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Goal:

Grow individual clouds when/
where the resolution is high.

Parameterize convection when/
where resolution is low.

Continuous scaling.

One set of equations, one code.

Physically based.



Use a CRM to test ideas.
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becomes the gird-scale circulation. The cumulus parameterization should play no role in this 

limit. More generally, it is important to remember that parameterizations are supposed to 

formulate only the subgrid effects of cumulus convection, NOT its total effects involving gird-

scale motion. Otherwise the parameterization may overdo its job, over-stabilizing the grid-

scale fluctuations that are supposed to be explicitly simulated.  

To visualize the problem to be addressed, we have performed two numerical simulations 

using a CRM, one with and the other without background shear. The model used for these 

simulations is the 3-D vorticity equation model of Jung and Arakawa (2008) applied to an 

idealized horizontally-periodic domain. The horizontal domain size and the horizontal grid 

size are 512 km and 2km, respectively. Other experimental settings follow the benchmark 

simulations performed by Jung and Arakawa (2010).  

Figure 4 shows snapshots of the vertical velocity w at 3 km height simulated (a) with and 

(b) without background shear. As we can see from these snapshots, these two runs represent 

quite different cloud regimes. To see the grid-size dependence of the statistics, we divide the 

original CRM domain (512 km) into sub-domains of same size to repcresent the GCM grid 

cells. 

 

 

Fig. 4  Snapshots of the vertical velocity w at 3 km height simulated (a) with and (b) 
without background shear, and examples of sub-domains used to see the grid-size 
dependence of the statistics. 
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An example of resolution-dependence

 4 

atmospheric modeling is quite different from such a case because the spectrum is virtually 

continuous due to the existence of mesoscale phenomena. 

 

 

Fig. 2.  Domain- and ensemble-averaged profiles of the "required source" for (a) moist static 
energy (divided by cp ) and (b) total airborne water mixing ratio (multiplied by L / cp ) due to 
cloud microphysics under strong large-scale forcing over land obtained with different 
horizontal grid sizes and different time intervals of implementing physics. The two extreme 
profiles shown in red and green approximately represent the true and apparent sources, 
respectively. Redrawn from Jung and Arakawa (2004).  
 
Jung and Arakawa (2004) showed convincing evidence for the transition of model physics 

as the resolution changes by performing budget analysis of data simulated by a CRM with 

different space/time resolutions. By comparing the results of low-resolution test runs without 

cloud microphysics over a selected time interval with those of a high-resolution run with 

cloud microphysics (CONTROL), they identified the apparent microphysical source 

“required” for the low-resolution solution to be equal to the space/time averages of the high-

resolution solution. This procedure is repeated over many realizations selected from 

CONTROL. Figure 2(a) shows examples of the domain- and ensemble-averaged profiles of 

the required source of moist static energy obtained in this way. Here moist static energy is 

defined by cpT + Lqv + gz , where T and qv  are temperature and water vapor mixing ratio, 

respectively, cp is the specific heat at constant pressure, L  is the latent heat per unit , and 

gz  is geopotential energy. The profiles shown in red and green are obtained using (2km, 10 

qv

Jung, J.-H. and A. Arakawa, 2004.: The resolution dependency of model physics: 
Illustrations from nonhydrostatic model experiments. J. Atmos. Sci., 61, 88-102.



Starting pointDerivation of the Unified Parameterization

Notes by David Randall, based on a presentation by Akio Arakawa

For the case of a top-hat PDF, we can derive

!w !" # w" $w" =% 1$%( )&w&" ,

(1)

where 

 ( ) ! " ( )c + 1#"( ) !( )  and 
 
!( ) " ( )c # !( ) ,

(2)

!  is the fractional area covered by the updraft, an overbar denotes a domain mean, the subscript 
c  denotes a cloud value, and a tilde denotes an environmental value. We expect  !w  and !"  to 

be independent of ! . In that case, (1) implies that !w !"  is a parabolic function of ! . 

