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ABSTRACT

Site-specific probability density rainfall forecasts are needed to price insurance premiums, contracts, and

other financial products based on precipitation. The spatiotemporal correlations in U.K. daily rainfall

amounts over the Thames Valley are investigated and statistical Markov chain generalized linear models

(Markov GLM) of rainfall are constructed. The authors compare point and density forecasts of total rainfall

amounts, and forecasts of probability of occurrence of rain from these models and from other proposed density

models, including persistence, statistical climatology, Markov chain, unconditional gamma and exponential

mixture models, and density forecasts from GLM regression postprocessed NCEP numerical ensembles, at up

to 45-day forecast horizons. The Markov GLMs and GLM processed ensembles produced skillful 1-day-

ahead and short-term point forecasts. Diagnostic checks show all models are well calibrated, but GLMs

perform best under the continuous-ranked probability score. For lead times of greater than 1 day, no models

were better than the GLM processed ensembles at forecasting occurrence probability. Of all models, the

ensembles are best able to account for the serial correlations in rainfall amounts. In conclusion, GLMs for

future site-specific density forecasting are recommended. Investigations explain this conclusion in terms of

the interaction between the autocorrelation properties of the data and the structure of the models tested.

1. Introduction

The source of most atmospheric rainwater is the sea,

with rain forming when large droplets eventually be-

come heavy enough to fall to the ground. Rainfall over

land eventually flows back to the sea, completing the

cycle (Brutsaert 2005). Water is vital to life, but also

immensely destructive: understanding the movement of

atmospheric water is critical. Forecasting rainfall is there-

fore important in many disciplines, for example, eco-

nomics and finance, hydrology, meteorology, ecology,

agriculture, and renewable energy.

The U.K. climate is temperate and strongly influ-

enced by the oceans, with cool summers and mild win-

ters (Barry and Chorley 2003). Rainfall forecasting has

taken on new urgency in the United Kingdom due to

recent flooding caused by extreme rainfall: evidence

exists that such extremes may increase in frequency with

global temperature increases (Easterling et al. 2000).

The Thames River runs directly through London and

several major midland and southern towns. Flooding on

this river has significant costs to the U.K. economy, and

insurance premiums have increased substantially be-

cause of these recent severe events.

Rainfall forecasts can therefore help quantify the risk

of floods and droughts with which to price products such

as flood and crop insurance, weather derivatives, and

other commodities (Cao et al. 2004; Diebold et al. 1998;

Taylor and Buizza 2006). All forecasts have errors be-

cause of the combined uncertainty in observational data

and model structure. Comprehensive quantification of

this forecast uncertainty is critical to risk assessment,

motivating interest in density forecasting producing

a distribution over all possible future rainfall events,

rather than a single-point forecast misrepresenting these
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uncertainties. Density forecasts are particularly flexible,

allowing the calculation of the probability of any event of

interest, such as the probability of occurrence of rain or

of extreme rainfall above any threshold. Complementing

density forecast comparisons between models, we can

also issue the density median as a point forecast.

Numerical weather predictions (NWPs) are highly

complex, nonlinear systems producing a single or a set

(ensemble) of point forecasts, allowing the anticipation

of distinct meteorological events. Statistical time series

models are mathematically simple and produce full-

density forecasts capturing statistical properties of the

data. NWP now routinely outperforms purely statistical

methods for medium-range (1 day to 1 week ahead)

operational forecasts, but for very short term (a few

hours) and very long term (greater than 10 days ahead),

statistical approaches remain competitive (Wilks 2006).

Density prediction for product pricing requires ac-

curate forecasts at specific locations, for a wide range of

forecast lead times, for which unified approaches to site-

specific density forecasts seamlessly covering short- to

long-range time scales are needed. For product pricing

applications, medium-range global forecasts are cur-

rently more useful than short-range regional forecasts,

because short-range forecasts do not have sufficiently

long forecast horizons.

Because the primary application is the precision quan-

tification of the probability of rain rather than the antic-

ipation of particular meteorological events, dynamical

and statistical forecasting, although fundamentally differ-

ent in approach, can be combined to produce accurate,

site-specific density forecasts. Statistical postprocessing

(ensemble calibration) (Applequist et al. 2002; Wilks

2006) is one such combination approach.

Precipitation measurement is mostly by ground-based

rain gauge measurement of total rainfall depth (Upton

et al. 2005). Strong evidence exists that total rainfall

amount distributions are discontinuous at zero depth

(no rainfall) motivating separate modeling of occur-

rence (rain/no rain) and intensity (nonzero amount; Cao

et al. 2004; Grunwald and Jones 2000; Wilks 1998).

These separate models are combined in a mixture

density of daily rainfall totals. Similarly, rainfall is non-

negative and non-Gaussian. A wide range of proposed

statistical rainfall probability models could be used and

it is instructive to test as many as possible. This includes

powerful generalized linear models (GLMs; Grunwald

and Jones 2000) that allow flexible, nonlinear, non-

Gaussian regression, but any new method must dem-

onstrate performance superiority over existing, simpler

approaches before being considered successful.

To build time series density forecast models, we ex-

plore spatiotemporal correlation and seasonality prop-

erties that could be captured and hence exploited. Here

we analyze the Thames Valley time series and construct

Markov chain GLMs incorporating information from

neighboring gauges and past time steps (Grunwald and

Jones 2000). We test these models against simple bench-

marks, and ensemble NWP forecasts postprocessed with

GLMs.

