied to southern Africa as a test case - was reported in Mehta et al. (2014).  101 

Research designed to simulate impacts of DCV phenomena on surface and ground water in the 102 

MRB is reported in Daggupati et al. (2016) and Mehta et al. (2016), and on wheat yields in the 103 

MRB is reported in Mehta et al. (2017a).  The value of decadal climate information to the 104 

agriculture sector in the MRB is estimated by Fernandez et al. (2016).  The ability of the CM2.1, 105 

                                                 
2 The MRB is the largest river basin in the U.S.; and is a major “bread basket” of the U.S. and the world, 

producing approximately 45% of wheat, 20% of grain corn, and 33% of cattle produced in the U.S..    
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HadCM3, MIROC5, and CCSM4 ESMs in CMIP5 to simulate major attributes of the PDO, the 106 

TAG variability, and the WPWP variability is described in a companion paper (Mehta et al., 107 

2017b).  The ability of these four ESMs to retrospectively forecast (or, hindcast) the three DCV 108 

phenomena is addressed in the present paper.  These four ESMs were selected because it is 109 

important to assess simulation and hindcast skills of the same ESMs in the same experimental 110 

framework.  The modeling groups who have developed these four ESMs conducted CMIP5 111 

experiments with generally the same model configurations.  Also, decadal hindcast/forecast 112 

experiments with these four ESMs were run in CMIP5 in the ensemble mode with up to 10 113 

members in each ensemble.        114 

1.1 Review of Previous Research 115 

Perhaps the earliest recorded instance of prediction of impacts of decadal climate 116 

anomalies was by Sir William Herschel, a noted  German – British astronomer and music 117 

composer.  Having observed variations in sunspots, Herschel (1801) hypothesized that variations 118 

in sunspot numbers implied variations in solar irradiance which might cause variations in 119 

atmospheric heating, rainfall, and temperature, and thereby influence the price of wheat in London.  120 

Herschel’s initial and controversial investigation, motivated by the desire for prediction of 121 

agricultural productions and prices, was followed by a subsequent investigation by Carrington 122 

(1863).  Jevons (1879) found a correlation between sunspot variation and wheat price in India. 123 

Poynting (1884) found correlations between sunspot variation and wheat price, and cotton and silk 124 

imports into Great Britain.  Since Schwabe (1884)’s discovery of the 11-year sunspot cycle, the 125 

sunspot–terrestrial climate–societal impacts investigations were essentially focused on externally-126 

forced decadal climate and impacts prediction.  Subsequent analyses of correlations between 127 

sunspot numbers, and a wide variety of natural phenomena and production of food and wealth - 128 
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and predictions based on these correlations - have continued into the 21st Century Current Era (CE) 129 

(see, for example, Proctor (1880), Chambers (1886), Currie (1974), King et al. (1974), Meadows 130 

(1975), Harrison (1976), Vines (1977), Currie and Fairbridge (1985), Currie et al. (1993), Mehta 131 

and Lau (1997), Garnett et al. (2006), Pustil’nik and Yom Din (2004a, 2004b, 2009, 2013), and 132 

Love (2013)).  There is also a voluminous published literature on associations between the 18.6-133 

year lunar nodal cycle and a variety of hydro-meteorological and oceanographic variables, their 134 

impacts on several societal sectors, and their prediction.  Thus, the field of externally-forced DCV, 135 

its impacts, and their prediction is over two centuries old.   136 

The availability of archives of multidecades-long oceanic observations since the end of the 137 

Cold War in the early 1990s CE, quality-checked and model-assimilated global atmospheric 138 

observations, and the development of climate models incorporating increasingly realistic 139 

descriptions of physical processes has resulted in , a substantial body of research in the last two 140 

decades.  This research is focused on understanding causes and mechanisms of DCV and putting 141 

seasonal to interannual climate prediction experience (McPhaden et al., 2010) to use in decadal 142 

climate prediction despite fundamental and substantial problems in using the seasonal to 143 

interannual climate prediction methodology for decadal climate prediction.  Some major problems 144 

are (Meehl et al., 2009, 2014; Mehta et al., 2011a): (1) relatively short time series of instrument-145 

based global ocean observations, especially sub-surface observations, for understanding, model 146 

initialization, and comparison with prediction; (2) an insufficient understanding of fundamental 147 

physics of DCV; (3) an insufficient theoretical understanding of possible behaviors of 148 

geographically-varying, complex and non-linear dynamical systems with mixed initial and 149 

boundary values; (4) global climate models displaying less than satisfactory skill in simulating 150 

climate in general and DCV in particular; and (5) insufficient guidance from stakeholders and 151 
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policymakers as to which DCV-related climate, weather, and impacts information would be useful 152 

for applications to societal impacts of DCV if predicted.  As a result, much of the experimental 153 

decadal climate prediction work so far is empirical and ad hoc, based on experimentation with 154 

various model configurations, prediction initialization schemes, ensemble sizes, forcing fields, and 155 

other aspects of numerical climate prediction.  In spite of these problems, however, there have 156 

been many encouraging decadal prediction studies with ESMs, beginning with pioneering research 157 

by Smith et al. (2007), Keenlyside et al. (2008), and Pohlmann et al. (2009). In these three studies, 158 

ESMs were initialized from observed data - as in weather and seasonal climate forecasting - and 159 

natural and anthropogenic changes in aerosol optical depth (AOD) were prescribed from 160 

observations-based estimates (or scenarios) - as in anthropogenic climate change projection 161 

experiments. Smith et al. (2007) showed that skillful decadal prediction of global-average 162 

temperature may be possible.  Keenlyside et al. (2008)’s and  Pohlmann et al. (2009)’s results 163 

showed that skillful prediction of decadal, North Atlantic SSTs may be possible.  Building on these 164 

studies, Yang et al. (2012) found that an inter-hemispheric, multidecadal SST pattern in the 165 

Atlantic may be predictable 4 to 10 years in advance.   166 

Concurrently with these initial decadal climate predictability studies with ESMs, the World 167 

Climate Research Program organized the CMIP5 project to use ESMs to aid potential climate 168 

change assessments by the Inter-governmental Panel on Climate Change.  CMIP5 also included 169 

experimental decadal hindcasts and forecasts (Taylor et al., 2012).  Meehl et al. (2014) have 170 

described results from hitherto published CMIP5 and other decadal hindcasting experiments, so 171 

only major results pertaining to indices of decadal SST variability, and precipitation and surface 172 

air temperature on land areas are briefly summarized here. 173 
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There have been two types of assessments of prediction skill of the PDO index; one, 174 

correlation coefficient between observed and predicted indices or area-average SSTs over several 175 

decades, and two, prediction skill of specific warm or cold events.  An example of the former type 176 

is a skill assessment of decadal hindcasts of the PDO index in five ESMs participating in CMIP5 177 

by Kim et al. (2012) who found that there was a reasonably significant prediction skill for up to 5 178 

years after prediction initialization, but that this skill was less than that derived from persistance 179 

of the PDO index.  An example of the latter type is the improved prediction skill of the mid to late 180 

1970s CE change in the PDO phase from negative (cold) to positive (warm)  (described as climate 181 

shift by some researchers) in combined initial and boundary value experiments with several 182 

CMIP5 and other ESMs by Meehl and Teng (2012, 2014) compared to uninitialized experiments 183 

or simulations as boundary value experiments.  Kim et al. (2012) also showed that the AMO index 184 

has a reasonably high prediction skill up to 7 years compared to the skill of persistance in five 185 

CMIP5 ESMs.  As mentioned earlier and described in detail by Meehl et al. (2014), reasonably 186 

high skill of area-average North Atlantic SSTs is shown by several ESMs (see, for example, 187 

Keenlyside et al. (2008), Pohlmann et al. (2009), van Oldenborgh et al. (2012), Yang et al. (2012), 188 

Hazeleger et al. (2013), Ham et al. (2014), and others).  Using decadal hindcast data from four 189 

CMIP5 ESMs, Mehta et al. (2013b) found that there was significant, but variable, decadal hindcast 190 

skill of global- and tropical ocean basin-average SSTs, among them the PDO region in the Pacific, 191 

during 1961 to 2010 CE.  The skill varied by averaging region and decade. It was also found that 192 

volcanic eruptions influence SSTs and are one of the sources of decadal SST hindcast skill when 193 

significantly large eruptions occurred.  In the four ESMs, decadal hindcast skills of SST anomalies 194 

over ocean basin size averaging regions generally improved due to model initialization with 195 

observed data.   196 
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These prediction skills of SSTs do not translate to comparable skills of precipitation and 197 

surface air temperature on land areas as shown by Doblas-Reyes et al. (2013).  There is some skill, 198 

however, in northern Canada, northeast north America, and Greenland; southeast South America; 199 

some regions in sub-Saharan Africa; and scattered regions in central, south, north, and southeast 200 

Asia.  Using decadal hindcast DCV indices (PDO, TAG, WPWP, and Niño 3.4) from CMIP5 201 

experiments with the MIROC5 ESM in a regression-based statistical model, Mehta et al. (2014) 202 

also reported low to moderate decadal predictability of decadal hydrologic cycles, as represented 203 

by the PDSI, in seven countries of southern Africa from 1961 to 2010 CE.  Kirtman et al. (2013) 204 

summarize conclusions about decadal prediction that “Predictions for averages of temperature, 205 

over large regions of the planet and for the global mean, exhibit positive skill when verified against 206 

observations for forecast periods up to ten years.”  They also conclude that “Predictions of 207 

precipitation over some land areas also exhibit positive skill.”  Thus, there is slow and incremental, 208 

but definite, progress in making skillful decadal climate predictions.       209 

 210 
1.2 Objectives of the Present Study 211 

Following seasonal to interannual climate prediction, the contemporary field of decadal 212 

climate prediction using dynamical models has also adopted the traditional numerical weather 213 

prediction approach.  Specifically, prediction skill of a (or, the) final state of a variable, say the 214 

SST, is evaluated with respect to observations in terms of correlations and root-mean-square errors.  215 

Ensembles of multiple members are used to isolate a climate signal from noise arising from the 216 

non-linear model’s chaotic behavior.  It is believed that the goal should be to skillfully predict the 217 

final state, in this case a specific month or season ten years after starting the prediction experiment.  218 

But, new approaches need to be evolved for decadal climate prediction from the points of view of 219 

what is important for users of decadal climate information – stakeholders and policymakers – if 220 

the predicted information is to be useful for application.  Although impacts of quantitative changes 221 
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in DCV indices on hydro-meteorology (and, consequently, on water resources and agriculture) 222 

have not attracted much attention from researchers, impacts of DCV phases – positive and negative 223 

– are known much better via analyses of empirical data and via experiments with numerical models 224 

of the global atmosphere (e.g., Schubert et al., 2004a, 2004b).  For example, data and information 225 

such as phase (positive or negative) of average anomaly in precipitation and temperature, 226 

stream/river flow, drought index, and other quantities over the next two to ten years can be very 227 

useful for management decisions in water and agriculture sectors if the data and information are 228 

provided at the spatial resolution required for each sector (Mehta et al., 2013a; Mehta, 2017). 229 

Therefore, understanding and prediction of DCV phase transitions sustained for several months to 230 

an year or longer can be useful in understanding and prediction of DCV impacts.  Understanding 231 

and prediction of DCV phases is also important for attribution of DCV phase transitions to internal 232 

ocean-atmosphere processes or changes in external forcings.   233 

A study of the value of decadal climate information to the agriculture sector in the MRB 234 

with a water and crop choices model showed that the correct prediction of important DCV 235 

phenomena that impact MRB agriculture one year in advance can be worth approximately $80 236 

million per year (Fernandez et al., 2016).  This study also showed that the correct prediction of 237 

even the phase of the important DCV phenomena next year, based on the phase in the current year, 238 

can realize a sizeable fraction of this monetary value.  Moreover, it is also important to evolve 239 

combined dynamical – statistical prediction approaches for variables important to users that would 240 

translate useful skill in slower variables such as, for example, the PDO SST index, into applicable 241 

information about precipitation or drought index over one, two, five, or ten years. 242 