Define !w !"( )
E

 as the flux required to maintain quasi-equilibrium. The closure assumption 

used to determine !  is 

! =
"w "#( )

E

$w$# + "w "#( )
E

.

(3)

The quantities on the right-hand side of (3) are expected to be independent of ! . Eq. (3) is 
guaranteed to give 

0 !" !1 .
(4)

By combining (3) and (1), we obtain

!w !" = 1#$( )2 !w !"( )
E

.

(5)

This shows that the actual flux is typically less than the value required to maintain quasi-
equilibrium. In fact, the actual flux goes to zero as ! "1. 
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Flux as a function of grid size
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domains  (not shown). This transport may be written as < wh > , where the overbar denotes 

the average over all CRM grid points in the sub-domain and, as defined earlier, < >  is the 

ensemble average over all sub-domains with ! > 0 . To distinguish this transport from the 

eddy transport, we call this transport the “total transport” of h. The red lines in Fig. 6 show the 

diagnosed total transport, again at z = 3km , for each sub-domain size d. This transport 

rapidly increases as d decreases for both the (a) shear and (b) non-shear cases, showing that 

active updrafts are better reoresented with higher resolutions. The green lines in the figure, on 

the other hand, show the ensemble-average eddy transport given by < !w !h > , where 

!w " w #w  and !h " h # h . For large sub-domain sizes, say for d ! 32!km , the total transport 

is almost entirely due to the eddy transport < !w !h > . With smaller sub-domain sizes, 

however, < !w !h >  is only a fraction of < wh >  and vanishes for d = 2 km. Recall that, as 

indicated in the figure, what needs to be parameterized is the eddy transport, not the total 

transport, and the difference between the total and eddy transports must be explicitly 

simulated. We note that the contribution from the eddy transport is larger for the non-shear 

case although there is no significant qualitative difference between the two cases in the way 

the transports depend on the resolution. 

 

 

Fig. 6  The diagnosed total transport and eddy transport of moist static energy divided 
by c p  at   z = 3 km  for each sub-domain size d.   

 

< wh >

Red curve is total flux.
Green curve is subgrid flux to be parameterized.

The subgrid part is dominant at low resolution, but unimportant at high resolution.



Sigma independence
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The smaller values of !w!h  pointed by the arrow are due to the higher probability for the 

sub-domains to cover only the edge part of the updrafts when ! is small. The result shown in 

this figure supports the hypothesis that the !-dependence of the eddy transport with top-hat 

profiles is primarily through ! 1"!( ) . Arakawa et al. (2011) introduced this dependency as 

the simplest choice to satisfy the requirement that the eddy transports converge to zero as ! 

approaches 1. We are now justifying this dependence based on the reasoning given above. 

The convergence requirement is then automatically satisfied. 

 

 
Fig. 9   Diagnosed !w!h  showing its approximate independence of !. 

 

The light blue lines in Figs. 7 and 8 show the eddy transports diagnosed from the 

modified dataset. As anticipated, these lines are very close to the curve ! 1!!( )  if the 

coefficient is properly chosen. The difference between the green and light blue lines in these 

figures represents the contribution from the inhomogeneous structure of clouds and the 

environment. The difference is small for relatively small values of !, say . For larger 

values of !,  the difference is not small compared to the total eddy transport shown in green. 

As far as convectively active cloud regimes are concerned, such as the datasets we are using, 

this difference may not be very important because the eddy transports themselves are small 

for large values of !  compared to the total transport. 