Our main contribution here is to conduct direct tests

of a range of methods proposed in the existing literature

for producing site-specific, full-density forecasts against

novel GLM methods, and hence to suggest an improved

NWP postprocessing method. Our investigations ex-

plain the performance of these different methods in

terms of the autocorrelation properties of the data and

the structure of each model, for full-density and point

forecasts.

The paper is organized as follows. Section 2 reviews

the current state of rainfall measurement, modeling,

and forecasting. Section 3 describes the data used and

details the correlation structure analysis. Section 4 de-

scribes model construction and forecast performance

comparison methods used in this study. Section 5 dis-

cusses the results of the forecast comparison, and finally

section 6 summarizes the paper and concludes with the

relevance of these results for future site-specific rainfall

forecasting.

2. Review of rainfall measurement and forecasting
methods

Ground-based rain gauges capture precipitation, re-

cording the total amount as rainfall depth, usually in

millimeters (Upton et al. 2005). The temporal mea-

surement resolution can be high, but accuracy can be site

dependent and unreliable in extreme weather and can

include melted snow or hail in addition to rain. Radar

measurements, by contrast, detect low-altitude atmo-

spheric water content and have excellent spatiotemporal

resolution, but current geographic coverage is restrictive

and the historical record is short (Upton et al. 2005).

Rainfall forecasting models depend on the applica-

tion. Thunderstorms implicated in flash floods typically

take place on scales of minutes to hours (Battan 1984),

requiring forecasts on the shortest time scales. Local-

ized flooding often occurs when medium to heavy rain

falls in the same location over several days, inundating

rivers and urban drains, requiring forecasts from hours

to days. Predicting droughts requires forecasts on longer

time scales of weeks to months.

NWP solves equations of atmospheric dynamics and

produces rainfall predictions. Calibrated against atmo-

spheric measurements, they vary in spatial scale from

synoptic (on the order of 1000 km) to mesoscale
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(approximately 50 km); current operational models

have minimum resolutions of approximately 1.3 km

(limited-area mesoscale), forecasting days to a few

weeks ahead (Buizza 2003). Sophisticated NWP systems

generate an ensemble of predictions by varying the

model initial conditions and/or by varying physical pa-

rameterization schemes. The frequency distribution of

the ensembles estimates the probability density (Buizza

2003; Buizza et al. 1998; Molteni et al. 1996; Palmer

et al. 1993). The high computational complexity of

running many different parallel forecasts limits most

operational NWP systems to single-point forecasts or

low spatial resolution ensembles, and important pre-

cipitation sources such as isolated thunderstorms and

small-scale details are not well resolved.

Classical statistical forecasting identifies relationships

between past observations and their temporal successors,

using observations at the current forecast origin as pre-

dictors for the future state of the atmosphere based solely

on these relationships and not on explicit meteorological

information (Wilks 2006). Methods include conditional

climatology (issuing successors of past observational data

closest to the current state as a forecast for the future

state), and applications of more sophisticated multiple

nonlinear regression such as neural networks (Moura

and Hastenrath 2004). Included in this category are sta-

tistical time series models that can forecast at the spa-

tiotemporal resolution of rainfall measurements, and are

univariate or multivariate (comprising a vector of rainfall

measurements from a number of sites simultaneously),

producing density forecasts. They are either temporally

unconditional or conditional on past time steps.

Statistical postprocessing methods such as the analog

method or model output statistics (Applequist et al.

2002; John 2003; Wilks 2006) determine the statistical

relationships between forecast NWP variables and ac-

tual observations, acting as postprocessors to improve

NWP forecasts.

Unconditional daily rainfall models are commonly

split into occurrence and intensity (Cao et al. 2004;

Grunwald and Jones 2000; Wilks 1998), with the oc-

currence often modeled as a Bernoulli random variable

(Grunwald and Jones 2000). Intensity models usually

use exponential family distributions, for example,

gamma densities (Grunwald and Jones 2000; Hyndman

and Grunwald 2000), exponential mixtures (Cao et al.

2004; Wilks 1998), or truncated normals (Sanso and

Guenni 1999). In nonparametric methods, kernel den-

sity techniques can model intensity (Cao et al. 2004).

For conditional occurrence models, first-order Markov

chains are common (Cao et al. 2004; Wilks 1998). For

conditional intensity, generalized linear and generalized

additive Markov chain regression models (GLM/GAM)

have been used (Grunwald and Jones 2000; Hyndman

and Grunwald 2000).

3. Data

The data comprises daily rainfall depth measure-

ments from all 295 Met Office Integrated Data Archive

System (MIDAS) WADRAIN rain gauges in the Thames

Valley, United Kingdom, within the square grid 518–

52.58N, 228–0.58 E, covering an area approximately 400

km by 400 km. Observations cover the time period from

2004 to late September 2007. Figure 1 shows selected

examples of the rainfall time series.

Spatiotemporal correlation structure for all 295

gauges is tested. However, only a few of the sites have

sufficiently complete records overlapping the available

NWP ensemble forecasts, so that, in forecast compari-

sons, a much smaller subset (10 sites) of this data was

selected (Fig. 2). These sites are chosen as a compromise

between minimizing the number of missing observa-

tions, economic relevance (Heathrow in London), and

hydrological interest (Brize Norton received some of

the highest rainfall totals during the recent flooding).