 Another reason to evolve different approaches for decadal climate prediction is that, unlike 243 

in weather prediction, variations/changes in external or boundary forcings such as solar radiations, 244 
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volcanic and anthropogenic aerosols, anthropogenic greenhouse gases, and land use – land cover 245 

also influence/impact climate at the multiyear to decadal timescales.  Since decadal predictions 246 

using dynamical models are made as a mixed initial – boundary value problem, contributions of 247 

both model initialization and boundary forcings in decadal prediction skill should be evaluated.  248 

Therefore, comparison of initialized predictions with uninitialized simulations with the same 249 

models is very important, especially the respective roles of boundary and initial conditions in phase 250 

transitions of DCV phenomena. 251 

Based on the foregoing rationale, the objectives of this study are: (1) to assess transition 252 

probabilities of phases of the PDO, TAG, and WPWP indices, individually as well as in 253 

combinations of indices, in decadal hindcast experiments with the four selected ESMs and 254 

compare them with transition probabilities of observed indices; (2) to assess the skill of these 255 

ESMs to hindcast the phase and magnitude of the three DCV indices one and two years in advance; 256 

(3) to assess hindcast skill of the DCV indices over individual decades; (4) to understand the role 257 

of external forcings and internal ocean-atmosphere variability in phase transitions of DCV indices; 258 

and (5) to assess the impacts, if any, of initialization on hindcast skill.  These objectives are 259 

addressed and results are interpreted in light of the fact that lead times of hindcasts vary from one 260 

to ten years in CMIP5 experiments with these four ESMs.  261 

 262 

2. Materials and Methods 263 
2.1 CMIP5 and Observational Data sets 264 

Two sets of core decadal prediction experiments have been conducted under CMIP5 265 

(Meehl et al., 2009).  The first set is a series of 10-year hindcasts starting approximately in 1960, 266 

1970, 1980, 1990, and 2000 CE. The second is a series of 30-year hindcasts starting in 1960, 1980, 267 

and 2005 CE, the last a combined hindcast-forecast.  In both sets, AODs (including those due to 268 

volcanic eruptions) and solar radiation are prescribed from past observations. Each experiment has 269 
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a minimum ensemble size of three members.  These experiments are somewhat idealistic and 270 

exploratory, especially in view of the well-known difficulty of predicting volcanic eruptions well 271 

in advance.  272 

We used SST and AOD data from the HadCM3, CM2.1, CCSM4, and MIROC5 ESMs.  273 

Table 1 summarizes major attributes of these models and the CMIP5 decadal hindcast experiments 274 

carried out with them.  In the CMIP5 hindcast experiments, the CM2.1 used a fully-coupled 275 

initialization scheme (Zhang et al., 2007), the MIROC5 used an ocean-only initialization scheme 276 

(Tatebe et al., 2012), the CCSM4 used ocean and sea ice initial conditions from a historical forced 277 

experiment (Yeager et al., 2012), and the HadCM3 was initialized by relaxation to analyzed ocean 278 

and atmosphere observations (Smith et al., 2007).  In all CMIP5 experiments, Northern 279 

Hemisphere and Southern Hemisphere time series of AOD, based on observations (Ammann et al. 280 

(2003) in the NCAR ESM, and Sato et al. (1993) and Hansen et al. (2002) in the other three ESMs), 281 

were specified.  These data sets provide zonal-average, vertically-resolved AOD for visible 282 

wavelengths and column-average effective radii of aerosols (Stenchikov et al., 2006).  We also 283 

combined hindcast data from the four ESMs as a multi-model ensemble (MME; Krishnamurti et 284 

al. (2000)). The MME in this study is the average of the ensemble-average data from each ESM. 285 

In this way, each ESM is treated equally in the MME.  We used the Extended Reconstructed SSTs 286 

(ERSST; Reynolds et al., 2002) from 1961 to 2010 for comparison with hindcast SSTs. 287 

 288 
2.2 Analysis Techniques 289 

We calculated the PDO index from each decadal hindcast experiment by projecting 290 

hindcast SSTs from each ESM on the PDO patterns isolated from simulation runs with that ESM 291 

(Mehta et al., 2017b) to quantify the evolution of the PDO patterns during each 10-year hindcast 292 

period.  The assumption was that the basic character of the PDO patterns is generally the same in 293 
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simulation and hindcast experiments conducted with a particular ESM.  The TAG and WPWP 294 

indices were calculated directly from the hindcast SSTs.  These SST indices were calculated by 295 

averaging SST in the WPWP (20oS to 20oN, 90oE to 180o) for the WPWP index and in the tropical 296 

North (5o to 20oN, 30o to 60oW) and South (0o to 20oS, 30oW to 10oE) Atlantic with the difference 297 

between the two for the TAG index.    298 

Probabilities of transition of a DCV index from one phase to another phase (for example, 299 

from positive phase PDO+ to negative phase PDO-) were calculated by counting the number of 300 

times each phase transition occurred in a given seasonal or annual index time series and then by 301 

expressing the number as a percentage of the total number of data points in the index time series.  302 

The same approach was followed in calculating transition probabilities of simultaneous phases of 303 

more than one DCV phenomena (for example, from the (PDO+, TAG+) combination to the (PDO+, 304 

TAG-) combination).  For the purpose of assessing hindcast skill of magnitudes of DCV indices, 305 

following the definitions of Niño3.4 phases (see, for example, Trenberth (1997)), we defined three 306 

states of each index – largest negative value to -0.5 times standard deviation (negative), -0.5 times 307 

standard deviation to +0.5 times standard deviation (neutral), and greater than +0.5 times standard 308 

deviation (positive).  All index time series were normalized by subtracting the long-term average 309 

of annual cycles and dividing by the standard deviation of the time series before calculating states.         310 

Following Smith et al. (2007), Keenlyside et al. (2008), and Pohlmann et al. (2009), we 311 

estimated decadal hindcast skill in the form of root-mean-square (RMS) hindcast errors, and 312 

correlation coefficients between hindcast and observed variables.  The skill estimates were 313 

evaluated based on the ensemble-average, monthly average data from each ESM and also the data 314 

from the MME. Prior to calculating correlation coefficients, all data were detrended over the 1961–315 

2010 CE period. The Monte Carlo technique (see, for example, Wilks (1995)) was used to estimate 316 
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statistical significance of correlation coefficients.  Correlation coefficients equal to or greater than 317 

95% confidence limit are referred to as statistically significant in this paper. Also, negative 318 

correlation coefficients are referred to as no skill. 319 

 320 

3. Results 321 
3.1 Transition Probabilities   322 

We begin the description of results with statistics of occurrence of each DCV phase and of 323 

combinations of phases of three DCV phenomena in observed and hindcast DCV indices.  Then, 324 

observed and hindcast probabilities of transition between positive and negative phases of each 325 

DCV phenomenon, and among combinations of phases of three DCV phenomena are described. 326 

The occurrence of each phase, as percent of total number of years, are shown in Table 2 327 

for annual observed DCV indices from 1961 to 2010 CE. Occurrences of individual phases and 328 

combinations of phases in ensemble-average indices and the range (minimum to maximum within 329 

an ensemble) of occurrences within each ensemble of the four ESMs for the 1961 to 2010 CE 330 

period are also shown in Table 2.  Please note that the phase occurrences in ensemble-average 331 

DCV indices are not the average of the occurrences in individual members of an ensemble. If it is 332 

assumed that both phases of a DCV index over a multidecadal period have equal probabilities of 333 

occurring, then the average occurrence of each phase would be 50% of the period.  As Table 2 334 

shows, the occurrence rate is almost 50% for the ERSST PDO, TAG, and WPWP indices, with 335 

small departures from the expected occurrence attributable perhaps to a relatively small sample 336 

size (50 years).  Phase occurrences in three-month average index (December – January – February, 337 

DJF; March – April – May, MAM; June  - July – August, JJA; September – October – November, 338 

SON) data are generally similar (not shown), except that the WPWP+ and WPWP- phases occur 339 

40% and 60% of the total years, respectively, in DJF; and the TAG+ and TAG- phases occur 56% 340 

and 44% of the total years, respectively, in SON.   341 
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The corresponding occurrence rates for the ESM hindcast data in Table 2 show that while 342 

the PDO phase occurrence rates in the ensemble-average hindcast data from the CCSM4, CM2.1, 343 

and HadCM3 ESMs are generally similar, the MIROC5 ensemble-average results for PDO+ and 344 

PDO- phases are 40% and 60%, respectively, for the annual, MAM, JJA, and SON data.  The 345 

TAG+ and TAG- occurrence rates are almost 60% and 40%, respectively, for the CM2.1 ensemble 346 

in DJF and SON data.  The WPWP+ and WPWP- occurrence rates in the CM2.1 ESM are 42% and 347 

58%, respectively, in MAM and JJA averages.  The WPWP+ and WPWP- occurrence rates are 348 

43% and 57%, respectively, in DJF in HadCM3; and 42% and 58%, respectively, in JJA in 349 

CCSM4.  In the MME, the WPWP+ and WPWP- occurrence rates are 40% and 60%, respectively, 350 

in the annual data.  These results imply that ensemble hindcasts of the three DCV indices made 351 

with the four ESMs have generally comparable occurrence rates of the three indices with respect 352 

to the observed occurrence rates.  Ranges of occurrence rates for each ESM’s hindcast ensemble 353 

are also shown in Table 2.  The ranges straddle the corresponding ensemble-averages in all except 354 

two cases (PDO+ and PDO-) in MIROC5 hindcasts.  Also, there are no extraordinary outlier 355 

occurrence values.  Thus, Table 2 shows that all four ESMs hindcast individual DCV phase 356 

occurrence rates reasonably accurately. 357 

Some phase combinations of two or all three of the PDO, TAG, and WPWP indices are 358 

known to be associated with hydro-meteorological (see, for example, Schubert et al. (2004a, 359 

2004b), Mehta et al. (2011b, 2016)) and agricultural (Mehta et al., 2012; 2017a) impacts in the 360 

U.S. Great Plains; impacts on hydro-meteorology, river flows, agriculture, inland water-borne 361 

transportation, and hydro-electricity generation in North America (Mehta, 2017); and worldwide 362 

impacts on hydro-meteorology, river flows, agriculture, fish captures, and other societal impacts 363 
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(Mehta, 2017).  Therefore, it is important to estimate predictability of these phase combinations 364 

and their transitions to other combinations.  There are eight such combinations (2 phases and 3 365 

DCV indices; 23=8) and the theoretical occurrence rate for each phase combination of the three 366 

DCV phenomena would be 12.5% if probabilities of all combinations were equal.  These eight 367 

combinations are (PDO+, TAG+, WPWP+), (PDO-, TAG-, WPWP-), (PDO+, TAG-, WPWP+), 368 

(PDO+, TAG-, WPWP-), (PDO-, TAG+, WPWP+), (PDO-, TAG+, WPWP-), (PDO+, TAG+, 369 

WPWP-), and (PDO-, TAG-, WPWP+).  In subsequent description of the simultaneous occurrence 370 

of two or more DCV phenomena, PDO, TAG, and WPWP are referred to as P, T, and W, 371 

respectively, with phases indicated by  + or – sign as a superscript.  Also, these three DCV indices 372 

are treated as independent since the simultaneous correlations among them are indistinuguishable 373 

from zero.     374 

Table 2 shows that, in ERSST data, the (P+, T+, W+), (P+, T-, W+), and (P-, T+, W-) 375 

combinations have much lower occurrence rates, whereas the (P-, T+, W+), (P-, T-, W+), and (P+, 376 