In Fig. 10(a), which partially reproduces Fig, 7, the blue dashed curve shows  
multiplied by a coefficient chosen to best-fit the light-blue line. Figures 10(b) and 10(c) are 

same as Fig. 10(a) but for  and , respectively. Although there are no 

! " 0.4

! 1!!( )

d = 16km d = 32km



Test of Eq. (1)

Derivation of the Unified Parameterization

Notes by David Randall, based on a presentation by Akio Arakawa

For the case of a top-hat PDF, we can derive

!w !" # w" $w" =% 1$%( )&w&" ,

(1)

where 

 
!( ) " ( )c # !( ) ,

(2)

the subscript c  denotes a cloud value, and a tilde denotes an environmental value. We expect  

!w  and !"  to be independent of ! . In that case, (1) implies that !w !"  is a parabolic function 

of ! . 

Define !w !"( )
E

 as the flux required to maintain quasi-equilibrium. The closure assumption 

used to determine !  is 

! =
"w "#( )

E

$w$# + "w "#( )
E

.

(3)

The quantities on the right-hand side of (3) are expected to be independent of ! . Eq. (3) is 
guaranteed to give 

0 !" !1 .
(4)

By combining (3) and (1), we obtain

!w !" = 1#$( )2 !w !"( )
E

.

(5)

This shows that the actual flux is typically less than the value required to maintain quasi-
equilibrium. In fact, the actual flux goes to zero as ! "1. 

A model predicts grid cell means, rather than environmental values, so direct use of (3) is 
not possible. Define 
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“Modified” means that  the data is averaged over updrafts and environment before 
computing the flux. In other words, a “top-hat” structure is imposed by averaging.

 

3 .  The !-dependence of vertical transport and its parameterization 

 

a. Diagnosed !-dependence of the vertical transport of moist static energy  

Section 5 will show that the standard deviations associated with the ensemble-average 

transport shown in Fig. 6 are quite large, illustrating that there are a variety of situations even 

when the resolution is fixed. To obtain an insight into the factor controlling the magnitude of 

vertical transports, we classify sub-domains of same size into different bins according to the 

values of !. Figure 7 shows the !-dependence of the ensemble-mean vertical transport of 

moist static energy obtained in this way for the shear case. The case of d = 8km  shown by 

the arrow in Fig. 6 is chosen as an example, where the eddy transport is maximum. As in Fig. 

6, the total and eddy transports are shown in red and green, respectively. (The light blue line 

will be explained in Subsection c.) Even with this relatively high resolution, the total transport 

is almost entirely due to the eddy transport for small values of !, say ! " 0.2 . This means 

that parameterization of the eddy transport is still needed. For larger values of , however, at 

least a part of the total transport is due to grid-scale vertical velocity.  

 

 

Fig. 7   The !-dependence of the ensemble-mean total (red) and eddy (green) vertical 
transports of moist static energy divided by c p . The light blue line represents the 
eddy transport diagnosed from the modified dataset. 

 

Figure 7 shows that the eddy transport does not vanish even for ! = 1 . When ! = 1 , all 

grid points in the subdomain satisfy the condition wc > 0.5 m/s  and, therefore, the sub-

domain is “saturated” with updrafts forming a single large updraft. The eddy transport can 
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Figure 7 shows that the eddy transport does not vanish even for ! = 1 . When ! = 1 , all 

grid points in the subdomain satisfy the condition wc > 0.5 m/s  and, therefore, the sub-

domain is “saturated” with updrafts forming a single large updraft. The eddy transport can 
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Other resolutions
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sufficient data for large values of !, these figures strongly indicate that the !-dependence 

through  is valid for other resolutions as well. From (9) we see that the maxima of 

the dashed curves shown by the arrows in Fig. 10 give estimates of !w!h / 4 . These values 

are also similar between different resolutions.  

 

 

Fig. 10.   The red and light blue lines in (a) are same as those in Fig. 7. Similar plots 
for different resolutions are shown in (b) and (c). The blue dashed lines show best-fit 
! 1!!( )  curves. The arrows show estimated values of !w!h / 4 . 

 

So far we have shown the !-dependence of diagnosed vertical transports at . 