Table 1 lists the location and number of rainfall obser-

vations available for these selected sites (the inset in Fig.

5 shows their physical layout). All gauges have missing

measurements and consistent procedures, described

below for each forecast model, ensure fair comparisons.

In this section we explore the spatiotemporal corre-

lations in the data. We denote the total rainfall amount

on day n 5 1, 2, . . . , N for each site m 5 1, 2, . . . , M

as xm
n , where N is the maximum length in days of the

time series, and M 5 10 is the number of selected sites

FIG. 1. Three selected rainfall time series from the Thames

Valley catchment. Vertical axis is rainfall depth (mm) and hori-

zontal axis is the number of days since 1 Jan 2004.
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for modeling. We denote occurrence with the indicator

variable qm
n , which is 0 for dry days and 1 for days where

rainfall xm
n is nonzero.

We first calculate the autocorrelation function, and

the standard Bartlett 95% confidence intervals. Al-

though the autocorrelation function tests the depen-

dence up to second-order statistical moments, such

highly non-Gaussian rainfall data could have nonzero

higher-order moments. A more general test of inde-

pendence at different time lags is the time-delayed

mutual information (TDMI; Kantz and Schreiber 2004;

Little et al. 2006):

I(t) 5

ð‘
0

ð‘
0

P(xm
n , xm

n1t) log
P(xm

n , xm
n1t)

P(xm
n )P(xm

n1t)
dxndxn1t . (1)

Marginal densities P(xm
n ), P(xm

n1t) and joint densities

P(xm
n , xm

n1t) are estimated using histograms of xm
n . We

assume that xm
n are weakly stationary stochastic pro-

cesses; then only the relative time lag t is important and

FIG. 2. Monthly average rainfall depth on rainy days for the 10 gauges selected for the

modeling part of the study (see Table 1). The horizontal axis is the month and the vertical axis is

the average rainfall depth.
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we can assume that P(xm
n ), P(xm

n1t) are the same. The

joint density is estimated using histograms formed by

counting the number of times that xm
n falls into the same

histogram bin as xm
n1t . The integrals are approximated

using summations. TDMI significance tests use the null

hypothesis of no mutual information using bootstrap

independent, identically distributed (i.i.d.) time series,

generated by randomly permuting individual days’ mea-

surements and destroying any original temporal order-

ing. The TDMI for each bootstrap is compared with that

of the original series to try to reject the null hypothesis

at each time lag. If, for a significance probability of a 5

0.05, on generating 2/a 2 1539 bootstraps, the TDMI at

any time lag of the original data is either the smallest or

the largest value among all the bootstraps, then we can

reject the null hypothesis at that time lag.

Although using histograms to estimate densities is

simplistic, we are only interested in the TDMI relative

to the i.i.d. bootstraps, and, as such, these inaccuracies

are relatively unimportant to the question of whether

significant nonlinear/non-Gaussian temporal depen-

dence exists in the time series.

For the spatial correlation analysis of total rainfall

amount, the pairwise correlation coefficients for all 295

locations are plotted against physical distance between

sites. The no-correlation null hypothesis uses the stan-

dard asymptotic normal distribution of Fisher’s z

transformation of the correlation coefficient to estimate

the p value, tested at 5% significance. Finally, for spatial

correlations in occurrence, we calculate the pairwise

conditional probability of nonoccurrence of rain for all

295 locations. We take each pair of locations, calculate

the conditional probability of nonoccurrence at one lo-

cation, given that rainfall did/did not occur at the other,

and plot these probabilities against physical distance

between locations. We can then see the contribution of

occurrence of rainfall to the spatial correlation of the

total amount.

Turning to the results of this correlation analysis,

Table 1 shows that, any one day taken at random, is as

likely to be dry as wet. This is to be expected for this

generally temperate climate, and the average rainfall

intensity is small. Regarding spatial correlation, from

Fig. 3, all locations show similar rainfall patterns, and

the maximum correlation falls slowly with increasing

distance. At any given distance, there is an apparent

maximum and minimum correlation between gauges.

Figure 4 shows that this effect is even stronger for the

nonoccurrence. This is confirmation that most rainfall

events are on the meso-alpha scale: resulting from

widespread cloud cover due to warm fronts or convec-

tive complexes spread over hundreds of square kilo-

meters. Similarly, if dry at one location, then it is highly

likely to be dry at all the other locations in the catch-

ment. This physical effect provides some justification for

modeling techniques that try to capture catchment-wide

spatial cross correlations (Fig. 5).

Regarding temporal correlation, Fig. 6 shows auto-

correlation decaying extremely rapidly, and although

significant up to 4 days ahead, the TDMI in Fig. 7 shows

a slightly different story with significant mutual infor-

mation to only 3 days. Similar results were obtained for

the other selected gauges. The results show that the

rapid decay of autocorrelation or TDMI is not just due

to linearity limitations of the autocorrelation function;

weather systems move rapidly across the United King-

dom and normally dissipate within a few hours. How-

ever, the lack of obvious annual periodicity is in need of

explanation. Because of lowering temperatures, all

other things being equal, lower saturation vapor causes

higher average and maximum U.K. rainfall totals during

winter (Brutsaert 2005) and increasing frequency of

extremes in early autumn. Figure 2 shows some seasonal

variation in the rainfall intensity for each month, but

this variation is very slight. This slight seasonality is not

the strict repetitiveness detectable by autocorrelation

TABLE 1. Selected Thames Valley catchment rain gauge stations used in the modeling part of the study.