T+, W-) combinations have a few percent higher occurrence rates.  The occurrence rates for three-377 

month average ERSST data are generally similar to the results for annual data shown in Table 2, 378 

excpt that the (P-, T+, W+) and (P+, T-, W-) combinations have much higher (25%) occurrence rates 379 

in SON.  The corresponding occurrence rates for three-DCV combinations in the ESM hindcasts 380 

are also shown in Table 2.  The CCSM4 ensemble-average hindcasts have both much above- and 381 

much below-average outliers; the (P-, T-, W+) and (P+, T+, W-) combinations have 26% and 20% 382 

occurrence rates, respectively, and the (P+, T-, W+) and (P-, T+, W-) combinations have 2% and 383 

6% occurrence rates, respectively.  It is interesting to note that the occurrence rates for the former 384 

two combinations are above average outliers in the ERSST data also, and the rates for the latter 385 
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two combinations are below average outliers in the ERSST data also.  Occurrence rates in other 386 

ESMs’ hindcasts are generally close to the expected average rate.  In the MME, however, the 387 

ensemble-average occurrence rates are substantially different from the rates in ERSST data. 388 

Ranges of occurrence rates within ensembles of hindcasts (Table 2) generally straddle the 389 

corresponding occurrence rates of ensemble-average hindcasts; hindcasts by each ESM, however, 390 

show a few DCV index combinations in which the occurrence rate from the ensemble-average 391 

hindcast lies outside the range of rates within that hindcast ensemble.  Thus, the occurrence rates 392 

of individual and multiple DCV phases in ERSST observations and ensemble-average ESM 393 

hindcasts were found to be generally similar, establishing that the ESM hindcasts represent 394 

combinations of DCV phases reasonably well. 395 

Next, the probabilities of transition from the phase in one year to either of the two possible 396 

phases of individual DCV indices in the next year in the observed and hindcast annual data were 397 

estimated and are shown in Figure 1.  Ranges of within-ensemble transition probabilities in the 398 

ESM hindcasts are also shown in Figure 1 as vertical black bars, superimposed on each color bar, 399 

with horizontal black lines at minimum and maximum values.  These ranges were calculated from 400 

individual ensemble members for each ESM and the MME.  For the PDO phases (Figure 1a), the 401 

probabilities of transitions from P+ to P+ and to P- in the ERSST data are 72% and 27%, 402 

respectively.  The transition probabilities from P- to P+ and to P- are 20% and 80%, respectively.  403 

These results show an overwhelming tendency for same-phase transitions, or persistance, of PDO 404 

from one year to the next.  Ensemble-average hindcasts by all ESMs and the MME generally show 405 

this tendency in Figure 1a.  Even including the ranges of probabilities for each ESM in the 406 

comparison, the higher probabilities of same-phase transitions are clearly evident; the CM2.1 407 

hindcast ranges, however, overlap.  There are some seasonal variations in probabilities in the 408 
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ERSST, ESM, and MME data, with the same-phase PDO transitions most probable (approximately 409 

80%) in June–July–August.   410 

The transition probability of the TAG phases (Figure 1b) in ERSST annual data is largest 411 

(55%) for the T+ to T+ transition, but is considerably lower than the corresponding PDO same-412 

phase transition.  The T- to T- transition probability is even lower (53%).  The opposite-phase 413 

transition probabilities are approximately 40-45%.  Thus, TAG phases are less persistent than PDO 414 

phases in observed data and their transition probabilities are approximately equal, although same-415 

phase transitions have higher probabilities.  TAG phases in the four ESMs and the MME are more 416 

persistent as indicated by considerably larger same-phase transition probabilities for annual data 417 

in Figure 1b – 70% to 80% probabilities in CCSM4, CM2.1, and the MME, and 65% to 70% 418 

probabilities in the HadCM3 and MIROC5 ESMs even when their respective probability ranges 419 

are included.  Consequently, opposite-phase transition probabilities are much lower in the 420 

individual ESM and MME hindcasts.   421 

As for the PDO and TAG phases, same-phase transition probabilities of WPWP phases in 422 

the observed annual data (Figure 1c) are much higher (approximately 70%) compared to the 423 

opposite phase transition probabilities (approximately 30%).  The same-phase transition 424 

probabilities in ensemble-average annual data from the four ESMs and the MME (Figure 1c) are 425 

at least as high as the probabilities in the observed data even when the within-ensemble ranges are 426 

included in the comparison.  Consequently, opposite phase transition probabilities in the four 427 

ESMs and the MME are equal to or lower than those in the observed data.  In the seasonal observed 428 

data, the probabilities of transition from any WPWP phase to any phase are approximately equal 429 

(approximately 50%) in MAM, JJA, and SON.  In DJF, the same phase transition probabilities are 430 

70 to 80% and the opposite phase probabilities are consequently approximately 20 to 30%.  In the 431 
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seasonal hindcast data from the ESMs, same phase transition probabilities are much higher than 432 

the opposite phase transition probabilities in all seasons unlike the probabilities in the observed 433 

data.  Thus, Figure 1 shows that probabilities of same-phase transitions from one year to the next 434 

are considerably larger than opposite-phase transitions for PDO and WPWP phases in ERSST data 435 

and ensemble-average ESM and the MME hindcasts, except in the CM2.1 hindcasts where the 436 

differences among probabilities of PDO phase transitions are much smaller.  Probabilities for TAG 437 

phases are almost the same in the ERSST data, but in the ensemble-average ESM and MME 438 

hindcasts the same-phase transition probabilities are much larger than the opposite-phase 439 

probabilities.      440 

 Next, we consider transition probabilities among combinations of phase of two DCV 441 

phenomena, the PDO and TAG variability.  There are four possible combinations of phenomena 442 

and phases – (P+, T+), (P-, T-), (P+, T-), and (P-, T+) - and the theoretical transition probability for 443 

each transition would be 25% if the transitions occur randomly; that is, there would be equal 444 

probabilities of a transition to any of the four combinations. The actual transition probabilities of 445 

combined PDO and TAG phases are shown in Figure 2 as four color bars, one for each phase 446 

combination, for observed and ESM – including MME - data sets.  Ranges of within-ensemble 447 

transition probabilities in the ESM hindcasts are also shown in Figure 2 as vertical black bars 448 

superimposed on each color bar with horizontal black lines at minimum and maximum values.  449 

For the combination (P+, T+), the calculated transition probability in the ERSST data 450 

(Figure 2a) is highest (45%) for transition to the same combination from one year to the next, 451 

followed by the transition to (P+, T-) (30%).  The probabilities are from approximately 7% to 15% 452 

for the other two combinations.  Hindcasts with all ESMs, except HadCM3, and the MME appear 453 

to replicate the highest probability of the (P+, T+) same-combination transition.  The persistence 454 
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of this combination from one year to the next is highest (approximately 75%) in the CCSM4 ESM, 455 

followed by the MME (approximately 65%).  It is interesting to observe that the transition to (P+, 456 

T-) combination is much lower than in observed data in all ESMs except HadCM3, with zero 457 

probability in the MME ensemble-average hindcasts.  Figures for seasonal data indicate (not 458 

shown) that the probability of (P+, T+) same-combination transition in observed data is 459 

considerably lower in DJF and SON, with the latter season having nearly equal probability of 460 

transition to any of the four possible combinations.  Although all four ESMs generally have the 461 

highest probability of same-combination transition to (P+, T+) in all seasons, details vary among 462 

the models.  HadCM3 is unique in that the transition probability of its ensemble-average hindcast 463 

to the (P-, T-) combination is nearly zero in all seasons and annual data.   464 

 In the case of (P+, T-) transitions (Figure 2b), the highest probabilities are for transitions to 465 

(P+, T-) and (P+, T+) combinations, both approximately 33%, in observed data.  Probabilities for 466 

the other two transitions are 10 to 22%.  Ensemble-average data from CCSM4 hindcasts nearly 467 

replicate the two highest probability transitions, but with somewhat higher (40%) probabilities.  468 

Ensemble-average data from CM2.1, HadCM3, and the MME show the highest probability of 469 

same-combination transition, but with almost twice as high a probability (60 to 65%) as the 470 

observed data.  Both these ESMs and the MME show very low probabilities of other transitions 471 

from the (P+, T-) combination.  Ensemble-average data from MIROC5 hindcasts show moderate 472 

probabilities of transitions to (P+, T+) and (P+, T-), and small to zero probabilities of transitions to 473 

the other two combinations.  In DJF and SON, the same-combination transition probability from 474 

one year to the next is highest of all possible transitions in observed data.  All ESMs generally 475 
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have comparable probabilities of same-combination transition to (P+, T-), although transitions to 476 

the (P+, T+) combination also have moderate to high probabilities. 477 

 The (P-, T+) combination (Figure 2c) has the highest transition probabilities (approximately 478 

35%) in the observed annual data for transitions to (P-, T+) and (P-, T-) combinations.  Transitions 479 

to (P+, T+) and (P+, T-) combinations have approximately 15% probability.  Hindcast annual data 480 

from the four ESMs and the MME show even higher probability of same-combination transition 481 

of (P-, T+) as the observed data.  The next highest probability in the ESM and the MME data is of 482 

transition to (P-, T-) combination.  Both in the observed data and ESM hindcast data, the third 483 

highest probability of (P-, T+) combination is for the (P+, T+) combination, followed by the 484 

probability of transition to the (P+, T-) combination.  In the observed and hindcast seasonal data, 485 

the highest probability is of transition from (P-, T+) to the same combination. 486 

 Lastly, for the (P-, T-) combination (Figure 2d), the highest probability in observed (60%) 487 

and annual hindcast (40 to 80%) data is for transition to the same combination; the next highest 488 

probability is for transition to the (P-, T+) combination, except in the MME ensemble-average 489 

hindcast.  This order of probabilities holds in observed seasonal data also.  In the hindcast seasonal 490 

data from CM2.1, the transition to (P-, T+) has a higher probability than the same-combination 491 

probability in DJF, MAM, and JJA seasons.       492 

Thus, a general tendency of all four combinations in the ERSST and ensemble-average 493 

ESM and MME indices to remain in the same combination is obvious, including when the ranges 494 

of ensemble member results are included, although there are cases in which probabilities are higher 495 

for transitions to other combinations (for example, (P+, T+) in CM2.1 and HadCM3).  This general 496 
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observation implies that ensemble-average results may be reliable enough for actual prediction of 497 

phase combinations at one to two years lead times.  Details show, however, that there are very 498 

large ranges of transition probabilities for some combinations, pointing to the need for ensembles 499 

and ensemble averaging, including MME averaging, to increase the signal to noise ratio. 500 

3.2 Skills of Phase and Magnitude Hindcasts  501 

After comparing the occurrence statistics and transition probabilities of various phases of 502 

DCV indices and their combinations, we now describe skills of the four ESMs and the MME in 503 

predicting the phase and magnitudes of the PDO, TAG, and WPWP indices.   504 

 The percent of total numbers of years in which the ensemble-average ESM and the MME 505 

hindcasts accurately predicted the PDO phase is shown in Figure 3a.  Since there are two possible 506 

phases to predict, the theoretical skill would be 50% if both phases are equally likely; that is, there 507 

would be an equal probability of predicting either phase.  There would be skill if the actual 508 

probability exceeds 50%.  The annual average hindcasts from the CCSM4, CM2.1, HadCM3, and 509 