Part II of this paper by Wu and Arakawa (2013) shows the results of extending the diagnosis 

to other levels. In short, the relations between the total transport, the total eddy transport and 

the transport based on top-hat profiles are very similar between different levels including the 

sub-cloud layer. 

 

! 1!!( )

z = 3 km

These results confirm the quadratic sigma dependence for three different grid spacings.
Note that large sigma is only possible when the grid spacing is fine.



Closure assumption

Derivation of the Unified Parameterization

Notes by David Randall, based on a presentation by Akio Arakawa

For the case of a top-hat PDF, we can derive

!w !" # w" $w" =% 1$%( )&w&" ,

(1)

where 

 
!( ) " ( )c # !( ) ,

(2)

the subscript c  denotes a cloud value, and a tilde denotes an environmental value. We expect  

!w  and !"  to be independent of ! . In that case, (1) implies that !w !"  is a parabolic function 

of ! . 

Define !w !"( )
E

 as the flux required to maintain quasi-equilibrium. The closure assumption 

used to determine !  is 

! =
"w "#( )

E

$w$# + "w "#( )
E

.

(3)

The quantities on the right-hand side of (3) are expected to be independent of ! . Eq. (3) is 
guaranteed to give 

0 !" !1 .
(4)

By combining (3) and (1), we obtain

!w !" = 1#$( )2 !w !"( )
E

.

(5)

This shows that the actual flux is typically less than the value required to maintain quasi-
equilibrium. In fact, the actual flux goes to zero as ! "1. 

A model predicts grid cell means, rather than environmental values, so direct use of (3) is 
not possible. Define 
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A model predicts grid cell means, rather than environmental values, so direct use of (3) is 
not possible. Define 

! ( ) " ( )c # ( ) .

(6)

It follows that

! ( ) = 1"#( )$( ) .

(7)

If !( )  is independent of ! , then ! ( )  decreases (in absolute value) as !  increases. We use 

!w!" = #w#"
1$%( )2

(8)

to express the closure assumption, (3), as 

! =
"w "#( )

E
$w$#
1%!( )2

+ "w "#( )
E

.

(9)

Eq. (9) can be rearranged to

! =
" 1#!( )2
1+ " 1#!( )2

,

(10)

where 

! "
#w #$( )

E

%w%$
(11)

can be computed using a plume model with quasi-equilibrium closure, provided that the plume 
model determines the in-cloud vertical velocity, e.g., by solving the equation of vertical motion. 
In fact, !  is equal to the value that !  would take with quasi-equilibrium closure, although (11) 
does not guarantee that  ! !1 , or even that ! <1. 

Eq. (10) must be solved as a cubic equation for !  as a function of ! :
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! ( ) " ( )c # ( ) .

(6)

It follows that

! ( ) = 1"#( )$( ) .

(7)

If !( )  is independent of ! , then ! ( )  is expected to decrease (in absolute value) as !  

increases. We use 

!w!" = #w#"
1$%( )2

(8)

to express the closure assumption, (3), as 

! =
"w "#( )

E
$w$#
1%!( )2

+ "w "#( )
E

.

(9)

Eq. (9) can be rearranged to

! =
" 1#!( )2
1+ " 1#!( )2

,

(10)

where 

! "
#w #$( )

E

%w%$
(11)

can be computed using a plume model with quasi-equilibrium closure, provided that the plume 
model determines the in-cloud vertical velocity, e.g., by solving the equation of vertical motion. 
In fact, !  is equal to the value that !  would take with quasi-equilibrium closure, although (11) 
does not guarantee that  ! !1 , or even that ! <1. 

Eq. (10) must be solved as a cubic equation for !  as a function of ! :

! 1"#( )3 + 1"#( )"1= 0 .

(12)
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How sigma depends on lamda
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where w  and !  are the grid-point values of w and !, respectively. Since the conventional 

parameterizations assume that the grid-point values represent the cloud environment, these 

differences can also be interpreted as !w  and !"  defined by (1). In contrast, the unified 

parameterization distinguishes !w  and !"  from !w  and !" .  