Rain

gauge No.

Rain gauge

station name

Lat

(fractional 8N)

Lon

(fractional 8E)

Height

above sea

level (m)

Available

observations

in days

(missing)

Percentage

of dry

days (%)

Avg rainfall

depth on

rainy days

(mm)

1 Brize Norton 51.768 21.588 81 1168 (293) 48.9 4.1

2 Heathrow 51.488 20.458 25 791 (670) 51.7 3.1

3 Abingdon Sewerage Works No. 2 51.658 21.298 50 1280 (181) 50.4 3.4

4 Boscombe Down 51.168 21.758 126 1222 (239) 47.9 3.9

5 Darnicle Hill Pumping Station 51.738 20.108 73 1186 (275) 46.5 3.2

6 Royston Aintree Road 52.058 20.018 78 1309 (152) 46.2 3.1

7 Abington Pigotts Hall 52.088 20.108 30 1309 (152) 50.0 3.2

8 Ickleton Grange 52.068 0.138 76 1309 (152) 48.2 3.0

9 Arkesden 51.988 0.158 114 1309 (152) 50.0 3.7

10 Oakington No. 2 52.268 0.078 12 1309 (152) 56.5 3.8
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and TDMI—exact annual pattern start/end days are ill-

defined, varying from year to year. For statistical mod-

eling, rapid exponential decay of mutual information

justifies models with very short memory, and regressing

on past rainfall at annual time lags is unlikely to provide

significant model improvements, particularly for the

short lead times tested here. Instead, regressing on a

seasonal variable should allow exploitation of these

slight seasonal variations.

Taking these cross-correlation and temporal correla-

tion results together, there may be some time-delayed

cross correlation that could be captured by multisite

models (that use past information from many nearby or

distant sites). Nonetheless spatial correlation at time lag

zero dominates over temporal correlation at any time lag.

4. Methods

This section details spatiotemporal statistical models

of rainfall totals at the 10 selected Thames Valley lo-

cations, and the forecast performance comparisons of

these models against unsophisticated benchmarks and

postprocessed ensemble NWP.

a. Forecasting models

The time series models for daily rainfall compared in

this paper can be grouped into simple nonparametric

benchmarks and sophisticated parametric/numerical

methods. For all the models, any missing rainfall ob-

servations for each site are ignored in the model pa-

rameter estimation and forecast comparisons, such that

comparisons are only made on days for which forecasts

from all models are available. Parameters are estimated

using observations in the years 2004 and 2005. Model

performance is tested on a hold-out sample of the years

2006 and 2007. There are two simple benchmarks used

in this study:

1) Persistence forecast: This is just the rainfall total of

the day prior to the forecast origin. The persistence is

not a density forecast, only a point forecast. This

forecast is a baseline to assess the point forecast

performance of the more sophisticated models.

2) Climatology forecast: This is the unconditional em-

pirical density of rainfall amount on each day. Any

missing observations in the estimation period are

excluded from the empirical cumulative density

[which is used to calculate the z-series probability

integral transform (PIT) histogram, see below].

In addition, there are seven models of increasing so-

phistication used:

1) Unconditional gamma/Bernoulli density: The shape

and scale parameters for the gamma intensity model

FIG. 3. Pairwise correlation coefficients and (inset) position of all 295 gauging stations in the

Thames Valley. For the inset, the horizontal axis is the horizontal location (kilometers east of

Greenwich), and the vertical axis is the vertical location (kilometers north of the equator).
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were estimated using the maximum likelihood

method, with a single parameter Bernoulli model for

occurrence. Any missing observations in the esti-

mation samples are excluded from the gamma and

Bernoulli parameter estimation. The combined in-

tensity and occurrence model (a Bernoulli–gamma

mixture density) is constructed and used to make

forecasts.

2) Cao–Li–Wei model (Cao et al. 2004): An uncondi-

tional mixture of two exponential densities was fitted

to the intensity of the estimation samples:

f (xm
n11) 5

d

g1

exp �
xm

n11

g1

� �
1

1 � d

g2

exp �
xm

n11

g2

� �
. (2)

The parameters d, g1, and g2 were found using an

iterative maximum likelihood method (Agha and

Ibrahim 1984). For occurrence, this model fits a first-

order Markov chain to the occurrence in the esti-

mation samples by estimating the transition density

matrix from counts (Cao et al. 2004). Missing obser-

vations are handled as per the above gamma model.

The combined intensity and occurrence mixture model

is constructed and used to make forecasts.

3) Generalized linear Markov model (Markov GLM):

This model is described in (Grunwald and Jones

2000). The Markov transition density has the fol-

lowing form:

f (xm
n11

��xm
n ) 5 [1� p(xm

n )]d0(xm
n11)

1p(xm
n )Gamma(xm

n11

��xm
n ), (3)

where d0 is the Dirac delta function. The transition

density for the intensity of the estimation samples is a

conditional gamma generalized linear model with log

link function, with conditional mean m:

log [m(xm
n )] 5 b01b1 log (xm

n 1c). (4)

The constant shape parameter for this gamma

density is estimated using the maximum likelihood

method (Venables and Ripley 2002). To improve the

model fit, the logarithm of the past rainfall amount

with a small, additive constant c is used instead of the

FIG. 4. Variation of the conditional probability of nonoccurrence of rainfall against the

pairwise distance between all locations, given nonoccurrence/occurrence at the other location.