MIROC5 ESMs, and the MME predicted the negative PDO phase correctly approximately 57%, 510 

70%, 60%, 60%, and 65%, respectively, of the 28 years in which the PDO was in the negative 511 

phase.  The four ESMs and the MME predicted the positive phase correctly approximately 45%, 512 

56%, 60%, 40%, and 55%, respectively, of the 22 years in which the PDO was in the positive 513 

phase.  These results imply that the ensemble-average hindcasts have skill above the nominal 514 

thershold in all but the CCSM4 and MIROC5 hindcasts of positive PDO phase.  Figure 3a also 515 

shows that there are some members in each ensemble with higher skill than the skill of ensemble-516 

average hindcasts.  In seasonal hindcast data, the highest skill of prediction of both PDO phases is 517 

in DJF and SON, and the lowest skill in JJA.  Even the lowest skill, however, is approximately 518 

40%.  The percent of total numbers of years in which TAG phases are predicted correctly by the 519 

ensemble-average hindcasts is shown in Figure 3b.  Both TAG phases are predicted between 520 
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approximately 50% and 65% of times correctly by ensemble-average hindcasts made by all four 521 

ESMs and the MME.  Variations of skill in the seasonal data are also within this range for all four 522 

ESMs and the MME.  In the case of WPWP phases, annual, ensemble-average hindcast data from 523 

all four ESMs predict both phases correctly between 40% and 62% of the times each phase occurs 524 

(Fig. 3c).  Variations of skill in seasonal data are from 50% to 70%.  Thus, Figure 3 indicates that 525 

ensemble-average hindcast data from all four ESMs and the MME show, with some exceptions, 526 

skills exceeding the nominal threshold in predicting phases of the three DCV phenomena.  It must 527 

be re-iterated here that the ensemble-average data are from decadal hindcasts that are initialized 528 

once every ten years, so the prediction lead times vary from one year to ten years. 529 

 To evaluate the prediction skill for magnitudes of the DCV indices, three states of each 530 

index were defined as negative, neutral, and positive as described in Section 2.2.  The percent of 531 

total years of each state in which each ESM and the MME correctly predicted the state is shown 532 

in Figure 4.  The horizontal dashed line at 33.3% in each panel of Figure 4 shows the nominal skill 533 

threshold that would be expected if all three states were equally probable; probabilities above this 534 

threshold are considered significant skill in this study.  The negative PDO state was predicted 535 

correctly in at least 42% of the 16 years in which it occurred, the neutral PDO state was predicted 536 

correctly at least 32% of the 21 years, and the positive PDO state was predicted correctly at least 537 

15% of the 13 years as shown in Figure 4a.  So, with ensemble-average hindcast data, CCSM4 538 

shows skill above the threshold for the negative state, CM2.1 shows skill for negative and neutral 539 

states, HadCM3 shows skill for negative and positive states, MIROC5 shows significant skill for 540 

negative and neutral states, and the MME shows skill for all three states.  Overall, the MME is the 541 

best for all three states, followed by the CM2.1, HadCM3, and MIROC5 ESMs over the 50 years 542 

of the hindcast period.  Seasonal-average, ensemble-average data show that almost all four ESMs 543 
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have the highest skill in predicting the negative state of the PDO.  The seasonal data also show 544 

that, in SON, all four ESMs have prediction skill above the theoretical probability for all three 545 

PDO states. 546 

 Prediction skill for the three states of ensemble-average, annual hindcast of the TAG index 547 

is shown in Figure 4b.  CCSM4 has skill above 33% only for the neutral state, and  HadCM3 and 548 

MIROC5 have skill for the negative and positive states; hindcast data from CM2.1 do not show 549 

skill of any state.  The MME shows skill for the neutral and positive states.  From the seasonal-550 

average hindcast data, all except HadCM3 in MAM and CCSM4 in SON show significant skill for 551 

prediction of the neutral TAG state.  The skill for the other two states vary among the four ESMs 552 

and the MME in all four seasons.  Thus, the overall skill of TAG prediction appears to be the best 553 

in the MME. 554 

 Skillful prediction of the three WPWP states is shown (Figure 4c) by ensemble-average 555 

annual data from all ESMs and the MME except that of the negative state by HadCM3 and the 556 

MME and of the neutral state by MIROC5.  In the seasonal-average hindcast data, there is 557 

significant skill for all three states in all ESMs except the negative state in CCSM4 and MIROC5 558 

in MAM; the negative state in CCSM4, HadCM3, and MIROC5 in JJA; and the neutral and 559 

positive states in HadCM3 and the positive state in MIROC5 in SON.  Overall, the CCSM4 560 

ensemble-average hindcasts of the three states appear to be the best, followed by the MME and 561 

MIROC5 hindcasts.         562 

 As mentioned in Section 2.1, the decadal hindcast experiments were initialized once (in the 563 

0th year - 1960, 1970, etc.) every ten years.  The phase hindcast skills for the PDO, TAG, and the 564 

WPWP indices in the second year after initialization are described here following the description 565 

of the skills in the first year.  For both the first and second years, we analyzed the accuracy of 566 
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phase hindcast using data from annual-average and ensemble-average hindcasts as well as from 567 

all individual members of each ensemble.  The results for both first and second years are shown in 568 

Table 3 for the PDO.  The ensemble averages from the ESMs and the MME hindcast the PDO 569 

phase in the first year after initialization correctly in all five decades, except for CM2.1 in 1961.The 570 

second year phase hindcast by ensemble averages was correct for three ESMs (CCSM4, CM2.1, 571 

and MIROC5) and the MME in 1982.  In other decades, however, fewer ensemble averages from 572 

individual ESMs hindcast the PDO phase correctly.  The ensemble-average MME hindcast of the 573 

PDO phase in the second year was correct in 1982, 1992, and 2002.  Table 3 also shows that first 574 

year phase hindcasts of the PDO index by individual members of each ensemble were correct for 575 

the largest number of members of CCSM4 ensembles in all five decades, followed by MIROC5 576 

and the MME.   It is obvious that the success rate or skill of phase prediction decreases from first 577 

year to second year for CCSM4, CM2.1, and HadCM3, but the second-year phase prediction skill 578 

of MIROC5 hindcasts is 100% in four of the five decades.  It is also interesting to note that a 579 

correct hindcast of first-year PDO phase appears to be necessary for a correct hindcast of second-580 

year phase, but it is not a sufficient condition.   581 

As for the PDO index, MIROC5 performs better than the other three ESMs and the MME 582 

for the second year prediction of the TAG index also (Table 4) with correct phase prediction in 583 

four out of five decades.  CCSM4, CM2.1, and the MME are next with three correct predictions 584 

of second-year TAG phase out of five decades, and HadCM3 has correct prediction of second-year 585 

phase in two out of five decades.  Unlike for PDO predictions, however, a correct first-year 586 

prediction of the TAG phase does not appear to be a pre-requisite for a correct second-year phase 587 

prediction.  Of the three DCV indices, first- and second-year hindcasts of the WPWP index are 588 

correct in the majority of the ESM-decade combinations (Table 5).  In 1961, 1981, and 2001, 589 
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ensemble-average WPWP index hindcasts by all four ESMs and the MME are correct for the first 590 

year after initialization.  In 1962, 1992, and 2002, second-year phase hindcasts are also correctly 591 

made by ensemble-average WPWP indices by all four ESMs and the MME.  It is also remarkable 592 

that when the first/second year phase of the WPWP index is correctly hindcast by the ESMs and 593 

the MME, almost all members of the corresponding ensembles also hindcast the phase correctly.  594 

This general success in hindcasting the WPWP index phase for two years is further addressed in 595 

the next Section where decade-average hindcast skills are described.    596 

 597 

3.3 Decade-average Hindcast Skills  598 

The next step in the journey to assess prediction skills of the PDO, TAG, and WPWP is 599 

the average skill over each decade of the decadal hindcast experiments, starting with the overall 600 

skill over the 1961 to 2010 CE period.  Figure 5a shows correlation coefficients, using seasonal-601 

average data, between the three observed and hindcast DCV indices over the 1961 to 2010 CE 602 

period.  These coefficients were calculated with ensemble-average data from the four ESMs and 603 

the MME.  In the cases of the PDO and the TAG indices, no one of the ESMs or the MME shows 604 

significant skill.  The WPWP has small but substantial and significant skill in all ESMs except 605 

MIROC5, approaching 0.4 correlation coefficients.   606 

Looking at the skill decade by decade after removing linear trends from the ERSST and 607 

ESM indices, Figure 5b shows that only PDO hindcasts by HadCM3 and the MME have 608 

substantial and significant skill in the 1980s CE.  There is no significant hindcast skill of TAG 609 

(Fig. 5c) and WPWP (Fig. 5d) indices in any decade even though correlation coefficients are 610 

moderately large in some decades.  Incidentally, the MIROC5 ESM’s decadal hindcast data were 611 

used in a statistical prediction system for the PDSI in southern Africa (Mehta et al., 2014) because 612 
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of the moderately large, but not statistically significant, skill of decadal hindcasts of the DCV 613 

indices with this ESM. 614 

RMS errors (RMSEs) of the decadal hindcasts of the DCV indices, compared to the ERSST 615 

indices, are shown in Figure 6.  Over the 1961 to 2000 CE period, WPWP index hindcasts with all 616 

ESMs and the MME have approximately the same RMSE (Fig. 6a).  It is interesting to note that 617 

RMSE of PDO hindcasts (Fig. 6b) vary among decades and ESMs, but it is the smallest in all 618 

ESMs and the MME in the 1980s when PDO hindcast skills are the highest (Fig. 5b). 619 

3.4 Roles of External Forcing and Internal Variability in Phase Transitions 620 
As mentioned in Section 1.2, understanding and prediction of DCV phase transitions 621 

sustained for several months to an year or longer can be useful in understanding and prediction of 622 

DCV impacts.  Understanding and prediction of DCV phases is also important for attribution of 623 

DCV phase transitions to internal ocean-atmosphere processes or changes in external forcings.  624 

Therefore, sustained transitions in phases of the PDO, and the TAG and WPWP SST variabilities 625 

in observed and ensemble-average hindcast indices of these DCV phenomena were visually 626 

identified.  The phase transitions occurred over many months to 1 to 3 years and there is some 627 

subjectivity in the choice of selected transitions.  The observed and hindcast phase transitions were 628 

also compared with major volcanic eruptions at low latitudes as represented in AOD time series 629 

andother publicly available information.  The following questions were addressed to visually 630 

identify roles of external forcing and internal variability in DCV phase transitions. 631 

Are there phase transitions in observed and hindcast DCV indices which are physically 632 

consistent with external forcing changes as represented in AOD changes?   633 

Are there phase transitions in observed DCV indices which are also hindcast by the ESMs, 634 

but are not associated with AOD changes? 635 
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Are there phase transitions in observed DCV indices which are in simulations and initialized 636 

hindcasts?  Are they associated with AOD changes? 637 

What is the impact, if any, of initialization on phase transition events and on overall hindcasts?  638 

In the following description of results, positive to negative phase transitions are referred to as PTN 639 

and negative to positive phase transitions are referred to as NTP. 640 

 641 

3.4.1 Pacific Decadal Oscillation Phase Transitions  642 

There were 14 PDO phase transitions between 1961 and 2010 CE in the ERSST data, with  643 

each phase persisting for many months to many years.  Table 6 shows transitions in the observed 644 

PDO index; and in the ensemble-average, hindcast index in each of the four ESMs and the MME.  645 