For the purpose of determining ", we use h for !. Then, from (1), (2), (3) and (17), we 

can derive  

!w!h = !w! h / 1""( )2 .    (18) 

Using (18) in (14) and manipulating, we finally obtain 

           ! 1" !( )3 = # ,      (19) 

where 
        ! " #w #h( )E /$w$h .    (20) 

For a conventional parameterization with full adjustment, the use of  in (19) gives  

.       (21) 

 

 

Fig.11   Plots of ! given by (21) and (19) as functions of #. 

 

! <<1

! = "



Including substructure
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It is pointed out that the stochastic formulation must be under appropriate 

physical/dynamical/computational constraints that determine the major source of uncertainty. 

The source of uncertainty in the unified parameterization is in the determination of cloud 

properties relative to the grid-point values by a cloud model, which influences the uncertainty 

of ! and hence that of eddy transports. We suspect that different phases of cloud development 

are primarily responsible for the uncertainty, which could be formulated stochastically. 

 

 
Fig. 14 

 

The remaining issues include parameterization of the eddy transport due to 

inhomogeneous structures of updrafts, which is responsible for the difference between the 

green and light blue lines shown in Figs. 7 and 8. The eddy transports in light blue is obtained 

from the modified dataset, in which w and thermodynamic variables of all CRM points of the 

sub-domain that satisfy w ! 0.5m/s  by their averages, and do the same for the environment 

points that satisfy w < 0.5m/s . This assumes a single structure for the updrafts. To see the 

effect of multiple structures of the updrafts, two other modified datasets are produced. The 

double structure dataset is based on three ranges of w: w < 0.5m/s (environment), 

0.5m/s ! w < 2m/s and 2m/s ! w . The triple structure dataset is, on the other hand, based on 

four ranges of w: w < 0.5m/s (environment), 0.5m/s ! w < 2m/s , 2m/s ! w < 4m/s  and

4m/s ! w . In these datasets, w and thermodynamic variables of all CRM points are replaced 

Substructures are significant for large sigma, but the eddy flux becomes 
unimportant for large sigma.



Implementation

! 1"#( )3 + 1"#( )"1= 0 .

(12)

Inspection of (12) shows that ! "1  as ! "# , and ! " 0  as ! " 0 . The curve defined by the 
solution of (12) can be plotted most easily by rearranging (12) to write !  as a function of ! :

! = "
1#"( )3

.

(13)

Inspection of (13) shows that ! "#  for 0 !" !1 .

A possible “quick” implementation strategy:

1. Choose an existing conventional parameterization that includes the equation of vertical 
motion for the plumes.

2. Using the plume model, calculate !w !"( )
E

 and !w , and !" . These will be functions of 

height. To determine !w  and !" , we have to choose a particular cloud type.

3. Evaluate !  using (11) and !  using (12). These will be functions of height.

4. Use (5) to “scale back” the convective fluxes.

5. Scale the “non-convective” parts of the tendencies (e.g., the condensation rate) with ! .

Revised May 5, 2010 1:24 AM

3



References

Arakawa, A., J.-H. Jung, and C. M. Wu, 2011: Atmos. Chem. Phys., 11, 3731-3742, doi:
10.5194/acp-11-3731-2011.

Jung, J.-H. and A. Arakawa, 2004.: The resolution dependency of model physics: 
Illustrations from nonhydrostatic model experiments. J. Atmos. Sci., 61, 88-102.

Chikira, Minoru, Masahiro Sugiyama, 2010: A Cumulus Parameterization with State-
Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and 
Humidity Profiles. J. Atmos. Sci., 67, 2171–2193.

Chikira, Minoru, 2010: A Cumulus Parameterization with State-Dependent Entrainment 
Rate. Part II: Impact on Climatology in a General Circulation Model. J. Atmos. Sci., 67, 
2194–2211.

AA is currently working on two more papers.