The black dots show the probability of nonoccurrence of rainfall at a location, given that rainfall

did not occur at the other location. Gray dots show the probability of nonoccurrence of rainfall

at a location, given that rainfall did occur at the other location. The horizontal axis is the

distance between locations (km) and the vertical axis is the conditional probability.
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actual rainfall depth. Similarly, the conditional Ber-

noulli density for the occurrence p(xm
n ) is the fol-

lowing generalized linear model using the inverse log

link function l:

p(xm
n ) 5 l[a0 1 a1 log (xm

n 1 c)], l(u) 5
exp (u)

11 exp (u)
. (5)

4) Joint generalized linear Markov model (Markov

JGLM): This model has a similar structure to the

previous model, except that the joint distribution of

each site is captured by sequentially conditioning on

adjacent gauges. This exploits the chain rule for

probabilities that relates the joint probability of all

gauges to the conditional probabilities:

P(x1, x2, . . . , xM) 5 P(x1)P(x2 x1
�� )P(x3 x2, x1

�� ) � � �
3 P(xM xM�1, xM�2, . . . , x1

�� ). (6)

Thus, it is possible to reproduce the entire joint

density by sequentially modeling the conditionals

(i.e., first modeling the marginal density of the first

time series, followed by the second conditional on

the first, followed by the third conditional on the

second and first and so on). The Markov transition

density of this model is

f (xm
n11

��xm
n ) 5 [1� p(xm

n )]d0(xm
n11)

1p(xm
n )Gamma(xm

n11

��xm
n ), (7)

and for this model, the vector xm
n 5 (xm

n , x̂m21
n11 , . . . ,

x̂1
n11)T contains the past rainfall of the time series m,

and the forecast rainfall x̂m�1
n11 , . . . , x̂1

n11, produced

sequentially by this model, of the m 2 1 adjacent time

series, in the following way: To produce the forecast

x̂1
n11, only x1

n is used. Next, to produce the forecast

x̂2
n11, x2

n as well as the newly produced forecast x̂1
n11 is

used. Similarly, to produce a forecast x̂3
n11, the three

values x3
n, x̂2

n11, and x̂1
n11 are used, and so on. Thus,

only historical information is used to produce fore-

casts for each time series. Similar to the above, the

intensity transition density is

log [m(xm
n )] 5 b0 1 b1 log (xm

n 1c)

1 �
m21

i51
bi11 log (x̂m 2 i

n11 1 c). (8)

The constant gamma shape parameter is estimated

using the maximum likelihood method as above.

FIG. 5. Pairwise correlation coefficient of selected gauges used in the modeling against dis-

tance. Also shown are the simulated Markov JGLM rainfall correlation coefficients for the

same gauges. (Inset) The position of modeled gauges (refer to Table 1 for the gauge num-

bering), the horizontal axis is the horizontal location (km east of Greenwich), and the vertical

axis is the vertical location (km north of the equator).
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Similarly, the conditional Bernoulli density for the

occurrence p(xm
n ) is

p(xm
n ) 5 l

"
a0 1 a1 log (xm

n 1 c)

1�
m21

i51
ai11 log (x̂m 2 i

n11 1 c)

#
. (9)

5) Generalized linear Markov multisite (Markov

MGLM) model: This model is similar to the model in

(3) as it uses the same distribution, but for each site

the regressors are the past rainfall value from all sites

rather than just that particular site. Thus, if there is

any time-delayed cross correlation, as we might ex-

pect for catchment-wide events that last for more

than 1 day, this model should be able to capture

them. This forms an alternative approach to the

model in (4), which regresses on the predicted rain-

fall for the other sites, and models (noontime de-

layed) cross correlations. The Markov transition

density is

f (xm
n11

��xn) 5[1� p(xn)]d0(xm
n11)

1 p(xn)Gamma(xm
n11

��xn), (10)

where the vector xn 5 (x1
n, x2

n, . . . , xM
n )T contains the

past rainfall amount of all the sites. As above, the

intensity transition density is

log [m(xn)] 5 b01�
M

i51
bi log (xm

n 1 c). (11)

Again, the constant gamma shape parameter is

estimated using the maximum likelihood method.

The conditional Bernoulli density for the occurrence

p(xn) is

p(xn)5l a0 1�
M

i51
ai log (xm

n 1 c)

2
4

3
5. (12)

Note that this model differs from the model in (4)

in that it uses information from all sites on the pre-

vious day to make a forecast at each individual site,

whereas the model in (4) uses past information from

only the first site to make a forecast for that site,

whereupon this forecast is used to make the forecast

for the next site, and so on. Therefore, we expect this

model to reproduce spatial cross correlations where

the time series have been shifted by 1 day relative to

each other, whereas the model in (4) will reproduce

FIG. 6. Autocorrelation function for the Brize Norton gauge, from t 5 1- to t 5 400-day time

lags. The dotted lines are the 95% Bartlett confidence intervals; the blue line is the autocor-

relation coefficient. (inset) The short-range zoom for t 5 1- to t 5 20-day time lags.
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spatial cross correlations where there is no time shift

between sites.