Times (months and years) and locations of major (Volcanic Explosivity Index (VEI) ≥ 4; Newhall 646 

and Self (1982)), low-latitude volcanic eruptions are also mentioned in Table 6.  As is evident, 647 

there are two types of phase transitions in the observed PDO index -  transitions associated with 648 

internal ocean-atmosphere dynamics and those associated with AOD changes associated with 649 

volcanic eruptions.  Three of the four major eruptions during the 1961 to 2010 CE period – Mount 650 

Agung in 1963 CE, Volcan de Fuego in 1974 CE, and Mount Pinatubo in 1991 CE – were 651 

associated with a phase transition in observed and hindcast PDO indices.  The El Chichón eruption 652 

in Mexico, even though it was very explosive (VEI 5), was not associated with a phase transition 653 

in PDO hindcasts, but only with a phase transition in observed PDO index.  It was, however, 654 

associated with phase transition in PDO simulations with the ESMs as discussed in Mehta et al. 655 

(2017b).  656 

It is also evident in Table 6 that out of the 10 observed phase transitions not associated with 657 

a volcanic eruption, no ESM hindcast showed the correct phase transition in four such events 658 

(1961-62, 1988-90, 1995-97, and 2005 CE).  The 1993-94 CE PTN transition is the only instance 659 
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of hindcasts with all four ESMs and the MME showing the transition in the correct direction and 660 

magnitude without a volcanic eruption associated with it.  Hindcasts with the CM2.1 show the 661 

correct phase transitions six times (4 NTP), CCSM4 three times (2 NTP), HadCM3 two times 662 

(both PTN), MIROC5 two times (1 each PTN and NTP), and MME three times (2 NTP).  Thus, 663 

out of the 14 phase transitions in Table 6, the CM2.1 was successful in hindcasting 9, including 3 664 

associated with volcanic eruptions; CCSM4 and MME in 6, including 2 in each associated with 665 

volcanic eruptions; and HadCM3 and MIROC5 in 5 phase transitions, including 3 in each 666 

associated with volcanic eruptions.  667 

To gain further insight, the numbers of NTP and PTN phase transition events were 668 

identified from Table 6 and their possible attribution to external forcing or internal variability was 669 

identified.  There are 6 events in the NTP and 8 events in the PTN category.  Also, there is one 670 

major volcanic eruption during the former and three during the latter category.  Thus, there are 5 671 

other – “non-volcanic” – events in each category.  The one NTP event during the 1991-92 CE 672 

Mount Pinatubo eruption was hindcast correctly by all four ESMs, but, surprisingly, not by the 673 

MME.  Out of the 3 PTN transition events during volcanic eruptions, the correct hindcasts were 1 674 

by CCSM4; and 2 each by the other 3 ESMs and the MME.  Thus, in this relatively small sample 675 

size, almost all ESM hindcasts responded to AOD changes associated with volcanic eruptions.  676 

This result is very encouraging because, while it is well known that it is (almost) impossible to 677 

predict volcanic eruptions of any explosivity months to years in advance, the generally correct 678 

responses of the ESMs and the MME indicate that they can be used to predict post-eruption 679 

evolution of the ocean-atmosphere system reasonably accurately, at least qualitatively, for perhaps 680 

two to three or more years.  Finally, there were four phase transition events from 1995-97 to 2006-681 

07 CE; there were no major volcanic eruptions during this period.  As Table 6 shows, not one of 682 
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the ESMs or the MME hindcast these events correctly, with the 1997-99 CE event in HadCM3 683 

being the lone exception to some extent.  These four events occurred several years after the 684 

hindcasts were initialized in 1990 CE and 2000 CE for 10 years each, so it is reasonable to 685 

speculate that perhaps the initial condition effects were “forgotten” by the ESMs by the time these 686 

four phase transitions occurred.           687 

Thus, as the foregoing shows, these ESMs were able to hindcast some of the PDO phase 688 

transitions caused by major volcanic eruptions and some caused by internal ocean-atmosphere 689 

dynamics.  A comparison with PDO phase transitions in simulations with the same ESMs (Mehta 690 

et al., 2017b) shows that a correct response of the simulated PDO to a major volcanic eruption is 691 

not a pre-requisite for a successful hindcast of PDO phase transition after the same volcanic 692 

eruption.  For example, only MIROC5 both simulated and hindcast the 1963 PDO phase transition 693 

in response to the Mount Agung (Bali), Indonesia, eruption.  The other three ESMs and the MME 694 

did not simulate this phase change, but hindcast the change successfully.  On the other hand, all 695 

except CCSM4 were able to simuate as well as hindcast the PDO phase change in response to the 696 

1974-75 Volcan de Fuego, Guatemala, eruption.  As mentioned earlier, all ESMs and the MME 697 

simulated the PDO phase transition in response to the 1981-82 El Chichón, Mexico, eruption, but 698 

no one of the five was able to hindcast the transition correctly.  Other than this event, only MIROC5 699 

was able to both simulate and hindcast the remaining three PDO phase transitions successfully.  700 

From these results based on visual inspections, summary answers to the questions posed 701 

are:  (1) There are 3 PDO phase transitions during the 1961 to 2010 CE period which are associated 702 

with AOD changes in both observed and hindcast indices in all ESMs and the MME, except for 703 

the 1974-75 PTN transition in CCSM4;  (2)  All ESMs’ hindcasts capture phase transitions not 704 

associated with AOD changes in varying numbers, such correct transitions in an ESM’s hindcast 705 
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vary from two to six; (3) The 1963 CE and 1991-92 CE transitions associated with AOD changes 706 

due to volcanic eruptions are in simulations with all four ESMs and the MME also, but the sizes 707 

of the simulated changes vary among the ESMs and the MME (Mehta et al., 2017b); (4) The 1976-708 

77 CE NTP transition is simulated by CM2.1, HadCM3, and CCSM4 to some extent, which 709 

suggests the intriguing possibility that perhaps coupled ocean-atmosphere response to the 1974-710 

75 CE Volcan de Fuego volcanic eruption resulted in the 1976-77 CE NTP transition; this 711 

transition is present, but does not have the full range of PDO index, only in ensemble-average 712 

hindcasts by CM2.1 and the MME initialized in 1970 CE.  Thus, initialization appears to have 713 

interfered with this NTP transition in HadCM3 and CCSM4 ESMs if indeed it was caused as a 714 

response to the 1974-75 CE volcanic eruption; and (5) a correctly simulated response to external 715 

forcing changes does not appear to be a pre-requisite for an ESM to successfully hindcast the PDO 716 

response to the same forcing change.               717 

3.4.2 Tropical Atlantic SST Gradient Phase Changes 718 

 There were 9 TAG phase transitions between 1961 and 2010 CE in the ERSST data, each 719 

of which persisted in positive or negative phase for many months to many years.  Table 7 shows 720 

transitions in the observed TAG index; and in the ensemble-average, hindcast index in each of the 721 

four ESMs and the MME.  Times (months and years) and locations of major low-latitude volcanic 722 

eruptions are also shown in Table 7.  As is evident, there are two types of phase transitions in the 723 

observed TAG index - one group associated with internal ocean-atmosphere dynamics and the 724 

other associated with radiative forcings associated with volcanic eruptions.  Three of the four major 725 

eruptions during the 1961 to 2010 CE period – Mount Agung in 1963 CE, Volcan de Fuego in 726 

1974 CE, and El Chichón in 1982 CE – were associated with a positive (or approximately zero) to 727 

negative phase transition in observed TAG index.  The Mount Pinatubo eruption in Phillipines in 728 

1991 CE was associated with an NTP phase transition in observed TAG index.  No one of the four 729 
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ESMs could hindcast these four TAG phase transitions correctly.  It is also evident in Table 7 that 730 

no one of the remaining seven TAG phase transitions were correctly hindcast by any of the four 731 

ESMs.   It is intriguing why no one of the 9 TAG phase transitions in the ERSST data are present 732 

in the ESM and MME hindcasts.  On the other hand, as described in Mehta et al. (2017b), all ESMs 733 

and the MME correctly simulated some of the TAG phase changes associated with major volcanic 734 

eruptions.  The 1963 TAG phase change was correctly simulated by CM2.1, HadCM3, CCSM4, 735 

and the MME; the 1974-75 TAG phase change was correctly simulated by CM2.1, MIROC5, and 736 

the MME; the 1981-82 phase change was correctly simulated by CM2.1 and MIROC5; and the 737 

1991-92 TAG phase change was correctly simulated by HadCM3, CCSM4, and the MME.  So, 738 

initialization appears to have interfered with TAG phase changes even when they were correctly 739 

simulated by an ESM.  It is possible, as Swingedouw et al. (2015) found, that there is a multiyear 740 

to decade delayed response of some ESMs to Mount Agung-like eruptions on North Atlantic 741 

Ocean circulation and temperature.  Possible effects of a delayed response of the TAG index to 742 

volcanic eruptions should be further investigated with controlled experiments with an ESM in 743 

simulation and hindcast modes.   744 

From these results based on visual inspections, summary answers to the questions posed 745 

are:  (1) There are no TAG phase transitions in hindcast data which are also in observed data, either 746 

associated with AOD changes or due to internal ocean-atmosphere interactions; (2) some of the 747 

TAG phase changes which are in observed data are simulated by some of the ESMs and the MME, 748 

but they are not hindcast by any ESM; and (3) initialization appears to have interfered with the 749 

ESMs’ hindcasting the correct response to major volcanic eruptions.    750 

 751 
3.4.3 West Pacific Warm Pool Variability Phase Transitions 752 

There were nine phase transitions in the WPWP SST index from 1961 to 2010 CE in the 753 

ERSST data, with each phase persisting for many months to many years.  Table 8 shows transitions 754 
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in the observed WPWP index, and in the ensemble-average, hindcast index in each of the four 755 

ESMs and the MME.  Times (months and years) and locations of major, low-latitude volcanic 756 

eruptions are also shown in Table 8.  As in the cases of PDO and TAG phase transitions, there are 757 

two types of transitions in WPWP index; one group associated with internal ocean-atmosphere 758 

dynamics and the other associated with AOD changes associated with volcanic eruptions.  There 759 

is a cooling trend from PTN phase associated with three volcanic eruptions – Mount Agung, 760 

Volcan de Fuego, and Mount Pinatubo – in the ERSST and hindcast indices.  Out of the other six 761 

phase changes, the observed transitions in 1981-82 CE (PTN), 1993-95 CE (NTP), and 1994-96 762 

CE (NTP) are hindcast, to some extent, by all four ESMs and the MME.  The observed NTP 763 

transitions in 1967-68 CE and 1997-98 CE, and the PTN transition in 1996-97 CE are not hindcast 764 

by any of the ESM or the MME.  Thus, out of the nine phase transitions, six are hindcast to some 765 

extent by all ESMs and the MME.  A comparison with simulated responses of the WPWP index 766 

in these four ESMs (Mehta et al., 2017b) shows that the 1963, 1981-82, and 1991-92 phase changes 767 

associated with volcanic eruptions were correctly simulated by all ESMs and the MME.  The 1974-768 

75 WPWP phase change associated with the Volcan de Fuego, Guatemala, eruption was correctly 769 

simulated only by MIROC5 and HadCM3.  It is also evident in Table 8 that out of the five phase 770 

transitions not associated with a volcanic eruption, all ESMs’ and the MME’s hindcasts showed 771 

the correct phase transition in two such events (1993-94 and 1994-96 CE); both of these were NTP 772 

transitions and both appeared as warming trends. The remaining three phase transitions (1967-68, 773 

1996-97, and 1997-98 CE) were not hindcast correctly by any of the ESMs or the MME.   774 

From these results based on visual inspections and a comparison with simulations by these 775 

four ESMs (Mehta et al., 2017b), summary answers to the questions posed are: (1) There are four 776 

phase transitions associated with AOD changes in the observed WPWP index which were 777 
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generally correctly hindcast by the four ESMs and the MME; (2) all ESMs’ ensemble-average 778 

hindcasts capture transitions not associated with AOD changes in 1993-94 and 1994-96 CE to 779 

varying degrees; (3) simulations with all four ESMs and the MME capture the 1963-64, 1981-82, 780 

and 1991-93 CE phase transitions associated with AOD changes in the WPWP SST index.  781 

Simulations with MIROC5 and HadCM3 capture the 1973-76 CE phase transition associated with 782 

AOD changes.  Sizes of simulated transitions vary among the ESMs and the MME; (4)  The impact 783 

of initialization appears to be reinforcement of the four transitions associated with AOD changes 784 

and correct hindcasts of two additional transitions not associated with AOD changes.  The latter 785 

two, however, are also present in simulations with all four ESMs and the MME, so perhaps there 786 

is another radiative forcing (not AOD changes) driving these two transitions.  It is also interesting 787 

to note that simulations show warming trend in the WPWP SST index continuing after 1996 CE 788 

which is not captured by any of the ESMs’ hindcasts.        789 

4. Summary and Discussion 790 

We analyzed positive/negative phase occurrence rates, phase transition probabilities, and 791 

one-year and two-year phase and state predictability of the PDO, the TAG SST variability, and the 792 

WPWP SST variability in observations and ensembles of decadal hindcasts made with the 793 

CCSM4, CM2.1, HadCM3, and MIROC5 ESMs - and the MME formed from these ESM hindcasts 794 

- from 1961 to 2010 CE.  The hindcasts were initialized every ten years.  We also analyzed hindcast 795 

skills of these DCV phenomena over this 50 years period and in individual decades; and conducted 796 

case studies of their individual, sustained, phase transitions in the ensembles of decadal hindcasts 797 

in order to attribute the phase transitions to external forcing or initialized internal variability.  798 

Major results are: 799 
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Ensemble-average hindcasts of the three DCV indices made with the four ESMs and the MME 800 

have generally comparable phase occurrence rates with respect to observed rates.  801 

There is a moderate to high probability (70%) of phase persistance or same-phase transitions 802 

of PDO and WPWP phases from one year to the next in observed data and also generally in the 803 

ensemble-average ESM hindcasts, whereas the same-phase transition probability of TAG phases 804 

is moderate (55%).     805 

In observed data, out of the eight possible combinations of phases of the three DCV indices, 806 

the (P-, T+, W+), (P-, T-, W+), and (P+, T+, W-) combinations have the highest occurrence rates, 807 

whereas (P+, T+, W+), (P+, T-, W+), and (P-, T+, W-) combinations have the lowest occurrence 808 

rates; the other two combinations have intermediate occurrence rates.  809 

 There is a general tendency of all four combinations of PDO and TAG phases in the ERSST 810 

and ensemble-average ESM indices to remain in the same combination for at least two years, 811 

including when the ranges of ensemble member results are included, although there are cases in 812 

which probabilities are higher for transitions to other combinations (for example, (P+, T+) in 813 

CM2.1 and HadCM3).  814 

Annual-average hindcasts from the four ESMs and the MME predicted the negative PDO 815 

phase correctly nearly 60% to 70% times of the 28 years in which the PDO was in the negative 816 

phase.  These four ESMs and the MME predicted the positive phase correctly nearly 40% to 65% 817 

times of the 22 years in which the PDO was in the positive phase.  Both TAG phases were predicted 818 

between approximately 50% and 65% times correctly by all four ESMs and the MME.  In the case 819 

of WPWP phases, annual, ensemble-average hindcast data from all four ESMs predicted both 820 

phases correctly between 40% and 62% of the times each phase occured; the MME predicted 821 

negative and positive phases 45% and 65% of the times correctly.  Thus, ensemble-average 822 
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hindcast data from all four ESMs and the MME show some skill in predicting phases of the three 823 

DCV phenomena above the 50% threshold if both phases were equally probable.         824 

The negative PDO state was hindcast correctly in at least 42% of the 16 years in which it 825 

occurred, the neutral PDO state was hindcast correctly at least 32% of the 21 years, and the positive 826 

PDO state was hindcast correctly at least 15% of the 13 years.  So, with ensemble-average hindcast 827 

data, CCSM4 shows significant skill above the 33.3% threshold for the negative state, CM2.1 828 

shows significant skill for negative and neutral states, HadCM3 shows significant skill for negative 829 

and positive states, MIROC5 shows significant skill for negative and neutral states, and the MME 830 

shows significant skill for all three states.   831 

For TAG states, CCSM4 has hindcast skill above the 33.3% threshold only for the neutral 832 

state, and  HadCM3 and MIROC5 have skill for the negative and positive states; hindcast data 833 

from CM2.1 do not show hindcast skill of any state.  The MME shows significant skill for neutral 834 

and positive TAG states.  835 

Skillful hindcast of all three WPWP states is shown by ensemble-average annual data from 836 

all ESMs except that of the negative state by HadCM3 and of the neutral state by MIROC5.  The 837 

MME shows significant skill for neutral and positive WPWP states.   838 

Ensemble-average and most of ensemble members of MIROC5 hindcasts correctly predict 839 

PDO phases one and two years after initialization in all five decades.  Prediction success rate 840 

decreases from the first year to the second in CCSM4, CM2.1, and HadCM3 hindcasts.  Ensemble-841 

average and most of ensemble members of the MME hindcasts correctly predict PDO phases one 842 

and two years after initialization after 1980; they correctly predict only the first-year PDO phase 843 

in 1960s and 1970s. 844 
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Over the entire 1961 to 2010 CE period, no one of the four ESMs shows significant, 50-year 845 

average skill of PDO and TAG indices hindcasts.  All individual ESMs except MIROC5, and the 846 

MME, show significant average skill of WPWP index hindcast over the 1961 to 2010 CE period.    847 

Decade-average hindcast skills of all three DCV indices vary from decade to decade, with 848 

only PDO index hindcasts by HadCM3 and the MME showing substantial and significant skill in 849 

the 1980s decade.  There is no significant skill of TAG and WPWP indices hindcasts in any ESM 850 

or the MME in any of the five decades.    851 

Major, low-latitude volcanic eruptions - as represented in AOD changes - in 1963 (Mount 852 

Agung), 1974-75 (Volcan de Fuego), 1981-82 (El Chichón), and 1991-92 (Mount Pinatubo) are 853 

associated with sustained phase transitions of DCV indices in observed data and in some of the 854 

ensemble-average decadal hindcasts of the indices with the four ESMs and the MME.  Three of 855 

the four major volcanic eruptions were associated with PDO phase changes in observed data and 856 

almost all hindcasts.  The WPWP index phase changes associated with all four eruptions were 857 

hindcast by all ESMs and the MME.  In contarst, no one of the 9 TAG phase transitions in observed 858 

data were present in the ESM and MME hindcasts.  Hindcasts from some of the ESMs and the 859 

MME show approximately correct phase transitions in the absence of AOD changes also, implying 860 

that the initialization of the ESM hindcasts with observed data is beneficial in predicting phase 861 

transitions of DCV indices.   862 

Before these results are discussed further, it must be mentioned that there are several 863 

shortcomings of these ESMs and decadal hindcast/forecast experiments conducted with them as 864 

mentioned in Section 1.2.  Additionally, the four ESMs selected for the present study were 865 

initialized with different techniques and the decadal hindcasts were initialized every ten years.  In 866 

spite of these and other shortcomings such as the inclusion of future volcanic eruptions in decadal 867 
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hindcsts, the results of the analyses presented in Section 3 shed considerable light on prospects for 868 

future predictions of DCV indices and their usability for impacts prediction.  869 

 It is very encouraging that decadal hindcasts of the three DCV indices by the four ESMs 870 

and the MME have generally the same phase occurrence rates as the observed data.  This similarity 871 

also carries over to probabilities of same-phase transitions of the PDO and WPWP indices from 872 

one year to the next in the observed and hindcast data.  Another encouraging result is that there is 873 

some skill (above the 50% threshold) of annual-average PDO phase prediction in all four ESMs 874 

and the MME hindcasts.  These results provide grounds for guarded optimism that there may be 875 

useable skill in phase prediction of the three DCV phenomena at least one year in advance and up 876 

to at least two years in advance for the PDO index.  There is less confidence about magnitude 877 

prediction skill.  878 

Although it is (almost) impossible to predict volcanic eruptions of any explosivity, it is 879 

instructive that AOD changes associated with major volcanic eruptions were included in the 880 

CMIP5 hindcast experiments.  As the results show, the four ESMs and the MME appear to respond 881 

accurately to varying degrees to the eruption-associated AOD changes, and the hindcasts of the 882 

PDO and WPWP indices show phase transitions and subsequent evolutions of the DCV indices 883 

comparable to those in observed indices for several months to several years in some cases.  884 

Therefore, these hindcast results give encouragement for the use of these and other ESMs for multi-885 

year prediction initialized soon after a major volcanic eruption occurs.  As described earlier, AOD 886 

changes appear to cause damped oscillations in the DCV indices in some cases over several years, 887 

which might extend predictability of these indices beyond the immediate effects of AOD changes. 888 

These impacts of eruption-associated AOD changes on DCV indices imply that volcanic eruptions 889 

can influence global atmospheric dynamics and climate not only directly via interactions between 890 
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ejected material in the atmosphere and short- and long-wave radiations, but also via influencing 891 

DCV phenomena’s impacts on global climate.       892 

Table 6 shows intriguing associations between PDO phase changes and volcanic eruptions.  893 

Positive to negative phase changes are associated with eruptions in 1963, 1974-75, and 1981-82 894 

CE; but, a negative to positive phase change is associated with the Mount Pinatubo eruption in 895 

1991-92 CE.  The ejected material from a volcano can “shield” the underlying ocean or land 896 

surface if the material is ejected into the upper troposphere or stratosphere, reducing the incoming 897 

visible solar radiation and cooling the underlying surface.  But, how can an eruption warm the 898 

tropical-subtropical central and eastern Pacific Ocean SSTs as is implied by the negative to 899 

positive PDO phase change?  Based on the location of the eruption (Mount Pinatubo in 900 

Philippines), it can be hypothesized that the material ejected from the eruption can cool the WPWP, 901 

thereby decreasing the east-west SST difference in the tropical Pacific.  This decreased SST 902 

difference can weaken easterly winds near the ocean surface, which, in turn, would reduce coastal 903 

and equatorial upwelling in eastern and equatorial central Pacific, respectively, and thereby warm 904 

central and eastern Pacific and change the PDO phase from negative to positive.  This hypothesis 905 

can be and should be tested with ESM experiments.  906 

The analyses presented in this paper are entirely of decadal hindcasts from 1961 to 2010 907 

CE.  But, as mentioned in Section 2.1, CMIP5 also has a set of 30-year hindcast/forecast 908 

experiments, the last of which was initialized with data from January 2006.  How do these 909 

experiments perform with respect to observations since 2010 CE and what do they indicate about 910 

future evolutions of the DCV indices?  All four ESMs and the MME perform poorly in 911 

hindcasting/forecasting the TAG index after 2010 CE.  The best performance in the 2011 to 2015 912 

period of verification by independent observed data is by MIROC5 for the PDO and the WPWP 913 
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indices.  Figure 7 shows the observed and hindcast evolutions of these two indices from 1961 to 914 

2010 CE, the observed evolutions from 2011 to 2015 CE, and forecast evolutions from 2011 to 915 

2020 CE; thus, there is a five-year overlap between independent observed data and forecast.  In 916 

addition to ensemble-average hindcast/forecast indices, Figure 7 also shows the ± one standard 917 

deviation range of hindcasts/forecasts by ensemble members; as mentioned in Table 1, the 918 