6) Generalized linear Markov seasonal multisite

(Markov SMGLM) model: This model is similar to

the model in (5), except that it also regresses on

seasonal variables, to attempt to exploit any slight

seasonal variations. These variables have the form

sw
n 5 cos(2pwdn/365), where dn is the day number in

the year, running from 0 to 364, and w 5 1, 2, 3, . . . is

the harmonic number. We use three harmonics;

more did not lead to any significant improvements.

These variables are appended to the end of the

vector xn in Eqs. (10), (11), and (12), but without

a logarithmic transformation. Note that this model

ceases to be strictly Markovian, as the transition

function depends on the day in the year. The

transition density has the same form as the model

in (5).

(For notational brevity, we are using the same

functions f, p, and m to represent the unconditional or

conditional model density, Bernoulli probability, and

gamma means functions, respectively, and the param-

eters a, b, and c for all the models. In practice they are

different functions and parameters, but they serve

analogous roles in each model.)

To clarify further the GLMs above, the transition

density in Eq. (3) and the conditional means spec-

ified in Eqs. (4) and (5) can be explained by con-

sidering the analogous situation for linear Gaussian

autoregressive (AR) models. Informally, the tran-

sition density in Eq. (3) describes how the proba-

bility of any given forecast rainfall depth xm
n11

depends on the rainfall depths xm
n . In the perhaps

more familiar context of the linear AR model, the

transition density is a conditional Gaussian with

mean that is a linear combination of past observa-

tions. The GLM framework extends this idea in two

ways: first by generalizing the Gaussian density to

the more general exponential family (of which the

Gaussian, gamma and Bernoulli densities are spe-

cial cases), and second by allowing a nonlinear

transformation of the density mean, this transfor-

mation being called the link function. In the current

GLM, the transition density in Eq. (3) is a mixture

of two densities: the Bernoulli occurrence density

with conditional mean p(xm
n ), and the gamma inten-

sity model. The Dirac delta function encodes the fact

that, with probability 1� p(xm
n ), zero rainfall depths

will be forecast by the model, and alternately, with

probability p(xm
n ), nonzero rainfall depths will be

FIG. 7. Time-delayed mutual information for the Brize Norton gauge, from t 5 1- to t 5 400-

day time lags. The dotted lines are the maximum and minimum mutual information over all the

bootstraps and over all time lags; the blue line is the mutual information for the original time

series. (inset) The short-range zoom for t 5 1- to t 5 20-day time lags.
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produced. In this linear mixture combination, the

transition density is appropriately normalized.

7) Postprocessed NCEP ensembles: Finally, we use

postprocessed National Centers for Environmental

Prediction (NCEP) Global Ensemble (GENS) en-

semble NWP model outputs. This uses super-

computing resources producing 10 different forecasts

of the rainfall amounts, each forecast generated by a

different perturbation of the initial atmospheric state

assimilated from observations (Buizza et al. 2005). An

additional unperturbed control forecast makes a total

of 11 forecasts. The spatial resolution is 18 latitude–

longitude, corresponding to approximately 110 km.

Forecasts are available at 6-hourly intervals out to 16-

days forecast horizon. Here, because of data size

constraints, we have been able to access forecasts up

to 8 days ahead.

The ensembles are first downscaled to the location

of each site, using bilinear interpolation (linear in

both north–south and east–west directions). After

interpolation, the forecasts are calibrated using a

mixture of generalized linear models (Sloughter

et al. 2007):

f (xm
n1tjym

n,k,t) 5
1

11
�
11

k51
f[1 2 p(ym

n,k,t)]d0(xm
n )

1p(ym
n,k,t)Gamma(xm

n jym
n,k,t)g, (13)

where ym
n,k,t is the interpolated ensemble member k 5

1, 2, . . . , 11, for site m on day n, for forecast horizons

t 5 1, 2, . . . , 8, forming the density forecast for the

rainfall sample xm
n 1 t. The density for the intensity of

rain is a conditional gamma generalized linear model

with log link function, with conditional mean m, such

that log [m(ym
k,n,t)] 5 b0,k,t 1 b1,k,ty

m
k,n,t. Also, the prob-

ability of occurrence of rain is given by p(ym
n,k,t) 5

l(a0,k,t 1 a1,k,t

ffiffiffiffiffiffiffiffiffiffi
ym

n,k,t
3

q
). Thus, any miscalibration due to

bias in any ensemble member at any forecast horizon

is removed by regression with the ensembles as

predictors and rainfall intensity and occurrence as

predictands, using the same GLM parameter esti-

mation as described for the Markov models above.

The cube root of rainfall amount in the probability

of occurrence was found to improve the model fit

(Sloughter et al. 2007).

b. Comparing daily rainfall point forecasts

Here we compare the ability of the models to produce

point forecasts of daily total rainfall amount, which for

the appropriate models is the combined model of oc-

currence/intensity. The point forecast from each model

is the median of the model’s forecast density. The mean

absolute error (MAE) score is used:

Em 5
1

L
�
L

n51
x̂m

n � xm
n

�� ��, (14)

where x̂m
n is a forecast of total rainfall amount and L is

the test data length. This score is proper (Gneiting and

Raftery 2007) meaning that lower MAE scores imply

more accurate forecasts, and the score is minimized by

the perfect forecast.

c. Comparing daily rainfall density forecasts

The assessment of density forecasts is somewhat more

complex than point forecasts. Specifically, it is impor-

tant that the forecast produces the correct density of the

observations: it must be well calibrated, and at the same

time maximize sharpness; each forecast density must

have a high probability around the actual observations

(Diebold et al. 1998; Gneiting et al. 2007). Here we

use the continuous ranked probability score (CRPS;

Gneiting and Raftery 2007) which is also proper, and it

can be shown decomposable into separate components

of both calibration and sharpness. Thus, small values

indicate forecasts that are both well calibrated and sharp.