MIROC5 hindcast/forecast ensembles have six members.  Figure 7a shows that there is some 919 

similarity between observed and hindcast/forecast PDO indices from 2006 to 2015 CE, especially 920 

in the general shapes of the time series since 2011-2012 when the observed PDO index was within 921 

± one standard deviation of forecast index. Figure 7b shows that there is a reasonable similarity 922 

between observed and hindcast/forecast WPWP indices from 2008-2009 to 2014 CE during which 923 

period the observed WPWP index was within ± one standard deviation of forecast index.  Figures 924 

7a and 7b also show a confirmation of the phase hindcast skill one and two years after initialization 925 

of MIROC5, especially since the 1970s, which was described and discussed in Section 3.2.  This 926 

reasonably encouraging performance of MIROC5 in hindcasting the PDO and WPWP indices over 927 

the 1961 to 2010 CE period was the reason for using the MIROC5 data to hindcast decadal 928 

hydrologic cycles in seven countries of southern Africa by Mehta et al. (2014).  It will be 929 

interesting to see if the PDO and WPWP indices indeed reached relative maxima in 2015-2016 930 

CE, begin to decrease now, and reach relative minima in 2018-2019 CE as predicted by MIROC5.  931 

Such future evolutions of these indices would have very substantial, worldwide societal impacts 932 

as described by Mehta (2017).                                 933 

The results presented in this paper indicate that the persistance and phase transition 934 

probability statistics of DCV indices and their predictability by the ESMs, and also perhaps long-935 

term evolutions, can be exploited for prediction of these indices’ possible impacts on hydro-936 
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meteorology, streamflows, agriculture, and other societal sectors. The importance and usefulness 937 

of such impacts predictions were mentioned in Section 1.  Simulations of the three DCV 938 

phenomena with the same four ESMs and the MME, described in Mehta et al. (2017b), however, 939 

show that while these ESMs simulate the PDO’s attributes (spatial pattern, annual cycle, and 940 

variability timescales) reasonably well, the ESMs only simulate the annual cycle and variability 941 

timescales of the WPWP SST variability reasonably well and the WPWP’s spatial pattern is very 942 

poorly simulated by the ESMs and the MME.  In the case of the TAG SST variability, simulation 943 

results show that while the spatial pattern simulation by the ESMs and the MME is approximately 944 

correct, the annual cycle and variability timescales are simulated very poorly.  These incorrect 945 

simulations have serious implications not only for the prediction of impacts of these phenomena 946 

on global climate and society, but also about the simulation and prediction/projection of future 947 

climate change and its impacts.  This is especially true about the WPWP since it is the largest heat 948 

source for driving global atmospheric circulations.  Therefore, using the DCV indices’ prediction 949 

from ESMs in statistical models to predict societal impacts may be a safer alternative, at least until 950 

the ESMs’ simulation of these phenomena can be improved sufficiently to use climate and hydro-951 

meteorological predictions/projections made by the ESMs directly as shown by Mehtal et al. 952 

(2014).  Despite of these problems, the day may not be very far in the future when some aspects 953 

of DCV information are skillfully predicted and routinely used in agriculture and water resource 954 

managements, and other societal sectors.    955 
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 1160 

Figure Captions 1161 

Figure 1:  Probabilities of transitions among phases of (a)  the Pacific Decadal Oscillation,(b)  1162 

the tropical Atlantic SST gradient variability, and (c) the West Pacific Warm Pool SST 1163 

variability from 1961 to 2010 in ERSST data, and in decadal hindcasts made with CCSM4, 1164 

CM2.1, HadCM3, and MIROC5 Earth System Models, and the Multi-Model Ensemble (MME).  1165 

For the model data, color bars show probabilities derived from ensemble-average data and black 1166 

bars show the range of probability derived from ensemble members.  Please refer to the text for 1167 

more details.  1168 
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 1169 

Figure 2:  Probabilities of transitions among combined phases of the Pacific Decadal Oscillation 1170 

(PDO) and the tropical Atlantic SST gradient (TAG) variability from 1961 to 2010 in ERSST 1171 

data, and in decadal hindcasts made with CCSM4, CM2.1, HadCM3, and MIROC5 Earth System 1172 

Models, and the Multi-Model Ensemble (MME).  (a) PDO+, TAG+; (b) PDO+, TAG-; ( c) PDO-, 1173 

TAG+; and (d) PDO-, TAG-.  For the model data, color bars show probabilities derived from 1174 

ensemble-average data and black bars show the range of probability derived from ensemble 1175 

members.  See text for more details.   1176 

 1177 

Figure 3:  Probabilities of correct prediction of phases of the Pacific Decadal Oscillation (PDO), 1178 

the tropical Atlantic SST gradient (TAG) variability, and the West Pacific Warm Pool (WPWP) 1179 

SST variability from 1961 to 2010 in ERSST data, and in decadal hindcasts made with CCSM4, 1180 

CM2.1, HadCM3, and MIROC5 Earth System Models, and the Multi-Model Ensemble (MME).  1181 

(a) PDO, (b) TAG, (c) WPWP.  For the model data, color bars show probabilities derived from 1182 

ensemble-average data and black bars show the range of probability derived from ensemble 1183 

members.  The numbers of years in positive and negative phases of each index are given above 1184 

each box.  See text for more details.   1185 

 1186 

Figure 4:  Probabilities of correct prediction of states of the Pacific Decadal Oscillation (PDO), 1187 

the tropical Atlantic SST gradient (TAG) variability, and the West Pacific Warm Pool (WPWP) 1188 

SST variability from 1961 to 2010 in ERSST data, and in decadal hindcasts made with CCSM4, 1189 

CM2.1, HadCM3, and MIROC5 Earth System Models, and the Multi-Model Ensemble (MME).  1190 

For the model data, color bars show probabilities derived from ensemble-average data and black 1191 

bars show the range of probability derived from ensemble members.  (a) PDO, (b) TAG, (c) 1192 

WPWP.  See text for more details.   1193 

 1194 

Figure 5:  Correlation coefficients between ERSST and hindcast indices of the Pacific Decadal 1195 

Oscillation (PDO), the tropical Atlantic SST gradient (TAG) variability, and the West Pacific 1196 

Warm Pool (WPWP) SST variability from 1961 to 2010 in decadal hindcasts made with 1197 

CCSM4, CM2.1, HadCM3, and MIROC5 Earth System Models, and the Multi-Model Ensemble 1198 

(MME).  Color bars show correlation coefficients derived from ensemble-average data and black 1199 

bars show the range of coefficients derived from ensemble members.  (a) 1961 to 2010, (b) PDO, 1200 

(c) TAG, and (d) WPWP.  See text for more details.   1201 

 1202 

Figure 6:  Root-mean-square error (RMSE) between ERSST and hindcast indices of the Pacific 1203 

Decadal Oscillation (PDO), the tropical Atlantic SST gradient (TAG) variability, and the West 1204 

Pacific Warm Pool (WPWP) SST variability from 1961 to 2010 in decadal hindcasts made with 1205 

CCSM4, CM2.1, HadCM3, and MIROC5 Earth System Models, and the Multi-Model Ensemble 1206 

(MME).  Color bars show RMSE derived from ensemble-average data and black bars show the 1207 

range of RMSE derived from ensemble members.  (a) 1960 to 2010, (b) PDO, (c) TAG, and (d) 1208 

WPWP.  See text for more details.   1209 

 1210 

Figure 7:  Observed (black line, 1961 to 2015), hindcast (red line, 1961 to 2010), and forecast 1211 

(blue line, 2011 to 2020) indices of the Pacific Decadal Oscillation (PDO) and the West Pacific 1212 

Warm Pool (WPWP) sea-surface temperature.  The observed indices are from the ERSST data, 1213 

and the ensemble-average hindcast and forecast indices are from the MIROC5 Earth System 1214 
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Model.  Cross hatching shows the ± one standard deviation range of hindcasts and forecast 1215 

members of each ensemble.  Vertical dashed lines show when each decadal hindcast ensemble 1216 

was initialized; the forecast ensemble was initialized in January 2006.  (a) PDO, and (b) WPWP.  1217 

See text for more details.   1218 
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Table 1:  CMIP5 hindcast experiments with Earth System Models used in this study. 

Model Institute Experiment Ensemble 
members 

SST resolution 

CM2.1 NOAA Geophysical Fluid 

Dynamics Laboratory, 

U.S.A. 

Decadal hindcast 

(1960, 1970, 

1980, 1990, 

2000) 

10 1o (lon.) × 0.34o 

(lat.) at Eq., and 

1o (lat.) at 28o and 

poleward 

HadCM3 Hadley Centre, U.K. Decadal hindcast 

(1060, 1970, 

1980, 1990, 

2000) 

10 1.25o × 1.25o 

MIROC5 Atmosphere and Ocean 

Research Institute (Univ. 

of Tokyo), 

National Institute for 

Environmental Studies, 

and Japan Agency for 

Marine-Earth Science and 

Technology, Japan 

Decadal hindcast 

(1960, 1970, 

1980, 1990, 

2000) 

6 Rotated pole grid 

 1.41o (lon.) × 

0.79o (lat.) 

CCSM4 National Center for 

Atmospheric Research, 

U.S.A. 

Decadal hindcast 

(1960, 1970, 

1980, 1990, 

2000) 

10 1.25o × 1.25o 
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Table 2:  Occurrences (% of total number of years) of individual and combination phases of decadal climate variability 
indices from 1961 to 2010 CE in hindcasts with individual Earth System Models and the Multi-Model Ensemble. 

DCV 
Phases 

ERSST CCSM4 CM2.1 HadCM3 MIROC5 MME 

  Ens.-
ave. 

Member 
range 

Ens.-
ave. 

Member 
range 

Ens.-
ave. 

Member 
range 

Ens.-
ave. 

Member 
range 

Ens.- 
ave. 

Member 
range 

PDO
+
 44 44 44 - 54 42 42 - 56 48 46 - 62 40 44 - 54 44 40 - 48 

PDO
-
 56 56 46 - 56 58 44 - 58 52 38 - 54 60 46 - 56 56 52 - 60 

TAG
+
 52 50 44 - 64 54 44 - 58 48 44 - 54 52 44 - 56 56 48 - 54 

TAG
-
 48 50 36 - 56 46 42 - 56 52 46 - 56 48 44 - 56 44 46 - 52 

WPWP
+
 52 52 42 - 58 44 44 - 58 50 40 - 54 46 46 - 58 40 44 - 52 

WPWP
-
 48 48 42 - 58 56 42 - 56 50 46 - 60 54 42 - 54 60 48 - 56 

P
+
T

+
W

+
 8 14 8 - 24 14 14 - 26 8 10 - 26 14 12 - 24 12 8 - 14 

P
-
T

-
W

-
 12 14 8 - 22 16 10 - 24 10 10 - 26 24 14 - 22 18 10 - 24 

P
-
T

+
W

+
 20 10 2 - 16 8 4 - 14 16 4 - 16 12 4 - 8 12 8 - 16 

P
+
T

-
W

-
 12 8 6 - 14 8 4 - 16 16 6 - 22 4 4 - 12 10 4 - 16 

P
-
T

-
W

+
 18 26 10 - 24 10 4 - 18 14 6 - 18 12 8 - 20 10  10 - 26 

P
+
T

+
W

-
 18 20 10 - 18 8 6 - 16 12 8 - 14 14 6 - 10 16 8 - 20 

P
+
T

-
W

+
 6 2 4 - 16 12 6 - 22 12 4 - 20 8 10 - 20 6 2 - 12 

P
-
T

+
W

-
 6 6 6 - 16 24 4 - 18 12 6 - 20 12 8 - 22 16 6 - 24 
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Table 3:  One- and two-year phase prediction skill in decadal hindcasts of the Pacific 
Decadal Oscillation (PDO) in each decade from 1961 to 2010.  In parentheses after the 
Earth System Model (ESM) name are shown the number of ensemble members for 
each ESM.  The phase of the observed PDO index (-/+) in first and second year of each 
decade is shown in parentheses after each year.  Bold numbers denote correct phase 
prediction by the annual-average, ensemble-average hindcast by each ESM and the 
Multi-Model Ensemble (MME), and the numbers denote how many members of each 
ensemble also hindcast the phase correctly.  
 