We use the empirical form (Gneiting and Raftery 2007):

CRPSm 5
1

L
�
L

n51
(EjX 2 xm

n j1
1

2
EjX 2 X 0j), (15)

where X and X9 are independent random variables

drawn from model’s forecast density function p, and E

denotes expectation.

We also perform diagnostic checks of the forecast

calibration using the probability integral transform

(Diebold et al. 1998; Gneiting et al. 2007):

zn 5

ðx
0

p(u)du (16)

(for notational clarity we have x 5 xn). Here the func-

tion p is the (unconditional or conditional) forecast

density function (or transition function) of each of the

models, at forecast lead time of 1 day. For the perfectly

calibrated model, zn will be i.i.d. with uniform density in

the interval between 0 and 1. Therefore, measuring

calibration requires assessing the extent of deviation

from uniformity of this time series. Typically, if the

histogram is ‘‘U shaped’’ it will be because the spread of

the forecasts is too narrow. Conversely, a humped-

shaped histogram will indicate overdispersed forecasts

(i.e., their range is too large; Gneiting et al. 2007).

Similarly, if the model captures the serial dependence

in the time series, then zn will be serially independent.
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Tests for serial independence using the autocorrelation

are most often applied in this context, and we follow this

practice here (Gneiting et al. 2007), displaying the stan-

dard Bartlett 95% autocorrelation confidence intervals.

We employ the stochastic interpolation method to cal-

culate the PIT, by drawing 1000 samples from each

predicted density and constructing the empirical cumu-

lative density function. This defines a discrete distribu-

tion that approximates the underlying mixed discrete

continuous density function (see Smith 1985 for further

details).

d. Comparing daily rainfall occurrence probability
forecasts

We compare probability forecasts of occurrence using

the Brier score, which is also a proper score (Brier and

Allen 1951):

Bm5
1

L
�
L

n51
(q̂m

n � qm
n )2, (17)

where q̂m
n is the forecast probability of occurrence and L

is the test data length.

5. Results

For point forecasting performance MAE of rainfall

totals, Fig. 8 shows that at lead times of 1–8 days ahead,

the multisite nonseasonal/seasonal Markov SMGLM

ranks slightly better than the processed ensembles. At

lead times of between 9 and 25 days ahead, the Markov

MGLM is best. The postprocessed ensembles have skill

over climatology at the available lead times. The i.i.d.

gamma–Bernoulli model does not have skill at any

forecast horizon. The Markov GLM is an improvement

FIG. 8. Forecast MAE for all models, out to a forecast horizon of 45 days, averaged over the 10 gauges selected for

modeling. The horizontal axes are forecast horizon in days, and the vertical axes are MAE. The dashed line on each

plot is the climatological forecast MAE for comparison.
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over the climatology for the first day, but afterward,

ceases to have skill. The exponential mixture model

only has skill on the first day, and thereafter loses skill.

The persistence forecast is consistently the worst fore-

cast over all horizons.

Turning to the density forecasts, the diagnostic checks in

Fig. 9 show that all of the models are reasonably well

calibrated, although there is some residual over- and un-

derdispersion in most models. From the autocorrelation

functions of the z series, as expected the unconditional

climatology and i.i.d. gamma–Bernoulli models fail to

capture the small amount of serial correlation in the data

for the first 4 or 5 days time lag. The conditional models

naturally fare better in this regard, and the postprocessed

ensembles perform best. The results are consistent with

these findings for the other gauges, with some negligible

differences. The diagnostic check of Fig. 5 shows that the

Markov JGLM is capable of reproducing the spatial cor-

relations to a reasonable extent, although the correlations

are smaller than those in the original time series because

the mixed GLM density model of the actual probability

densities of rainfall at each site is not perfect.

Regarding combined calibration and sharpness of the

density forecasts, Fig. 10 shows that the nonseasonal/

seasonal multisite Markov GLMs are the best per-

formers on the first day. The joint-site GLM has some

skill at 1 day ahead, but thereafter lacks appreciative

skill. At 2–8 days ahead, the postprocessed ensembles

FIG. 9. PIT z series for the Brize Norton gauge, for the 1-day-ahead forecast horizon. (from left to right) The estimated distribution of

the z series and the autocorrelation function for z, associated with the bar plot on the left. The dotted horizontal lines are the estimated

95% confidence intervals, the bars are the estimated distributions, and the black lines are the autocorrelation at time lag t.
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rank first, just ahead of the Markov MGLM/SMGLMs,

which have some skill for some forecast horizons be-

tween 9 and 25 days ahead.

The i.i.d. gamma–Bernoulli model does not have

skill over climatology at any horizon. The rest of the

conditional models show slight improvements at 1 day

ahead, but then show similar performance to the un-

conditional models.

For the occurrence Brier score, the postprocessed en-

sembles have the best score for forecast horizons of 2–8

days, outperforming all other models. However, the con-

ditional models, in particular the Markov MGLM/

SMGLMs all show skill relative to climatology for the first

day, thereafter they lose skill. The i.i.d. gamma–Bernoulli

model does not have skill at any forecast horizon, and the

persistence forecast is the worst at every horizon.

It is worth noting that Markov GLMs involve highly

nonlinear feedback mechanisms, particularly noticeable

when propagating information from many neighboring

sites. Although often drifting to zero, unlike the simple,

unconditionally stable Markov chains such as the Cao–

Li–Wei model, it is possible for Markov GLMs to pro-

duce growing responses as well. This is noticeable in the

MAE, CRPS, and Brier scores, where the performance of

some of the more complex Markov models varies some-

what with forecast horizon. The other, simpler models

produce smoother results. Another note is that experi-

ments with shuffling the order of sites used in the Markov

JGLM method did not lead to substantial differences in

performance, either in the MAE, CRPS, or Brier scores.

These forecasting results raise the question of why

some of the statistical methods have comparable or

FIG. 10. CRPS results over all density forecast models averaged over all 10 gauges selected for

the modeling part of the study. The horizontal axes are forecast horizon in days, and the vertical

axes are CRPS. The dashed line on each plot is the climatology CRPS for comparison.
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better performance than the postprocessed ensembles

in some aspects as previously described. Turning first to

point forecast performance, temporal correlations in

the data beyond 1 day ahead are very small. Nonethe-

less, the Markov GLMs are well equipped to exploit this

small, 1-day-ahead autocorrelation.

Second, with regard to density forecasts, the CRPS

results show that incorporating all the information from

every site on the previous day when forecasting each

site individually, improves the calibration of the Mar-

kov multisite models relative to all the other models

(including the Markov JGLM joint site method).

Therefore, neighboring sites do contain useful infor-

mation that can be exploited to improve forecasts at

short lead times.

Regarding the occurrence forecast performance, the

ensemble calibration regression method is successfully

able to remove bias in the interpolated ensembles to

produce the best forecasts. However, the training data

is very similar to the test data, both having long, con-

secutive runs of dry days, followed by shorter, consec-

utive runs of wet days. Thus, the occurrence time series

is highly autocorrelated 1 day ahead, diminishing rap-

idly with increasing forecast horizon. The conditional

Markov MGLM and Markov SMGLMs use the most

information from the past in order to produce forecasts.

As can be seen in Fig. 11, these conditional models,

which are designed to capture temporal autocorrela-

tion, do very well in exploiting this 1-day-ahead auto-

correlation.

6. Conclusions

In this paper, we investigated the autocorrelation and

cross-correlation structure of a large number of rain

gauges in the Thames Valley, United Kingdom, and

demonstrated that while autocorrelation in the rainfall

depth amount is of minor importance, spatial cross

FIG. 11. The Brier score of forecast of the probability of occurrence of rainfall with the results averaged over all 10

gauges selected for the modeling part of the study. The horizontal axes are the forecast horizon (days) and the vertical

axes are the Brier score. The dashed line is the climatology Brier score for comparison.
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correlation is highly dominant. We also showed some

slight seasonal variations in the mean intensity of rain-

fall on wet days. We used this information to produce

a set of new, site-specific statistical density forecast

models in this spatial area, based on variations of a

Markov GLM, non-Gaussian regression method in a

couple of different configurations. We tested these

models against a set of simple benchmarks and some

more sophisticated models proposed in the literature,

and against ensemble NWP forecasts combined with

GLM regression in a postprocessing approach. The tests

involved the comparison of rainfall forecast perfor-

mance of all the models for each rain gauge, up to 45

days ahead. The tests demonstrated that Markov GLMs

can be configured to produce good 1-day-ahead fore-

casts and reasonably skillful short-term forecasts up to a

couple of weeks ahead. They also show that combining

GLM regression with ensembles can effectively cali-

brate the ensembles to produce skilful density forecasts

up to a week ahead. The results do not support the use

of any of the other proposed models.

In terms of overall density forecasting, all the models

were well calibrated, but in summary, the GLMs, either

alone or in combination with ensembles, performed best

when both calibration and sharpness were considered

simultaneously. In terms of ability to forecast occur-

rence of rain, except at lead times of 1 day, no models

were capable of bettering the postprocessed ensembles.

We also demonstrated the superior ability of the post-

processed ensembles to reproduce the (small) serial

correlation in the rainfall data.

A similar study (Taylor and Buizza 2004) compared

temperature forecasts from simple autoregressive

time series models, postprocessed European Centre for

Medium-Range Weather Forecasts (ECMWF) ensem-

ble mean, and a high-resolution point NWP; it was

found that the ensemble mean was the best under the

MAE at up to 10 days ahead. Similarly, Campbell and

Diebold (2005) found that point forecasts from time

series models could not outperform NWP forecasts.

Our findings disagree as we have found it possible to

produce time series point forecasts slightly better than

calibrated NWP forecasts up to 8 days ahead. We be-

lieve this is because precipitation is notoriously difficult

to predict, particularly at local sites, and time series

models exploiting correlations can contribute to making

useful forecasts.

The results lead us to suggest ways in which ensemble

forecasts might best be calibrated for full-density fore-

cast applications. Contrary to other reports (Cao et al.

2004; Robertson et al. 2004), we believe that this study

can act as a caution against the use of simple uncondi-

tional density models and the more elaborate two-state

Markov chains combined with exponential mixtures for

this purpose. In particular, we believe our results sug-

gest that Markov GLMs could be effective new tech-

niques in this regard, which concurs with other studies

(Sloughter et al. 2007).
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