Earth System 
Model 

(Ensemble 
members) 

1961 - 1970 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 

 1961(-) 1962(-) 1971(-) 1972(-) 1981(+) 1982(+) 1991(-) 1992(+) 2001(-) 2002(-) 

CCSM4 (10) 10 0 9 0 9 10 10 7 9 8 

CM2.1 (10) 3 0 5 6 8 8 5 7 4 3 

HadCM3 (10) 3 2 1 5 5 6 6 3 10 7 

MIROC5 (6) 4 5 6 3 4 5 3 6 6 2 

MME (36) 20 7 21 14 26 29 24 23 29 20 
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Table 4:  One- and two-year phase prediction skill in decadal hindcasts of the tropical 
Atlantic sea-surface temperature gradient (TAG) index in each decade from 1961 to 
2010.  In parentheses after the Earth System Model (ESM) name are shown the 
number of ensemble members for each ESM.  The phase of the observed TAG index (-
/+) in first and second year of each decade is shown in parentheses after each year.  
Bold numbers denote correct phase prediction by the annual-average, ensemble-
average hindcast by each ESM and the Multi-Model Ensemble (MME), and the numbers 
denote how many members of each ensemble also hindcast the phase correctly.  
 

ESM 
(Ensemble 
members) 

1961 - 1970 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 

 1961(+) 1962(+) 1971(-) 1972(-) 1981(+) 1982(+) 1991(-) 1992(+) 2001(-) 2002(-) 

CCSM4 (10) 4 10 0 5 10 4 0 6 10 9 

CM2.1 (10) 7 10 1 4 2 2 6 7 7 6 

HadCM3 (10) 8 7 1 4 6 2 1 5 10 5 

MIROC5 (6) 4 6 4 3 5 0 2 4 6 4 

MME (36) 23 33 6 16 23 8 9 22 33 24 
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Table 5:  One- and two-year phase prediction skill in decadal hindcasts of the West 
Pacific Warm Pool (WPWP) sea-surface temperature index in each decade from 1961 
to 2010.  In parentheses after the Earth System Model (ESM) name are shown the 
number of ensemble members for each ESM.  The phase of the observed WPWP index 
(-/+) in first and second year of each decade is shown in parentheses after each year.  
Bold numbers denote correct phase prediction by the annual-average, ensemble-
average hindcast by each ESM and the Multi-Model Ensemble (MME), and the numbers 
denote how many members of each ensemble also hindcast the phase correctly.  
Observed and hindcast WPWP indices were detrended before calculation of prediction 
skill.  
  

ESM 
(Ensemble 
members) 

1961 - 1970 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010 

 1961(+) 1962(+) 1971(-) 1972(-) 1981(+) 1982(-) 1991(-) 1992(-) 2001(+) 2002(+) 

CCSM4 (10) 10 10 2 0 9 2 10 10 7 10 

CM2.1 (10) 10 10 8 0 10  1 6 10 8 10 

HadCM3 (10) 10 10 9 3 9 5 7 10 7 8 

MIROC5 (6) 5 5 6 3 6 1 2 6 5 6 

MME (36) 35 35 25 6 34 9 25 36 27 34 
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Table 6:  Phase Transitions in Ensemble-average Decadal Hindcasts, 1961 – 2010 CE. 
The Pacific Decadal Oscillation 

 
Transition 
Years in 
ERSST 

Transition 
States 

CCSM4 
Hindcasts 

CM2.1 
Hindcasts 

HadCM3 
Hindcasts 

MIROC5 
Hindcasts 

MME  
Hindcasts 

Volcanic 
activity 

1961-62 +0.75 to 

 -1.75 

Negative to 

positive 

Negative to 

positive 

Negative to 

positive 

Negative; 

no change 

Negative to 

positive 

- 

1963 

Feb - May 

+0.5 to 

-0.5 

Positive; 

coincide. 

decrease  

Positive; 

coincide. 

decrease 

Positive; 

coincide. 

decrease 

Positive; 

coincide. 

decrease 

Positive; 

coincide. 

decrease 

Mount Agung, 

Bali; VEI 5 

1964-65 -1.5 to 

+1.0 

Similar to 

observed 

Similar to 

observed 

Positive Positive to 

negative 

Positive - 

1974-75 

Oct – Dec 

1974 

+0.75 to 

-2.0 

Positive Coincide. 

decrease 

Coincide. 

decrease 

Coincide. 

decrease 

Coincide. 

decrease 

Volcan de 

Fuego, 

Guatemala; 

VEI 4 

1976-77 -1.4 to 

+1.0 

Positive; no 

change 

Negative to 

positive 

Positive; no 

change 

Negative; 

no change 

Small 

negative to 

small 

positive 

- 

1981-82 

Mar – Apr 

1982 

+0.75 to 

-0.25 

Decrease Increase Increase Increase Increase El Chichón, 

Mexico; VEI 5 

1982-83 -0.25 to  

+2.0 

Similar to 

observed 

Similar to 

observed 

Positive Similar to 

observed 

Similar to 

observed 

- 

1988-90 +1.75 to 

-1.5 

Negative; 

no change 

Negative; 

no change 

Positive; no 

change 

Negative; 

no change 

Negative; 

no change 

- 

1991-92 

Jun 1991 

-1.8 to 

+2.2 

Delayed 

negative to 

positive 

Delayed 

negative to 

positive 

Delayed 

negative to 

positive 

Negative 

to positive 

Negative; 

no change 

Mount 

Pinatubo, 

Philippines; 

VEI 6 

1993-94 +2.0 to 

-1.5 

Similar to 

observed 

Similar to 

observed 

Similar to 

observed 

Similar to 

observed 

Similar to 

observed 

- 

1995-97 -1.5 to 

+2.8 

Negative Negative Negative Negative Negative - 

1997-99 +2.5 to 

-2.2 

Negative; 

no change 

Negative; 

no change 

Delayed 

small 

positive to 

small 

negative 

Negative; 

no change 

Negative; 

no change 

- 

2005 -1.5 to 

+0.5 

Negative Positive Negative Negative Negative - 

2006-07 +0.4 to  

-2.0 

Negative Similar to 

observed 

Negative Negative Negative - 
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Table 7:  Multiyear Phase Transitions in Ensemble-average Decadal Hindcasts, 1961 - 2010:  

The Tropical Atlantic Sea-surface Temperature Gradient Variability 
 
 
Transition 
Years in 
ERSST 

Transition 
States 

Hindcast  
in  

CCSM4 

Hindcast  
in GFDL 
CM2.1 

Hindcast  
in  

HadCM3 

Hindcast  
in  

MIROC5 

Hindcast  
in  

MME 

Volcanic 
or 

other 
forcing 
activity 

1963 

 

+0.2 

to 

-0.2 

Positive Positive Positive Positive Positive Mount 

Agung, 

Bali 

1968-69 -0.3 

to 

+0.6 

Small 

negative to 

small 

positive  

Negative Small 

negative to 

small 

positive 

Small 

negative to 

small 

positive 

Small 

negative to 

small 

positive 

 

1971-72 -0.7 

to 

+0.5 

Slow trend 

from 

positive 

towards 

negative 

Slow trend 

from 

positive 

towards 

negative 

Slow trend 

from 

positive 

towards 

negative 

Negative Slow trend 

from 

positive 

towards 

negative 

 

1974 

 

0 

to 

-0.5 

Indifferent Positive 

to 

negative 

trend 

Indifferent Indifferent Indifferent Volcan de 

Fuego, 

Guatemala 

1982 

 

+0.6 

to 

-0.6 

Increasing 

trend 

Increasing 

trend 

Increasing 

trend 

Increasing 

trend 

Increasing 

trend 

El 

Chichón, 

Mexico 

1983-84 +0.8 

to 

-0.8 

Negative Negative Negative Delayed 

positive to 

negative 

Negative  

1991-92 -0.5 

to 

+0.6 

Positive Positive Positive Positive Positive Mount 

Pinatubo, 

Philippines 

1992-94 +0.6 

to 

-0.8 

Fluctuating 

around zero 

Fluctuating 

around zero 

Fluctuating 

around zero 

Fluctuating 

around zero 

Fluctuating 

around zero 

 

2003-04 -0.5 

to 

+1.0 

Negative Negative Negative Small 

negative to 

small 

positive 

Negative  
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Table 8:  Phase Transitions in Ensemble-average Decadal Hindcasts, 1961 – 2010 CE. 
The West Pacific Warm Pool Sea-surface Temperature Variability 

 
Transition 
Years in 
ERSST 

Transition 
States 

CCSM4 
Hindcasts 

CM2.1 
Hindcasts 

HadCM3 
Hindcasts 

MIROC5 
Hindcasts 

MME 
Hindcasts 

Volcanic 
activity 

1963-64 

Feb - May 

+0.2 

to 

-0.2 

Small 

positive to 

-0.2 

Small 

positive to 

-0.2 

Small 

positive to 

-0.2 

Small 

positive to 

-0.2 

Small 

positive to 

-0.2 

Mount 

Agung, 

Bali; VEI 5 

1967-68 -0.1 

to 

+0.25 

Negative; 

fluctuating 

Negative; 

fluctuating 

Negative; 

fluctuating 

Positive; 

fluctuating 

Negative; 

fluctuating 

 

1973-76 

Oct – Dec 

1974 

+0.25 

to 

-0.3 

Small 

positive to 

negative 

Small 

positive to 

negative 

Small 

positive to 

negative 

Small 

positive to 

negative 

Small 

positive to 

negative 

Volcan de 

Fuego, 

Guatemala; 

VEI 4 

1981-82 +0.1 

to 

-0.35 

Slow 

downward 

trend from 

positive to 

negative 

Slow 

downward 

trend from 

positive to 

negative 

Slow 

downward 

trend from 

positive to 

negative 

Slow 

downward 

trend from 

positive to 

negative 

Slow 

downward 

trend from 

positive to 

negative  

El Chichón, 

Mexico; 

VEI 5 

1991-93 

June 1991 

>0 

to 

-0.5 

>=0 to 

negative; 

fluctuating 

>=0 to 

negative; 

fluctuating 

>=0 to 

negative; 

fluctuating 

>=0 to 

negative; 

fluctuating 

>=0 to 

negative; 

fluctuating 

Mount 

Pinatubo, 

Philippines; 

VEI 6 

1993-94 -0.5 

to 

0.2 

Warming 

trend 

Warming 

trend 

Warming 

trend 

Warming 

trend 

Warming 

trend 

 

1994-96 -0.2 

to 

+0.2 

Warming 

trend 

Warming 

trend 

Warming 

trend 

Warming 

trend 

Warming 

trend 

 

1996-97 +0.3 

to 

-0.35 

Steady 

around 

zero 

Steady 

around 

zero 

Steady 

around 

zero 

Steady 

around 

zero 

Steady 

around 

zero 

 

1997-98 -0.35 

to 

+0.4 

Steady 

around 

zero 

Steady 

around 

zero 

Steady 

around 

zero 

Steady 

around 

zero 

Steady 

around 

zero 
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